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Efficient Parametric Coding of Transients

Mads Graesbgll ChristenserStudent Member, IEEEand Steven van de Par

Abstract—In this paper, methods for improved parametric These types of errors are known as pre-echos. Secondly, bad
coding of transients are presented. We propose a signal modelrfo modeling of transients leads to very dull sounding attacid a
coding of transients consisting of a sum of sinusoids each beinga perceived lack of bandwidth of the decoded signal. The

amplitude-modulated by a different gamma envelope. These en-t ical solution to th bl danti entati
velopes are characterized by an onset time, an attack and a decay ypical solution to these problems are adaptive segmentatl

parameter. An efficient method for estimating these parameters Using window switching [18] and window shape adaptation
is presented. Further, methods are proposed that combine this or rate-distortion (R-D) optimal segmentation [14], [1Z10].

transient model with a constant-amplitude sinusoidal model in  Other methods that aim at solving this problem include
order to achieve efficient coding of both stationary and transient wavelet-packets [21], temporal noise shaping (TNS) [22]

signal parts. By rate-distortion optimization using a perceptual . . . ) i
distortion measure we combine variable rate bit allocation and 9&n modification [23], [24], transient location modifiazi

segmentation in an optimal way. Formal as well as informal [25], switching from a parametric signal model to a wavelet
listening tests show that significant improvements can be achieved or transform representation [7], [9], multi-resolutiomisi

with the proposed model as compared to a state-of-the-art spidal modeling [26] and coding of transients using sindabi
sinusoidal coder by the combination of optimal segmentation mdeling in the transform domain [27]. In parametric audio
and amplitude modulated sinusoidal audio coding. . . . .
modeling and coding, transients can be handled by adapting
the signal model to better fit the input signal. A particufarl
. INTRODUCTION interesting class of such adapted models are the amplitude

N the past couple of decades, sinusoidal models for digif@iodulated (AM) sinusoidal mod€lg28]. In these models,

I processing of speech and audio have received much attél¢ signal is decomposed into a sum of sinusoidal components
tion for a wide variety of applications where sinusoidalege having a time-varying envelope. The different realizasiai
coding and modeling [1]-[4] was among the first and perhag@mped sinusoids that have been applied to audio modeling in
the most prominent. Also for analysis and synthesis of mudg9]-{33] are examples of this. In audio coding AM has been
[5], [6] the sinusoidal model has been of interest. In receAPplied in [8], [13]. Like [5] these use a singlebanded model
years, the growth of the Internet and wireless communinati€f the modulating signal meaning that the envelope is theesam
has spurred renewed interest in sinusoidal models, this tif®r all components. In [34] it was demonstrated that sigaific

for coding of audio [7]-[15] at low bit-rates. In perceptuaimprovements are achieved by allowing different sinudoida
audio coding, compression is achieved by exploiting dtesis COmponents to have different amplitude modulating signals
redundancies as well as perceptual irrelevancies of theesouSince this study focused only on modeling of audio signats, t
(see e.g. [16]). In parametric audio coding, a compact re@uestion remains whether frequency-dependent AM methods
resentation of the source signal is achieved using paramefe also efficient in terms of bit-rate, i.e., whether thelyiene
models and the statistical redundancies and irrelevarafies lower distortion, both subjectively and objectively, quared

the model parameters are exploited for efficient coding.  t0 & conventional sinusoidal coder at the same rate.

A major challenge in audio coding in general is efficient In the present paper we seek to answer that question along
coding of non-stationary segments (see e.g. [16]). Sigrmal-m with some other unanswered questions regarding parametric
els and transform bases are typically chosen such that a higieling of transients. We present a coder based on a par-
coding efficiency is achieved for stationary signal pamsl,@s ticular model of the amplitude modulating signal known as
a consequence, coding of non-stationary parts becomely higfemma envelopes. Figure 1 shows the waveform of a sinusoid
inefficient. Sinusoidal coding using constant-amplitu@d) modulated by a windowed gamma envelope. The gamma
sinusoids is an example of this difficulty. The inefficientlouy envelopes are characterized by an onset time, an attack and
of transients leads to a number of problems. Firstly, errodsdecay parameter. This model differs from existing models
introduced before onsets are very poorly masked compatged for parametric modeling and coding of audio in that
to the situation where a simultaneous masker is present [1g&ch sinusoid can have a different envelope with an onset

