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Efficient Parametric Coding of Transients
Mads Græsbøll Christensen∗, Student Member, IEEE, and Steven van de Par

Abstract— In this paper, methods for improved parametric
coding of transients are presented. We propose a signal model for
coding of transients consisting of a sum of sinusoids each being
amplitude-modulated by a different gamma envelope. These en-
velopes are characterized by an onset time, an attack and a decay
parameter. An efficient method for estimating these parameters
is presented. Further, methods are proposed that combine this
transient model with a constant-amplitude sinusoidal model in
order to achieve efficient coding of both stationary and transient
signal parts. By rate-distortion optimization using a perceptual
distortion measure we combine variable rate bit allocation and
segmentation in an optimal way. Formal as well as informal
listening tests show that significant improvements can be achieved
with the proposed model as compared to a state-of-the-art
sinusoidal coder by the combination of optimal segmentation
and amplitude modulated sinusoidal audio coding.

I. I NTRODUCTION

I N the past couple of decades, sinusoidal models for digital
processing of speech and audio have received much atten-

tion for a wide variety of applications where sinusoidal speech
coding and modeling [1]–[4] was among the first and perhaps
the most prominent. Also for analysis and synthesis of music
[5], [6] the sinusoidal model has been of interest. In recent
years, the growth of the Internet and wireless communication
has spurred renewed interest in sinusoidal models, this time
for coding of audio [7]–[15] at low bit-rates. In perceptual
audio coding, compression is achieved by exploiting statistical
redundancies as well as perceptual irrelevancies of the source
(see e.g. [16]). In parametric audio coding, a compact rep-
resentation of the source signal is achieved using parametric
models and the statistical redundancies and irrelevanciesof
the model parameters are exploited for efficient coding.

A major challenge in audio coding in general is efficient
coding of non-stationary segments (see e.g. [16]). Signal mod-
els and transform bases are typically chosen such that a high
coding efficiency is achieved for stationary signal parts, and, as
a consequence, coding of non-stationary parts becomes highly
inefficient. Sinusoidal coding using constant-amplitude (CA)
sinusoids is an example of this difficulty. The inefficient coding
of transients leads to a number of problems. Firstly, errors
introduced before onsets are very poorly masked compared
to the situation where a simultaneous masker is present [17].
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These types of errors are known as pre-echos. Secondly, bad
modeling of transients leads to very dull sounding attacks and
a perceived lack of bandwidth of the decoded signal. The
typical solution to these problems are adaptive segmentation
using window switching [18] and window shape adaptation
or rate-distortion (R-D) optimal segmentation [14], [19],[20].
Other methods that aim at solving this problem include
wavelet-packets [21], temporal noise shaping (TNS) [22],
gain modification [23], [24], transient location modification
[25], switching from a parametric signal model to a wavelet
or transform representation [7], [9], multi-resolution sinu-
soidal modeling [26] and coding of transients using sinusoidal
modeling in the transform domain [27]. In parametric audio
modeling and coding, transients can be handled by adapting
the signal model to better fit the input signal. A particularly
interesting class of such adapted models are the amplitude
modulated (AM) sinusoidal models1 [28]. In these models,
the signal is decomposed into a sum of sinusoidal components
having a time-varying envelope. The different realizations of
damped sinusoids that have been applied to audio modeling in
[29]–[33] are examples of this. In audio coding AM has been
applied in [8], [13]. Like [5] these use a singlebanded model
of the modulating signal meaning that the envelope is the same
for all components. In [34] it was demonstrated that significant
improvements are achieved by allowing different sinusoidal
components to have different amplitude modulating signals.
Since this study focused only on modeling of audio signals, the
question remains whether frequency-dependent AM methods
are also efficient in terms of bit-rate, i.e., whether they achieve
a lower distortion, both subjectively and objectively, compared
to a conventional sinusoidal coder at the same rate.

In the present paper we seek to answer that question along
with some other unanswered questions regarding parametric
coding of transients. We present a coder based on a par-
ticular model of the amplitude modulating signal known as
gamma envelopes. Figure 1 shows the waveform of a sinusoid
modulated by a windowed gamma envelope. The gamma
envelopes are characterized by an onset time, an attack and
a decay parameter. This model differs from existing models
used for parametric modeling and coding of audio in that
each sinusoid can have a different envelope with an onset
at an arbitrary position within a segment, and in that it is
characterized by an attack parameter. In addition to the new
signal model, the proposed coder incorporates rate-distortion
optimal bit allocation and segmentation. Further, we consider
different ways of achieving efficient coding of both stationary
and transient signal parts. Finally, we quantify, by subjective
listening tests, the performance of the different methods for

1In this text, AM means either amplitude modulation or amplitude modu-
lated depending on the context.
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Fig. 1. Illustration of a sinusoid modulated by a windowed gammaenvelope.
The gamma envelopes are parameterized by an onset, an attack parameter and
a decay parameter.

different types of signals.
The main part of this paper is organized as follows: in

Section II the proposed signal model and the perceptual
distortion measure which is instrumental in this work are
presented. The rate-distortion optimization used for allocation
and segmentation is presented in Section III, and Sections
IV and V deal with the estimation of sinusoidal parameters.
Implementation details, the experimental setup for perceptual
tests and their results are presented in Sections VI and VII,
respectively. In Section VIII we discuss the relation to existing
work, and, finally, in Section IX we conclude on our work.

II. FUNDAMENTALS

The presented coder can be described as comprising the
following steps: in the encoder, the input signal is split into a
number of overlapping segments and a window is applied to
each segment. The model parameters are then estimated and
subsequently quantized, entropy coded and finally put into the
bit-stream. In the decoder, the bit-stream is mapped back to
the quantized parameters, and the segment is synthesized using
overlap-add with an appropriate window.