_ _ _ at an arbitrary position within a segment, and in that it is
Syzgrtnosf,tg'nsdwggﬁn";ife?;‘?ssgctﬁi‘i%ﬁg\‘jﬁ%&fﬂg@ﬁ;&?g&j@'g”a'S' characterized by an attack parameter. In addition to the new
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Each envelope is characterized by an onset time Z, an
attack parameter; € N, and a decay parametgf € R™.
Moreover, u(n) is the unit step sequence. The envelopes
composed from all possible combinations of these parameter
will henceforth be referred to as the envelope dictionary.
Inserting (2) into (1), we get the so-called gamma-tones
commonly used as stimuli in psychoacoustical experiments
and for modeling of the auditory filters [35]. Here, we rather
use it as a signal model that, as we shall see, has been found to
perform well for the problem at hand. The distinction betvee
the model parameteks; and 3; in (2) is only figurative since
o 200 200 00 300 1050 changingg; for a fixed «; will affect the attack andy; will
Time likewise affect the decay. We note that for = 0, 5, = 0 and
) ) . ) n; = 0, thelth sinusoid reduces to a constant-amplitude (CA)
Fig. 1. lllustration of a sinusoid modulated by a windowed ganemeelope. . Ly . .
The gamma envelopes are parameterized by an onset, an attacheper and sinusoid, |.e.m(n) = 1. The situation where all components
a decay parameter. have constant amplitude will be termed the CA model. For
ap = 0 and B; # 0 for all [, the model reduces to the so-
called delayed damped sinusoids of [32], and with= 0 and
different types of signals. n; = 0 it becomes equiv_alent to th(_—:- d_amped sinusoids_ _of [30],
The main part of this paper is organized as follows: ih33]' Compareq to the different Va“a“‘?F‘S ofdamp(_eq SIS0
Section Il the proposed signal model and the perceptuOflt[zg]_[sz]’ this moFieI has the addmongl erX|b|_I|ty of éh
rﬁ ack parameter. It is well-known that different instruntse

d:set;)ertr:(t)g d njl’ia;lrj;tee.\:jvizlt%?ti(ljsn 'cr:sttirrl:]gzt?éﬂ ulgefjhlfsorcv,;lncﬂ)gn 8o have different attacks, and studies show that the attacks
P ' P are in fact important features in the recognition of musical

and segmentation is presented in Section Ill, and Sectians . ,
. o : . Instruments [36]. This can also be witnessed from the many
IV and V deal with the estimation of sinusoidal parameters.”" ; .
. . . ransient signals on the SQAM disc [37].
Implementation details, the experimental setup for pecadp In finding the model parameters and in the R-D oot
tests and their results are presented in Sections VI and VI g the model parameters a e op

respectively. In Section VIII we discuss the relation toséirig mg::orr;’ ;nfe adgasr:zsigu;.fmgss tﬁepeéffgtiﬂ ((jj.';frrtt.f:
work, and, finally, in Section 1X we conclude on our work. u : w inimiz P v : lon.

In choosing a distortion measure we face conflicting demands
On one hand we wish to use a distortion measure that takes as
Il. FUNDAMENTALS much of the human auditory system into account as possible.

The presented coder can be described as comprising %’é t_hebotrf:erf hand W?)IWIISh to have a dllstortlonl measu(rje
following steps: in the encoder, the input signal is splibia that is both of reasonably low computational complexity an

number of overlapping segments and a window is applied ggfmes a norm such that it may be subject _to optlmlzatlon.
each segment. The model parameters are then estimated% Hsequer_nly,.we hgve chosen the spectral distortion measu
subsequently quantized, entropy coded and finally put imto t0 38], which is defined as
bit-stream. In the decoder, the bit-stream is mapped back to 4 9
the quantized parameters, and the segment is synthesined us D= AW B(w)[ dw, 3)
overlap-add with an appropriate window. -

In this paper, we propose a coder based on the followiN§iere A(w) is a real, positive perceptual weighting function,

amplitude modulated sinusoidal signal model for time indedd E(w) denotes the discrete-time Fourier transform of the
n=0,...,N—1: windowed error, i.e.,

Amplitude

L N-1 _
Z(n) = Z ~i(n)A; cos(win + @), 1) B(w) = Zo w(n)e(n)e™ 7", 4)
=1 n=

where 4;, w;, and¢; are the amplitude, frequency and phas@ith w(n) being the analysis window(n) = z(n) — 2(n)

of the I'th sinusoids, respectively. The number of component§€ modeling error, and:(n) the observed signal. We note
is denotedZ and~,(n) is the modulating signal or envelope!n Passing that this and all other Fourier transforms will in
when ,(n) > 0 Vn. Here we use a particular model ofPractice be calculated for discrete valueswof In order to

the envelopes which we shall henceforth refer to as gami$faaPe the error spectrum according to the masking threshold
envelopes. This model is derived from the integrand of tiBe Weighting functionA(w) is set to the reciprocal of the
gamma function, which is commonly used to characterize tHe@sking threshold. Here, we derive the masking threshold

gamma distribution in statistics. The gamma envelopes 4féM [38]. This distortion measure improves on other models
given as in that it takes the spectral integration in the human aunglito

system into account. Although the measure is strictly only
y(n) =uln —ny) (n —ng)™ e~ Ain—m) (2) valid for stationary signals, it does not ignore temporaless



completely as it is based on waveform matching. In order gignal, we use rate-distortion optimization. Further, thte-
achieve a low distortion, the phase and temporal envelogistortion optimization also results in a rate-scalablelerp
of the coded signal must match that of the original. As &hich is advantageous in dealing with critical signal parts
consequence, temporal errors, such as pre-echos, willowotFpr completeness we now briefly review the basic definitions,
unpunished by the measure. The spectral distortion measassumptions and results for solving the problem of optimal
has been found to comprise a reasonable tradeoff betweegmentation and allocation based on [19], [39]. Firstuket
complexity and correlation with perceived quality for cogli start out by introducing some definitions. We define a segment
purposes and as we shall see, good results can be achieveds having a length of a positive integer multiplec Z*
using it. Henceforth, when we refer to distortions, we measf a minimum segment length, i.e. ¢(cs) = xm, and a
the perceptual distortion defined in (3). segmentation a& = [ o1 --- og ] consisting ofS disjoint,
The discrete-time Fourier transform ¢f(n) denotedl’;(w) contiguous segments that satisfy
can be shown to be

S
N-1-n, . 4 . > Uoy) = KM, (10)
Iy(w) = Z nte—Jwn (e—Jw—ﬁz) (5) a1

n=0

B emden _ g (N—m) i wherexM is the total length of the signal to be encoded. Each

j@ _ ) (6) of these segments, say segmeptcan then be encoded using
w1 1 — e fre=iw a set of coding template®; (different models, model orders,
As indicated by (4), an analysis window is applied to theumber of bits, etc.). Next, we defif(cs, 75) and D (o, 75)
gamma envelopes. In the decoder, a window is also useda# the non-negative cost in bits and distortion associatéd w
the synthesis, which is performed using overlap-add withcading templater, € 7, for segmento,. Assuming that
fixed overlap. Both the encoder and the decoder use tapetieel distortions and cost in bits associated with a particula

von Hann windows of the same length. Wiili denoting the segmentatiors and coding templates = [ 7, --- 75 | are
overlap in samples an&/ being the (even) segment lengthadditive over the segments, we can write the total distortio
the windows are defined for=0,...,N —1 as and total number of bits as
v(n), 0 <n< M 5 5
win) =4 1, M <n< N—-M D(o, 1) = ZD(O'S,TS) R(o, 1) = ZR(US,TS), (11)
v(n—N+2M), N-M <n< N s=1 s=1