In this paper, we propose a coder based on the following
amplitude modulated sinusoidal signal model for time index
n = 0, . . . , N − 1:

x̂(n) =

L
∑

l=1

γl(n)Al cos(ωln + φl), (1)

whereAl, ωl, andφl are the amplitude, frequency and phase
of the l’th sinusoids, respectively. The number of components
is denotedL and γl(n) is the modulating signal or envelope
when γl(n) ≥ 0 ∀n. Here we use a particular model of
the envelopes which we shall henceforth refer to as gamma
envelopes. This model is derived from the integrand of the
gamma function, which is commonly used to characterize the
gamma distribution in statistics. The gamma envelopes are
given as

γl(n) = u(n − nl) (n − nl)
αl e−βl(n−nl). (2)

Each envelope is characterized by an onset timenl ∈ Z, an
attack parameterαl ∈ N, and a decay parameterβl ∈ R

+.
Moreover, u(n) is the unit step sequence. The envelopes
composed from all possible combinations of these parameters
will henceforth be referred to as the envelope dictionary.
Inserting (2) into (1), we get the so-called gamma-tones
commonly used as stimuli in psychoacoustical experiments
and for modeling of the auditory filters [35]. Here, we rather
use it as a signal model that, as we shall see, has been found to
perform well for the problem at hand. The distinction between
the model parametersαl andβl in (2) is only figurative since
changingβl for a fixed αl will affect the attack andαl will
likewise affect the decay. We note that forαl = 0, βl = 0 and
nl = 0, the lth sinusoid reduces to a constant-amplitude (CA)
sinusoid, i.e.γl(n) = 1. The situation where all components
have constant amplitude will be termed the CA model. For
αl = 0 and βl 6= 0 for all l, the model reduces to the so-
called delayed damped sinusoids of [32], and withαl = 0 and
nl = 0 it becomes equivalent to the damped sinusoids of [30],
[33]. Compared to the different variations of damped sinusoids
of [29]–[32], this model has the additional flexibility of the
attack parameter. It is well-known that different instruments
do have different attacks, and studies show that the attacks
are in fact important features in the recognition of musical
instruments [36]. This can also be witnessed from the many
transient signals on the SQAM disc [37].

In finding the model parameters and in the R-D opti-
mization, it is advantageous to use a perceptual distortion
measure since we seek to minimize the perceived distortion.
In choosing a distortion measure we face conflicting demands.
On one hand we wish to use a distortion measure that takes as
much of the human auditory system into account as possible.
On the other hand we wish to have a distortion measure
that is both of reasonably low computational complexity and
defines a norm such that it may be subject to optimization.
Consequently, we have chosen the spectral distortion measure
of [38], which is defined as

D =

∫ π

−π

A(ω)|E(ω)|2dω, (3)

whereA(ω) is a real, positive perceptual weighting function,
and E(ω) denotes the discrete-time Fourier transform of the
windowed error, i.e.,

E(ω) =

N−1
∑

n=0

w(n)e(n)e−jωn, (4)

with w(n) being the analysis window,e(n) = x(n) − x̂(n)
the modeling error, andx(n) the observed signal. We note
in passing that this and all other Fourier transforms will in
practice be calculated for discrete values ofω. In order to
shape the error spectrum according to the masking threshold,
the weighting functionA(ω) is set to the reciprocal of the
masking threshold. Here, we derive the masking threshold
from [38]. This distortion measure improves on other models
in that it takes the spectral integration in the human auditory
system into account. Although the measure is strictly only
valid for stationary signals, it does not ignore temporal aspects
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completely as it is based on waveform matching. In order to
achieve a low distortion, the phase and temporal envelope
of the coded signal must match that of the original. As a
consequence, temporal errors, such as pre-echos, will not go
unpunished by the measure. The spectral distortion measure
has been found to comprise a reasonable tradeoff between
complexity and correlation with perceived quality for coding
purposes and as we shall see, good results can be achieved
using it. Henceforth, when we refer to distortions, we mean
the perceptual distortion defined in (3).

The discrete-time Fourier transform ofγl(n) denotedΓl(ω)
can be shown to be

Γl(ω) =

N−1−nl
∑

n=0

nαle−jωnl

(

e−jω−βl

)n
(5)

= jαl
∂αl

∂ωαl

e−jωnl − e−βl(N−nl)e−jωN

1 − e−βle−jω
. (6)

As indicated by (4), an analysis window is applied to the
gamma envelopes. In the decoder, a window is also used in
the synthesis, which is performed using overlap-add with a
fixed overlap. Both the encoder and the decoder use tapered
von Hann windows of the same length. WithM denoting the
overlap in samples andN being the (even) segment length,
the windows are defined forn = 0, . . . , N − 1 as

w(n) =







v(n), 0 ≤ n < M

1, M ≤ n < N − M

v(n − N + 2M), N − M ≤ n < N
(7)

with the even length von Hann window being defined as

v(n) =
1

2
−

1

2
cos

(

π(n + 0.5)

M

)

. (8)

Let W (ω) denote the discrete-time Fourier transform of the
window w(n). Then the discrete-time Fourier transform of the
windowed envelope can be written as the circular convolution

Zl(ω) =
1

2π

∫ π

−π

Γl(ω − ξ)W (ξ)dξ. (9)

Hence, the window, which has low-pass characteristics,
smoothes the spectrum. As the windowed gamma envelopes
have no discontinuities at segment boundaries the spectrumof
the windowed gamma envelopes will generally be more well-
behaved than when no window is applied. This is important
since the distortion measure will punish spectral distortion due
to not only the mainlobe but also the sidelobes. In Appendix
I, a closed-form expression of the discrete-time Fourier trans-
form of the windowed gamma envelopes is derived.

III. R-D OPTIMAL ALLOCATION AND SEGMENTATION

Since audio signals may exhibit varying degrees of sta-
tionarity, it is often advantageous to allow for a flexible
segmentation and allow the bit-rate to vary over time. In
addition, it is observed that the proposed AM signal model is
only efficient in terms of rate-distortion for transient segments,
while the CA model is an efficient representation of tonal
stationary segments. In order to combine the two models in an
optimal way as well as doing optimal segmentation of the input

signal, we use rate-distortion optimization. Further, therate-
distortion optimization also results in a rate-scalable coder,
which is advantageous in dealing with critical signal parts.
For completeness we now briefly review the basic definitions,
assumptions and results for solving the problem of optimal
segmentation and allocation based on [19], [39]. First, letus
start out by introducing some definitions. We define a segment
σs as having a length of a positive integer multiplem ∈ Z

+

of a minimum segment lengthκ, i.e. ℓ(σs) = κm, and a
segmentation asσ = [ σ1 · · · σS ] consisting ofS disjoint,
contiguous segments that satisfy

S
∑

s=1

ℓ(σs) = κM, (10)

whereκM is the total length of the signal to be encoded. Each
of these segments, say segmentσs, can then be encoded using
a set of coding templatesTs (different models, model orders,
number of bits, etc.). Next, we defineR(σs, τs) andD(σs, τs)
as the non-negative cost in bits and distortion associated with
coding templateτs ∈ Ts for segmentσs. Assuming that
the distortions and cost in bits associated with a particular
segmentationσ and coding templatesτ = [ τ1 · · · τS ] are
additive over the segments, we can write the total distortion
and total number of bits as

D(σ, τ ) =

S
∑

s=1

D(σs, τs) R(σ, τ ) =

S
∑

s=1

R(σs, τs), (11)

respectively. The problem of distributing a certain numberof
bits over a number of quantizers can be cast into the problem
of rate-distortion optimization under rate constraint. This can
be stated as the following constrained optimization problem:

min D(σ, τ )

s. t. R(σ, τ ) = R⋆,
(12)

with R⋆ being the bit budget, i.e. the total number of bits to be
distributed. Next, introducing the Lagrange multiplierλ ≥ 0,
the constrained optimization problem in (12) can be written
as the unconstrained minimization problem [39]

J(λ) = min
σ

min
τ

S
∑

s=1

D(σs, τs) + λ(R(σs, τs) − R⋆). (13)

We now have an outer minimization over the segmentation,
and an inner minimization over coding templates given the
segmentation. In (11) we assumed thatD(·) and R(·) are
additive over segments. By also assuming that they are inde-
pendent over segments, the inner minimization in (13) can be
simplified significantly. Specifically, the optimization problem
reduces to the following, where the coding templates can be
optimized independently for a segmentation and a particular
λ [19]:

J(λ) = min
σ

S
∑

s=1

min
τ∈Ts

[D(σs, τ) + λR(σs, τ)] − λR⋆. (14)

This leads to the following important result: as the rates and
distortions are additive over segments, the outer minimization
can be solved using dynamic programming [19]. The optimal
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λ that leads to the target rateR⋆, denotedλ⋆, can be found
by maximizing the concave Lagrange dual function [40], i.e.,

λ⋆ = argmax
λ

J(λ) (15)

This can be done by sweeping overλ until R(σ, τ ) is within
some range of the bit budget [19]. It should be noted that
for a discrete problem such as ours, we cannot guarantee that
strong duality holds for the optimization problem, and, as a
consequence, the found solution may be suboptimal, but for a
dense set of coding templates the gap will be small (see [40]).
For a fixed segmentation, i.e. givenσ, the outer minimization
disappears, and we only have to minimize over the coding
templates. This was the approach used in [41].

IV. PARAMETER ESTIMATION

The distortion measure (3) defines a norm and is in fact
induced by an inner product (see [42]). The parameters for
each sinusoid can then be found using a matching pursuit
algorithm [43]. This would guarantee convergence in the
distortion as a function of the number of components. The
psychoacoustic matching pursuit (PMP) [42] is an algorithm
that does this, i.e. it performs matching pursuit using the
norm (3). The inner products can be found using FFTs also
for the AM case. It would, however, be very expensive with
respect to computational complexity. Since the R-D optimal
segmentation requires that at every segment boundary, all
combinations of segment lengths and coding templates are
evaluated, it is critical that the estimation procedure is fast.
In that spirit, we here employ a simpler procedure than PMP.
We start out by noting the number of different combinations
of parameters will be dominated by the number of different
frequencies and onset points. Thus, we break the estimation
process into three successive steps: frequency estimation, onset
estimation, and, finally, estimation of the envelope parameters
and the corresponding phase and amplitude. A block diagram
of the estimation procedure is shown in Figure 2.

For the frequency estimation we use a fast method some-
what reminiscent of the weighted matching pursuit [44]. The
algorithm operates on the residual, which at iterationi + 1 is
formed as

yi+1(n) = yi(n) − w(n)γi(n)Aie
j(ωin+φi). (16)

The residual is initialized as the discrete-time analytic signal

y1(n) = w(n)x(n) + jw(n)H{x(n)} , (17)

where H{·} denotes the Hilbert transform. This, including
windowing, is the preprocessing step in Figure 2. In practice,
the Hilbert transform is found using the FFT method. By oper-
ating on the analytic signal, we ignore the spectral contents of
x(n) for negative frequencies. This is done in order to simplify
the estimation procedure. Convergence in the modeling of the
analytic signal also ensures convergence in the real signalsince

ℜ{w(n)x(n) + jw(n)H{x(n)}} = w(n)x(n), (18)

however, for a non-zero error, the analytic signal modelingwill
introduce some error due to the correlation between negative
and positive sides of the spectrum.

Preprocessing

Frequency Estimation

Onset Estimation Envelope Estimation

Sinusoidal Synthesis

x(n)

{ωi, ni, Ai, φi, αi, βi}

w(n)
∑i

l=1 γl(n)Ale
j(ωln+φl)

yi(n)

{yi(n), ωi}

{yi(n), ωi, ni}

Fig. 2. The iterative AM parameter estimation procedure. Sinusoids are
found one at the time and subtracted from the input.

Let Pi(ω) = Y ∗
i (ω)Yi(ω) be the squared magnitude of the

discrete-time Fourier transform of the residual at iteration i ,
i.e.,

Yi(ω) =

N−1
∑

n=0

yi(n)e−jωn, (19)

which may be updated efficiently in the frequency domain.
Then the frequency is estimated as

ωi = argmax
ω

A(ω)Pi(ω)

s. t.
∂Pi(ω)

∂ω
= 0 and

∂2Pi(ω)

∂ω2
< 0.