(7) respectively. The problem of distributing a certain numbgr

with the even length von Hann window being defined as  bits over a number of quantizers can be cast into the problem
1 1 m(n +0.5) of rate-distortion optimization under rate constraintisTéan
o(n) =5 -5 () (8) be stated as the following constrained optimization pnoble

2 2° M
Let W (w) denote the discrete-time Fourier transform of the min - D(e,T) (12)
window w(n). Then the discrete-time Fourier transform of the s.t. R(o,7T)=R",

windowed envelope can be written as the circular convatutiqyiy, p+ being the bit budget, i.e. the total number of bits to be
1 (" distributed. Next, introducing the Lagrange multiplier> 0,
Zi(w) = %/ Li(w = W (E)de. ©) the constrained optimization problem in (12) can be written

. _.Tr .. as the unconstrained minimization problem [39
Hence, the window, which has low-pass characteristics, P [39]

smoothes the spectrum. As the windowed gamma envelopes o il )
have no discontinuities at segment boundaries the speatfum +/(A) = minmin » © D(0s,7s) + A(R(0s,7) = R*). (13)
the windowed gamma envelopes will generally be more well- s=1

behaved than when no window is applied. This is importalife now have an outer minimization over the segmentation,
since the distortion measure will punish spectral distortiue and an inner minimization over coding templates given the
to not only the mainlobe but also the sidelobes. In Appendsegmentation. In (11) we assumed thaf-) and R(-) are
I, a closed-form expression of the discrete-time Fouriangr additive over segments. By also assuming that they are inde-
form of the windowed gamma envelopes is derived. pendent over segments, the inner minimization in (13) can be
simplified significantly. Specifically, the optimizationgimem
11l. R-D OPTIMAL ALLOCATION AND SEGMENTATION reduces to the fOllOWing, where the COding templates can be
ptimized independently for a segmentation and a particula

Since audio signals may exhibit varying degrees of S§ [19]:

tionarity, it is often advantageous to allow for a flexibl
segmentation and allow the bit-rate to vary over time. In s

addition, it is observed that the proposed AM signal model is /(A) = IHC}HZTHEH;I [D(os,7) + AR(0s,7)] — AR, (14)
only efficient in terms of rate-distortion for transient sents, s=1 7"

while the CA model is an efficient representation of tondlhis leads to the following important result: as the rated an
stationary segments. In order to combine the two models in distortions are additive over segments, the outer minitiuina
optimal way as well as doing optimal segmentation of thetnpaan be solved using dynamic programming [19]. The optimal



) that leads to the target raf@*, denoted\*, can be found z(n)
by maximizing the concave Lagrange dual function [40], i.e. l

A* = argmax J()) (15)
A

Preprocessing

This can be done by sweeping oveuntil R(o, 7) is within
some range of the bit budget [19]. It should be noted that
for a d|screFe problem such as ours, we cannot guarantee that + — wn) S, i (n) Ayed@in+on)
strong duality holds for the optimization problem, and, as a dA)

consequence, the found solution may be suboptimal, but for a N
dense set of coding templates the gap will be small (see.[40]) yi(n)
For a fixed segmentation, i.e. given the outer minimization
disappears, and we only have to minimize over the coding Frequency Estimation Sinusoidal Synthesis|
templates. This was the approach used in [41].