(20)

This estimation criterion can be seen as an asymptotic PMP
criterion withN → ∞ for the CA case. The constraints ensure
that the frequency will be a peak in the spectrum. This is a
reasonable restriction also for the AM case as the modulating
signals all have low-pass characteristics. We cannot, however,
guarantee that the error converges in a convex way.

A coarse estimate of the integer onsetni is found in order
to limit the search space using the following simple method:
given a model where a sinusoidal component of frequencyωi

is modulated by a unit step sequenceu(n − ζ), the modeling
error can be written as

yi(n) − w(n)u(n − ζ)Aie
j(ωin+φi). (21)

This error is minimized in a least-squares sense by maximizing
the inner product (with proper normalization) between the
modulated sinusoid and the residual:

Ψ(ζ) =
1

∑N−1
n=ζ w2(n)

∣

∣

∣

∣

∣

∣

N−1
∑

n=ζ

yi(n)w(n)e−jωin

∣

∣

∣

∣

∣

∣

2

. (22)



5

We note that the productyi(n)w(n)e−jωin for n = 0, . . . , N−
1 only has to be computed once for each sinusoid. We then
find the onset as the maximizer of (22), i.e.,

ni = argmax
ζ

Ψ(ζ). (23)

Given the frequency and the coarse onset, the combination
of envelope parameters, including a final onset estimate, is
found as the minimizer of the distortion measure (3). This
corresponds to performing a PMP on the subset of the dic-
tionary. We assume that all the dictionary elements have been
scaled for a particular segment such that they all have unit
perceptual norm, i.e.,

∫ π

−π

A(ω)Z∗
k(ω − ωi)Zk(ω − ωi)dω = 1 ∀k, (24)

with Zk being the discrete-time Fourier transform of the
windowed envelopek in the dictionary, i.e. (see Appendix
I)

Zk(ω) =

N−1
∑

n=0

w(n)γk(n)e−jωn. (25)

The envelope, i.e. the combination ofαi, βi and ni, is then
found in an analysis-by-synthesis manner as the minimizer
of the perceptual distortion or, equivalently, as the following
maximization of the inner product:

Zi(ω) = argmax
Zk(ω)

∣

∣

∣

∣

∫ π

−π

A(ω)Z∗
k(ω − ωi)Yi(ω)dω

∣

∣

∣

∣

2

. (26)

From this inner product, the phase and amplitude of thei’th
sinusoid can also be found as the modulus and the argument,
i.e.

Aie
jφi =

∫ π

−π

A(ω)Z∗
i (ω − ωi)Yi(ω)dω. (27)

In practice the spectra are discrete and the integration is
performed as a summation over point-wise multiplications.As
most of the spectral energy ofZi(ω − ωi) is concentrated in
a small region aroundωi, the integration range can also be
reduced without much loss in accuracy but with considerable
reduction of computational complexity.

For the segment lengths used here, the analytic signal model
(considering only the positive parts of the spectrum) has been
found to perform satisfactorily. We note that it is also possible
to account to some extent for the interaction between different
components, including the positive and negative sides of the
spectrum, in a number of different ways. The different well-
known optimizations of matching pursuit (see e.g. [45]) canbe
applied at the cost of additional complexity since (3) defines
a norm.

V. RATE-REGULARIZED ESTIMATION

In section IV, the parameter set of each envelope, denoted
Ωi = { αi βi ni }, was found in iterationi as the minimizer
of the distortion

Ω̂i = argmin
Ωi

D(Ωi), (28)

or equivalently as the maximization in (26). Since sinusoids
having constant amplitude do not require the envelope param-
eters to be transmitted, disregarding the rate in the estimation
results in a parameter set which is suboptimal in a rate-
distortion sense. In [41] every segment was analyzed using
a set of constant-amplitude sinusoids and a set of amplitude
modulated sinusoids and by rate-distortion optimization the
best representation was chosen for each segment. This was
done in order to find an efficient representation in terms of
rate. Suppose we have an estimate, or a guess, ofλ⋆ denoted
ν, the need for multiple analyses can be eliminated by instead
minimizing in each iteration of the estimation

Ω̂i = argmin
Ωi

[D(Ωi) + νR(Ωi)] , (29)

whereR(Ωi) denotes the rate associated with the parameters
Ωi. The rate-distortion optimization is still performed outside
the estimation such that the rate-constraint is met. The rate-
regularized estimation procedure results in coding templates
that are optimized for the target bit-rate. As an example,
consider the choice in iterationi between an amplitude mod-
ulated sinusoid and a constant-amplitude sinusoid. Using the
estimation criterion in (28), the amplitude modulated sinusoid
may be chosen, while using (29) may result in the constant-
amplitude sinusoid being chosen because the amplitude mod-
ulated sinusoid is more expensive in terms of rate. The esti-
mation criterion (29), which we from now on shall refer to as
the rate-regularized estimation or just regularized estimation,
corresponds to optimizing the coding templates for the target
bit-rate. The regularization constantν does not, however, play
the role of the Lagrange multiplier in constrained optimization
since we do not solve for it. By choosingν = 0, the estimation
criterion will reduce to (28). Using a largeν will result
in an estimation that will tend to choose constant-amplitude
over amplitude-modulated sinusoids, while for a smallν, the
opposite will occur. In the extremes, this will result in a coder
containing only constant-amplitude or amplitude modulated
sinusoids. It must be stressed that even ifν = λ⋆, i.e. if
we guessed the optimalν, the estimation is not optimal as
the individual iterations are not independent. It is of course
possible to iterate overν, but this would be costly in terms of
complexity. In most practical situations, the actual choice of
ν has been found not to be very critical, i.e., it can simply set
to a constant value.

VI. I MPLEMENTATION DETAILS

A. Sinusoidal Parameter Quantization and Rate Estimates

The phases of the sinusoidal components are quantized
uniformly using 5 bits, while amplitudes and frequencies
are quantized in the logarithmic domain using the following
quantizers.Withθ denoting the parameter to be quantized and
⌊·⌋ the truncation operation, the quantized parameterθ̂ is
calculated as

θ̂ = exp

(⌊

log(θ + ǫ)

log(1 + ∆)
+ 0.5

⌋

log(1 + ∆)

)

, (30)

with a small positive constantǫ being added for numerical
reasons. With a step-size∆ of 0.161 for the amplitudes and
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TABLE I

CODER CONFIGURATION FOR DIFFERENT TEST CASES DENOTED BY

CODER ACRONYM.