IV. PARAMETER ESTIMATION Wi, i} Awima, Aigéi, o, B}

The distortion measure (3) defines a norm and is in fact
induced by an inner product (see [42]). The parameters for
each sinusoid can then be found using a matching pursuit
algorithm [43]. This would guarantee convergence in the {vi(n),wi, ni}
distortion as a function of the number of components. The N o -

. . . . . 9. 2. The iterative AM parameter estimation procedure. Siids are

psychoacoustic matching pursuit (PMP) [42] is an al(-:lomhl?ﬂund one at the time and subtracted from the input.
that does this, i.e. it performs matching pursuit using the
norm (3). The inner products can be found using FFTs also
for the AM case. It would, however, be very expensive with )
respect to computational complexity. Since the R-D optimal L&t Fi(w) = ¥;"(w)Y;(w) be the squared magnitude of the
segmentation requires that at every segment boundary, _déﬁcrete-tlme Fourier transform of the residual at itemati ,
combinations of segment lengths and coding templates &fe:
evaluated, it is critical that the estimation procedureast.f phly Ciom
In that spirit, we here employ a simpler procedure than PMP. Yi(w) =) wi(n)e ",
We start out by noting the number of different combinations n=0
of parameters will be dominated by the number of differenthich may be updated efficiently in the frequency domain.
frequencies and onset points. Thus, we break the estimatitinen the frequency is estimated as
process into three successive steps: frequency estimatieat

Onset Estimation Envelope Estimation

(19)

estimation, and, finally, estimation of the envelope patanse Wi = argflaXA(w)Pi(W)

and the corresponding phase and amplitude. A block diagram _ 25 (20)
o . A OP;(w) 0°P;(w)

of the estimation procedure is shown in Figure 2. s. t. e 0 and e < 0.

For the frequency estimation we use a fast method some-
what reminiscent of the weighted matching pursuit [44]. ThEhis estimation criterion can be seen as an asymptotic PMP
algorithm operates on the residual, which at iteratign1 is ~ criterion with N — oo for the CA case. The constraints ensure

formed as that the frequency will be a peak in the spectrum. This is a
i @inta) reasonable restriction also for the AM case as the modglatin
yi+1(n) = yi(n) —w(n)yi(n)Aie 7. (16) signals all have low-pass characteristics. We cannot, fexye

The residual is initialized as the discrete-time analyiimal guarantee that the error converges in a convex way.
) A coarse estimate of the integer onsgtis found in order

yi1(n) = w(n)z(n) + jw(n)H{z(n)}, (A7) o limit the search space using the following simple method:
where H {-} denotes the Hilbert transform. This, includinggiven a model where a sinusoidal component of frequency
windowing, is the preprocessing step in Figure 2. In pragticiS modulated by a unit step sequende: — ), the modeling
the Hilbert transform is found using the FFT method. By opefITor can be written as
ating on the analytic signal, we ignore the spectral costeft (oimto,
z(n) for negative frequencies. This is done in order to simplify yi(n) — w(nyu(n — () Azed @+, (1)
the estimation procedure. Convergence in the modelingeof t

ivtic sianal al i th | s J‘f'his error is minimized in a least-squares sense by maxigizi
analytic signal also ensures convergence in the real sigmee the inner product (with proper normalization) between the

R {w(n)z(n) + jw(n)H {z(n)}} = w(n)z(n),  (18) modulated sinusoid and the residual:

. . .. 2
however, for a non-zero error, the analytic signal modeliig

N-1

introduce some error due to the correlation between negativ. ¥ ({) = % E yi(n)w(n)e 7« . (22)
. . - 2

and positive sides of the spectrum. >on—c w3(n) |1



We note that the produgt (n)w(n)e=«i" forn = 0,..., N— or equivalently as the maximization in (26). Since sinusoid
1 only has to be computed once for each sinusoid. We thkeaving constant amplitude do not require the envelope param

find the onset as the maximizer of (22), i.e., eters to be transmitted, disregarding the rate in the egtima
results in a parameter set which is suboptimal in a rate-
ni = arglcnax‘l’@)' (23)  distortion sense. In [41] every segment was analyzed using

a set of constant-amplitude sinusoids and a set of amplitude
Given the frequency and the coarse onset, the combinatigddulated sinusoids and by rate-distortion optimizatiba t
of envelope parameters, including a final onset estimate,bigst representation was chosen for each segment. This was
found as the minimizer of the distortion measure (3). Thigone in order to find an efficient representation in terms of
corresponds to performing a PMP on the subset of the digte. Suppose we have an estimate, or a guesst denoted
tionary. We assume that all the dictionary elements have beg the need for multiple analyses can be eliminated by instead
scaled for a particular segment such that they all have uplinimizing in each iteration of the estimation

perceptual norm, i.e., .
; = argmin [D(Q;) + vR(;)] , (29)

i

Aw)Zj(w — wi) Zp(w —wi)dw =1 Vk, (24) ) )
—x where R(£2;) denotes the rate associated with the parameters

with Z, being the discrete-time Fourier transform of th&li- The rate-distortion optimization is still performed ddes
windowed envelopek in the dictionary, i.e. (see Appendixthe estimation such that the rate-constraint is met. The rat

1) regularized estimation procedure results in coding tetapla
N—1 that are optimized for the target bit-rate. As an example,

Zn(w) = Z w(n)ye(n)e 7. (25) consider the choice in iterationbetween an amplitude mod-

ne0 ulated sinusoid and a constant-amplitude sinusoid. Udieg t

estimation criterion in (28), the amplitude modulated siid

The envelope, i.e. the combination af, 3; andn;, is then . . .
. . . .. may be chosen, while using (29) may result in the constant-
found in an analysis-by-synthesis manner as the minimizer

of the perceptual distortion or, equivalently, as the folloy amplltud_e smysqd being Choseh be_cause the amplitude mo_d-
N . : ulated sinusoid is more expensive in terms of rate. The esti-
maximization of the inner product:

mation criterion (29), which we from now on shall refer to as
™ 2 the rate-regularized estimation or just regularized estiion,
/ Aw)Zj (w — wi)Yi(w)dw| . (26) corresponds to optimizing the coding templates for theetarg
bit-rate. The regularization constantdoes not, however, play
From this inner product, the phase and amplitude ofitthe the role of the Lagrange multiplier in constrained optintia
sinusoid can also be found as the modulus and the argumairice we do not solve for it. By choosimg= 0, the estimation

Z;(w) = argmax
Zk (w)

—T

ie. . criterion will reduce to (28). Using a large will result
A;eddi :/ Aw)ZF (w — w;) Yy (w)dw. (27) in an estimation that will tend to choose constant-ampétud
—n ’ over amplitude-modulated sinusoids, while for a smalthe

In practice the spectra are discrete and the integration @8POSIte will occur. In the extremes, this will result in aleo

performed as a summation over point-wise multiplicatigks. Containing only constant-amplitude or amplitude modulate

most of the spectral energy &;(w — w;) is concentrated in sinusoids. It must bg stressed that ever i= A%, i.e. if

a small region arounds;, the integration range can also b&V€ guessed the optimal, the estimation is not optimal as

reduced without much loss in accuracy but with consideradfa® individual iterations are not independent. It is of caur

reduction of computational complexity. posmble_to iterate over, bL_Jt thls_ wogld be costly in terms of
For the segment lengths used here, the analytic signal moGnPIexity. In most practical situations, the actual ceout

(considering only the positive parts of the spectrum) hasbe” has been found not to be very critical, i.e., it can simply set

found to perform satisfactorily. We note that it is also pos [©© @ constant value.

to account to some extent for the interaction between @iffer

components, including the positive and negative sides @f th VI. IMPLEMENTATION DETAILS

spectrum, in a number of different ways. The different wellA. Sinusoidal Parameter Quantization and Rate Estimates

known optimizations of matching pursuit (see e.g. [4S])b&n  The phases of the sinusoidal components are quantized
applied at the cost of additional complexity since (3) def'“euniformly using 5 bits, while amplitudes and frequencies

a horm. are quantized in the logarithmic domain using the following
quantizers.WithY denoting the parameter to be quantized and
V. RATE-REGULARIZED ESTIMATION |-] the truncation operation, the quantized parametes
In section 1V, the parameter set of each envelope, denotét culated as
2 = { a; §; n; }, was found in iteratiori as the minimizer b ox Q log(0+¢) O'5J log(1 + A)) . (30)
of the distortion log(1+ A)