Coder Description
CA The CA coder uses coding templates consisting

of constant-amplitude sinusoids only and a
fixed segmentation. This is the simplest pos-
sible coder.

AM The AM coder uses amplitude modulated cod-
ing templates and a fixed segmentation. This
coder uses the rate-regularized estimation pro-
cedure using a regularization constant of 100.

AM/CA A combination of the CA and AM coder
operating on a fixed segmentation. It switches
between the two on a segment-to-segment ba-
sis using R-D optimization. It does not use
the rate-regularized estimation procedure, i.e.
a regularization constant of 0 is used.

CA+SEG As the CA coder but with R-D optimal seg-
mentation.

AM+SEG The same as the AM coder but with R-D
optimal segmentation.

AM/CA+SEG This is the AM/CA coder combined with R-D
optimal segmentation.

0.003 for the frequencies, the quantizers were found to produce
transparent results compared to the original (non-quantized)
parameters, meaning that informal listening tests showed no
degradation in the perceived quality due to the quantization.
These quantizers are motivated by studies that show that
for amplitude and frequency the just noticeable differences
are nearly constant on a logarithmic scale [46]. Estimated
entropies of the quantized parameter sets were used for the
rates in the R-D optimization and as a measure of rate in
the experiments to follow. The entropies of the quantized
sinusoidal parameters were also found not to be affected
much by the AM. For the amplitude, phase and frequency the
entropy was estimated as approximately 20 bits/component.
Assuming differential encoding [47], this can be reduced to
16 bits/component. Since the perceptual distortion measure
(3) may be overly sensitive to frequency quantization, we use
the original parameters in determining the distortions. For the
same reason the original parameters are used in generating the
residual in the estimation (16).

B. Coding Templates and Segment Sizes

In the experiments to follow, a number of different coder
configurations were considered. These are listed in order of
rising complexity in Table I. The table shows what types
of coding templates were used, how they were found and
whether R-D optimal segmentation (SEG) was used. The
coding templates are defined asTs = {χ0, . . . , χL}, where
χi meansi sinusoids, which may or may not be modulated,
depending on the type of coder. For example, the AM/CA
coder uses fixed segmentation and contains coding templates
found by analyzing a particular segment using a set of AM
sinusoids and a set of CA sinusoids. Note that the AM coding
templates can contain constant-amplitude components since
these are included as a special case of the model (2), while
the CA coding templates contain only CA components. In
order to efficiently code CA components in the AM coding

templates, a one bit AM switch is used per component. This
may be more efficiently encoded using run-length coding. The
CA+SEG coder is comparable in quality to that of [48], which
uses the PMP and R-D optimal segmentation and uses identical
quantizers. The segmentation algorithm described in Section
III requires that the distortions are additive over segments.
For this to be true, the segments have to be disjoint. However,
in order to avoid discontinuities at segment boundaries, some
amount of overlap must be introduced between adjacent seg-
ments. That the errors introduced in the overlapping regions
may have non-zero cross-terms is then simply ignored. Since
the distortions also have to be independent over segments, the
amount of overlap between segments cannot depend on the
segment length. Therefore a natural choice for the amount of
overlap is half the size of the minimum segment length. It
is important that the overlap is not too small since this may
cause undesirable artifacts due to quantization and estimation
errors. Consequently, a minimum segment length of 10 ms
and an overlap of 5 ms is chosen, meaning that all segment
sizes are integer multiples of 10 ms and may start on a 5
ms time-grid. Further, for very long segments, the spectral
weighting function becomes increasingly inaccurate as the
maskers cannot be assumed to be stationary. Therefore a
maximum length of 40 ms has been used. For the coders that
use a fixed segmentation, a von Hann window of 30 ms with 15
ms overlap was used. In the experiments to follow, we ignore
the side information associated with the segmentation, as this
can generally be considered small compared to the total rate.
Moreover, the critical comparisons are between coders that
use the same type of segmentation and thus have the same
rate for the side information. The excerpts used in the teststo
follow are fairly short, and the rate-distortion optimization has
therefor been carried out over the entire length of the signals.

C. Gamma Envelope Dictionary

It has been found that using the perceptual distortion
measure (3) in selecting the envelope parameters made the
parameter estimation more robust toward introducing artifacts
than using a squared error measure. This can be attributed to
the fact that the spectral distortion measure takes into account
that the wide mainlobe and sidelobes of modulated sinusoids
may introduce errors in parts of the spectrum where no masker
is present. However, it was also found necessary to limit the
steepness of the attack in order to prevent artifacts from being
introduced. Namely, we found that for smallαl, the coder
was prone to introduce roughness and click artifacts due to
the discontinuities introduced by the unit step sequence. We
again note that forαl = 0, the model reduces to that of
[32]. Hence, the envelope dictionary was designed empirically
from the results of informal listening tests. With a more
refined distortion measure, the envelope dictionary could be
designed using standard vector quantization techniques. In
the following tests, an envelope dictionary for a sampling
frequency of 48 kHz composed fromαl ∈ {2, 3, 4, 5},
βl ∈ {0.003, 0.005, 0.01, 0.02} and an onsetnl step-size of
approximately 0.5 ms was used. As a consequence of this the
envelope dictionary size varies with the segment lengths. Since
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TABLE II

L IST OF EXCERPTS USED IN THE TESTS.

Number Name Type Length
1 Castanets and Guitar Mixed 6 s
2 Claves Solo 7 s
3 Glockenspiel Solo 8 s
4 Grand Piano Solo 11 s
5 ABBA Mixed 10 s
7 Bass Guitar Solo 12 s
8 English Female Speech Speech 6 s
9 Castanets Solo 7 s
10 Harpsichord Solo 9 s
11 Tracy Chapman Mixed 13 s
12 Triangle Solo 9 s
13 Xylophone Solo 8 s

the frequency and envelopes of transients may vary much from
signal to signal, no entropy coding of the envelope parameters
was assumed in the rate estimates, i.e. the upper bound is used.
These are 9, 10, 10 and 11 bits per envelope for 10, 20, 30 and
40 ms segments, respectively. Preliminary experimental results
also suggest that differential coding of onset times may lead
to a reduction of the average bits per component. The spectra
of the windowed gamma envelopes were stored in a lookup
table in order to perform fast estimation (equations (26) and
(27)) using the spectral distortion measure (3).

VII. E XPERIMENTAL RESULTS

A. Signal Examples

As an example of a coded signal, the xylophone coded at 30
kbps is shown in Figures 3 and 4. It can be seen that the CA
coder introduces a pre-echo and that the transient is smeared
and has lost its sharpness. In the CA+SEG coder, the pre-echo
is much reduced, but the transient is still not as sharp as the
original. The AM/CA+SEG coder sharpens the attack further
and reduces the pre-echo.

In Figure 5 the rate-distortion curves2 for a representative
transient sinusoidal signal, glockenspiel, are shown for the
CA coder, the AM/CA coder and the AM coder. Similarly,
in Figure 6, the same is shown for the CA+SEG coder, the
AM/CA+SEG coder and the AM+SEG coder. The signal has
a duration of approximately 10 s and R-D optimization was
performed on the entire signal. For the fixed segmentation,
it can be seen that there is a clear improvement for the AM
and AM/CA coders in terms of a reduction of the distortion
compared to the CA coder at the same rate. Also, the proposed
coder saturates at lower distortions than the CA coder for
glockenspiel. It can also be seen from figure Figure 6, that
when R-D optimal segmentation is employed, the rate of
convergence is higher for all coders. An interesting observation
is also that the rate-regularized coder, the AM coder, performs
similarly to the AM/CA coder. This means that the dual
analyses of the AM/CA coder can be avoided with very little
loss of performance. From these figures, it seems that for this
particular excerpts, the glockenspiel, very little is achieved by
combining AM and SEG. It looks as if similar performance

2In information theory the relationD(R) is traditionally referred to as the
distortion-rate curve. We refer to this relationship usingthe aesthetically more
pleasing term rate-distortion curve.
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Fig. 3. Signal example, xylophone, original (top) and coded at 30 kbps using
the CA coder (bottom).
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Fig. 4. Signal example, xylophone, coded at 30 kbps using the CA+SEG
coder (top) and using the AM/CA+SEG coder (bottom).

can be achieved with either AM or SEG, with the AM coder
being less complex than the CA+SEG coder. For other signals
such as the castanets, though, the R-D curves show that
improvements can be gained by the combination of AM and
R-D optimal segmentation.

In Figure 7 the R-D optimal segmentation boundaries are
shown for the AM coder and the AM/CA coder for 30 kbps
for the excerpt Castanets. It can be seen that a higher coding
efficiency is achieved as longer segments are chosen around
the transients when AM coding templates are included. It
was also found that when R-D optimal segmentation was
used, there was still an advantage of using the onsets, i.e.
improvements were still gained by allowingnl 6= 0 in (2).
Constrainingnl = 0 ∀l, i.e. reducing the model to that of [30],
[33], led to shorter segments and a loss in perceived quality.
The ability of the model to position onsets of the individual
sinusoids at arbitrary positions within each segment has proven
to be an important one. The effect of the rate-regularized
estimation procedure is illustrated in Figure 8, where the rate-
distortion curves of the AM coder for different regularization
constants are shown for 2 s of claves. It can be seen that in
the region 20-40 kbps, approximately 5 kbps can be saved
compared to no regularization. Depending on the signal at
hand, this result may vary.
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Fig. 5. The rate-distortion curves of the CA coder (dash-dotted), the AM/CA
coder (dashed) and the AM coder (solid) using a fixed segmentation for the
glockenspiel.
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Fig. 6. The rate-distortion curves of the CA+SEG coder (dash-dotted),
the AM/CA+SEG coder (dashed) and the AM+SEG coder (solid) using R-D
optimal segmentation for the glockenspiel.

B. Test Material

In order to evaluate the proposed method for parametric
coding of transients, we conducted a formal listening test.In
addition, we report our experience from informal listening
tests to give the reader some indications as to the nature
of the improvements that were made. In the informal and
formal listening tests, the excerpts shown in Table II were
used3. These represent a wide variety of different types of
signals, many of which are known to be critical excerpts in
perceptual audio coding [37]. All the signals were monophonic
and were 16 bit signals sampled at 48 kHz and they have
a length of 6-12 s. Many more signals were used in the
development, but these are the ones that have been tested
extensively. In ITU-R BS.1534-1 [49] it is recommended to
use excerpts that are known to be critical in testing of audio
coding algorithms. Problematic transients by no means occur
in all excerpts. Consequently, these tests are concerned mainly
with excerpts that are known to be critical yet different of
type. For example, the glockenspiel excerpt is very tonal and

3Some of the processed excerpts are available on first author’shomepage
at http://kom.aau.dk/˜mgc/projects/gamma

stationary for the most parts but has very steep attacks, while
the castanet excerpt has very stochastic and strongly modulated
characteristics. The excerpts 5 and 11 are pop music containing
mixtures of multiple instruments and vocal.

C. Informal Listening Tests

Informal listening tests revealed that pre-echos are clearly
reduced and that the transients are better modeled using the
proposed model than with constant-amplitude sinusoids. For
many signals, though, the improvements are fairly subtle since
they are already handled well using constant-amplitude sinu-
soids. Often, the improvements are perceived as an increase
of bandwidth of the coded signal. For critical excerpts, such
as castanets the improvement are clearly audible. The typesof
signals that benefit from the AM coder are signals that exhibit
fast onsets, impulse-like signals, transitions between different
stationary parts of signals, and percussive instruments. Any
mixture of these types of signals with stationary ones may also
benefit from it. It was also found that the AM coder improves
the perceived quality of sinusoidally coded speech. Namely,
the speech was found to suffer less from the tonal artifact
often encountered in sinusoidal speech coding. Experiments
showed that the AM coder proved R-D optimal for plosives,
in transitions in pitch and in transitions between voiced and
unvoiced sounds. For speech, it may also be beneficial to
incorporate a model for frequency modulation [50]. Informal
listening tests also revealed that the perceptual distortion
measure (3) does not fully reflect the perceived improvement
caused by the AM. For example, the relative improvement in
terms of rate-distortion between the CA coder and the AM
coder appears small for the castanets, while the perceived
difference is large. This may be explained by the fact that
the model [38] was derived for predicting the masking of
sinusoidal component, and that the castanets are not very
sinusoidal by nature unlike signals like the glockenspiel,
claves and xylophone. The perceptual distortion measure (3)
does, though, form a robust measure for estimation of model
parameters and for the R-D optimization. When the R-D
optimal segmentation is employed, the effects of the AM
coder are less audible compared to the CA coder for excerpts
where the signals exhibit fast onsets. Examples of this are
glockenspiel and claves while for castanets, the combination
of the AM coder and R-D optimal segmentation results in
significant improvements. The use of variable bit-rate and R-D
optimization has also been found to improve performance for
transients for all the coders, since more bits can be allocated
for critical signal parts, such as transients, this way.

D. MUSHRA Test

In order to quantify the improvements gained by the differ-
ent methods for handling of transients, we use a subjective
listening test. We use the MUSHRA test (MUlti-Stimulus
test with Hidden Reference and Anchors) [49], which is a
double blind test for subjective assessment of intermediate
quality level of coding systems. For each excerpt, the listeners
were asked to rank 8 differently processed versions relative
to a known reference on a score from 0 to 100. These
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Fig. 7. Example of R-D optimal segmentation boundaries (indicated by
vertical lines) for castanets for the AM/CA+SEG coder (top)and the CA+SEG
coder (bottom) operating at 30 kbps. Note that both the signals shown are the
original.
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Fig. 8. The rate-distortion curves of the AM coder for different regularization
constantsν for claves optimized over 2 s.

included the hidden reference (denoted HR), an anchor low-
pass filtered at 7 kHz and an anchor low-pass filtered at 3.5
kHz (denoted Anchor 7 kHz and Anchor 3.5 kHz, respec-
tively). The remaining 5 versions were the AM, CA, CA+SEG,
AM+SEG and the AM/CA+SEG coders all operating at 30
kbps. In the MUSHRA test the hidden reference is used to
verify the consistency of responses of subjects because a very
high score is expected here. The anchors are included to be
able to make comparisons between different listening tests
and because they constitute a well-defined and simple signal
modification. In order to limit the length of the listening test a
representative subset of the excerpts listed in Table II was
chosen. Nine experts listeners participated in the test (the
authors not included). The test was performed on speakers
in a listening room. As the proposed coders do no incorporate
residual coding and are thus not complete parametric coders, a
reference coder has not been included in this test. In MUSHRA
tests the hidden reference define known points on the scale. In
Figure 9 the resulting MOS (Mean Opinion Score) scores of
the different coder configurations averaged over all excerpts
and listeners are shown. Since we are dealing with particular
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Fig. 9. Results of the MUSHRA listening test. MOS scores for different
coders averaged over all excerpts and all listeners. The error bars indicate the
95% confidence intervals.

critical excerpts, it is of interest to investigate the performance
for the individual excerpts. These are shown in Table III with
the excerpt being identified by the number in Table II. From
Figure 9 we see that the AM/CA+SEG coder scores about 10
points higher at average than the CA+SEG coder, and more
than 20 points higher than the CA coder. Although the AM
coder does not seem to perform significantly better than the
CA coder in this test, the AB preference test in [41] showed a
significant preference for the AM/CA coder over the CA coder.
In the table, it can be seen that for particular excerpts, such as
the castanets (excerpt 9), there is a huge improvement in the
combination of AM and the R-D optimal segmentation over
the CA coder both with and without optimal segmentation, in
fact the R-D optimal segmentation helps very little withoutthe
AM model. It can also be seen that there is a fairly small loss
on average in the rate-regularized estimation procedure ofthe
AM+SEG coder compared to the AM/CA+SEG, except for the
glockenspiel (excerpt 3). Taking the confidence intervals into
account, this difference is too small to be of any statistical
significance. The reason for the fairly poor performance of
the AM+SEG coder compared to the AM/CA+SEG coder for
the glockenspiel is that the same regularization constant was
used for processing all excerpts, and for the glockenspiel,
this constant is not close to the optimalλ. It is interesting
to note that the glockenspiel scores the highest among all
excerpt. This is not surprising because the glockenspiel signal
is very tonal and the AM model is well-suited for handling
the non-stationary parts of this signal. This also holds forthe
very similar signals of SQAM, such as the claves, xylophone,
triangle and others.

VIII. D ISCUSSION

As can be concluded from the listening test results, the
proposed parametric coding of transients in combination with
R-D optimal segmentation leads to a significant gain in audio
quality as compared to constant-amplitude sinusoidal coding.
Switching between different window lengths and shapes or
coders (e.g. [9], [18]) has traditionally been achieved by tran-
sient detection schemes. However, there may be a mismatch
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TABLE III

RESULTS OF THEMUSHRA LISTENING TEST. MOS SCORES FOR

DIFFERENT CODER CONFIGURATIONS FOR THE INDIVIDUAL EXCERPTS.

Excerpt 1 3 5 7 9 10 11
AM 42 70 41 45 43 56 39
AM+SEG 67 79 58 71 66 68 58
AM/CA+SEG 65 92 62 68 72 71 59
CA 32 60 41 42 29 65 43
CA+SEG 47 84 64 63 35 65 55
HR 99 99 99 100 100 99 100
Anchor 7 kHz 47 66 56 62 47 42 52
Anchor 3.5 kHz 22 33 24 27 22 24 27

between the classification of transients and the R-D optimal
coder. Based on R-D optimization and/or the rate-regularized
estimation method robustness against such problems is gained,
but this comes at the cost of additional complexity. We also
note that the R-D optimal allocation scheme is similar to
the so-called bit reservoir method for handling of transients
(see [16]). Rate-distortion optimal allocation (variablerate)
in itself does not, however, ensure that more bits are spent
when transients are present. Rather, it spends the bits where
most distortion can be reduced, and hence it depends on the
appropriateness of the signal model.

The scores from the MUSHRA test reported here may be
further improved by residual coding since noise components
are not efficiently coded using sinusoids. Many parametric
audio coders employ residual noise coding that only encodes
a spectral and a coarse temporal envelope (e.g. [13], [51]).
It is also possible to improve performance of parametric
audio coders for transient signals by employing waveform
approximating residual coding as done in [52], [53]. In such
coding schemes, the residual coder may compensate for errors
introduced by the sinusoidal coder.

Recently, preliminary results on linearization of the spectro-
temporal psychoacoustical model [54] have been reported in
[55]. Such a linearization results in a distortion measure that
defines a norm and would thus be applicable to the AM esti-
mation problem at the cost of increased complexity. Further,
if such a measure is shown to reflect temporal aspects better
than (3), this could lead to improved coding of transients as
presented here as well as to more refined envelope dictionary
design.

Compared to the singlebanded AM of e.g. [15], the model
proposed in this paper has the advantage that different en-
velopes are allowed for different sinusoids, which is a partic-
ular advantage for mixtures of sources (see e.g. [34]). Some
interesting parallels can be drawn to related work in audio
coding. In [25] transient locations are modified in order to
achieve more efficient coding of transients. This is, in a sense,
what is happening when the onsets are quantized, and seen in
the light of [25], onsets should be estimated very preciselyand
then quantized jointly to a coarse grid. A successful tool in
dealing with efficient coding of transients in transform coding
is TNS [22]. TNS is based on linear predictive coding of
transform coefficients. Since amplitude modulation may just as
well be interpreted as a frequency domain filtering, there isan
duality in TNS and AM. One conceptual difference between
TNS and gain modification [23] as applied in transform coding

on the one hand and AM as presented here on the other hand
is that TNS and gain modification operate on the input and
output signals and hence shape the noise, whereas in AM, the
signal model is modified to fit the input signal.

IX. SUMMARY

In this paper, methods for efficient parametric coding of
transient audio signals have been presented. We propose a
specific model for handling of transients based on amplitude
modulated sinusoids. In this model, each sinusoid is modulated
by a different envelope known as a gamma envelope each
being characterized by and onset, an attack and a decay
parameter. These degrees of freedom have proven to be
important in efficient coding of transients. Existing methods
assume either that the modulating signal is the same for all
components, that the onset always occurs at the start of a
segment, or that no attack parameter is necessary. Combined
with a constant-amplitude sinusoidal model, efficient coding
of both stationary and transient signals is achieved using
rate-distortion optimization based on a perceptual distortion
measure. The rate-distortion optimization leads to optimal
allocation and segmentation and therefore eliminates the need
for transient detectors. Informal and formal listening tests
reveal that for critical excerpts the combination of amplitude
modulation and rate-distortion optimal segmentation leads to
large improvements over a sinusoidal coder using only the op-
timal segmentation. This shows that segmentation techniques
are not substitutes for good signal models.
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APPENDIX I
FOURIER TRANSFORM OFWINDOWED GAMMA ENVELOPE

The estimation of model parameters and calculation of
distortions require that the spectra of the windowed gamma en-
velopes are computed. Doing this by FFTs may be prohibitive
for low complexity applications and storing them in memory
may also not be feasible. Here, we instead derive a closed-form
expression for generating the discrete-time Fourier transform
directly in the frequency domain. The discrete-time Fourier
transform of the windowed gamma envelope can be found
from the following finite sum:

Zl(ω) =

N−nl−1
∑

n=0

nαle−βlnw(n + nl)e
−jω(n+nl), (31)

with w(n) being the tapered von Hann window (7). In finding
the discrete Fourier transform we shall use the following
transform pair:

nax(n) ↔ ja ∂a

∂ωa
X(ω). (32)
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Assuming thatnl < M − 1 and splitting the sum (31) up into
three different sums having different window parts, we get

Zl(ω) =

M−1−nl
∑

n=0

nαle−βlnv(n + nl)e
−jω(n+nl)

+

N−M−1−nl
∑

n=M−nl

nαle−βlne−jω(n+nl)

+

N−1−nl
∑

n=N−M−nl

nαle−βlnv(n − N + 2M + nl)

× e−jω(n+nl).

(33)

with v(n) being the modified von Hann window in (8). Tedious
calculations now lead to the following closed-form expression
of the discrete-time Fourier transform of the windowed gamma
envelopes:

Zl(ω) = jαl
∂αl

∂ωαl

(

1

2
e−jωnl

1 − (e−βl−jω)M−nl

1 − e−βl−jω

−
1

4
e−jωnl+j π

M
nl+j π

2M

1 − (e−βl−jω+j π

M )M−nl

1 − e−βl−jω+j π

M

−
1

4
e−jωnl−j π

M
nl−j π

2M

1 − (e−βl−jω−j π

M )M−nl

1 − e−βl−jω−j π

M

+ e−jωnl
(e−βl−jω)M−nl − (e−βl−jω)N−M−nl

1 − e−βl−jω

+
1

2
e−jωnl

(e−βl−jω)N−M−nl − (e−βl−jω)N−nl

1 − e−βl−jω

−
1

4
e−jωnl+j π

2M
−j π

M
(N−nl)

×
(e−βl−jω+j π

M )N−nl−M − (e−βl−jω+j π

M )N−nl

1 − e−βl−jω+j π

M

−
1

4
e−jωnl−j π

2M
+j π

M
(N−nl)

×
(e−βl−jω−j π

M )N−nl−M − (e−βl−jω−j π

M )N−nl

1 − e−βl−jω−j π

M

)

.

(34)

In evaluating these expressions for particular parameter values
and frequencies L’Hospital’s rule must be used. For the coder
presented in [41], where the window is simply a von Hann
window with a fixed length, the corresponding expression is
much simpler.
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