Q; = argmin D(Q;) 28) with a small positive constant being added for numerical
v g&zi o reasons. With a step-siz& of 0.161 for the amplitudes and



TABLE |

CODER CONFIGURATION FOR DIFFERENT TEST CASES DENOTED BY

CODER ACRONYM.

templates, a one bit AM switch is used per component. This
may be more efficiently encoded using run-length coding. The
CA+SEG coder is comparable in quality to that of [48], which

Coder Description . . . .
CA The CA coder uses coding templates consisting ~ USes the PMP and R-D optimal segmentation and uses identical
of constant-amplitude sinusoids only and a guantizers. The segmentation algorithm described in @ecti
flxt;eld segmentatlon- This is the simplest pos- lIl requires that the distortions are additive over segraent
Siple coder. . .
AN The AM coder uses amplitude modulated cod- For this to be true,_the s:_agm_ents have to be disjoint. _Hov,vever
ing templates and a fixed segmentation. This  in order to avoid discontinuities at segment boundariesieso
COSEf uses the fate-lregulétlrlzed estt'mézt'C}nl%g- amount of overlap must be introduced between adjacent seg-
ceaure using a regularization constant o . . . . .
AMICA A combination of The CA and AM Coder ments. That the errors mtroduce.d in the .overla_pplng region
operating on a fixed segmentation. It switches may have non-zero cross-terms is then simply ignored. Since
between thRe E)WO ona segmert-(th-segment ba-  the distortions also have to be independent over segméts, t
SIS using R- optlmlzatlon. t does not use
the rate-regularized estimation procedure, i.e. amount of overlap between segments c_annot depend on the
a regularization constant of 0 is used. segment length. Therefore a natural choice for the amount of
CA+SEG As the CA coder but with R-D optimal seg- overlap is half the size of the minimum segment length. It
mentation. e : ; ;
ATSES TP arme s TFe AV oderBo iR is important t.hat the Qverlap is not too ;ma}l since thls_ may
optimal segmentation. cause undesirable artlfacts.d'ue to quantization and et&tima
AM/CA+SEG | This is the AM/CA coder combined with R-D errors. Consequently, a minimum segment length of 10 ms
optimal segmentation. and an overlap of 5 ms is chosen, meaning that all segment

sizes are integer multiples of 10 ms and may start on a 5
ms time-grid. Further, for very long segments, the spectral

0.003 for the frequencies, the quantizers were found toymed Weighting function becomes increasingly inaccurate as the
transparent results compared to the original (non-qued}iz Maskers cannot be assumed to be stationary. Therefore a
parameters, meaning that informal listening tests showed faximum length of 40 ms has been used. For the coders that
degradation in the perceived quality due to the quantiratid!Se @ fixed segmentation, a von Hann window of 30 ms with 15
These quantizers are motivated by studies that show thag overlap was used. In the experiments to follow, we ignore
for amplitude and frequency the just noticeable differancéhe side information associated with the segmentationhias t
are nearly constant on a logarithmic scale [46]. Estimaté@n generally be considered small compared to the total rate
entropies of the quantized parameter sets were used for Mareover, the critical comparisons are between coders that

rates in the R-D optimization and as a measure of rate {§e the same type of segmentation and thus have the same
the experiments to follow. The entropies of the quantiz@te for the side information. The excerpts used in the tests
sinusoidal parameters were also found not to be affectBdlow are fairly short, and the rate-distortion optimizat has
much by the AM. For the amplitude, phase and frequency tHerefor been carried out over the entire length of the $sgna
entropy was estimated as approximately 20 bits/component.

Assu_ming differential 9ncoding [47], this can be.reduced © Gamma Envelope Dictionary

16 bits/component. Since the perceptual distortion measur
(3) may be overly sensitive to frequency quantization, we us It has been found that using the perceptual distortion
the original parameters in determining the distortions.the Measure (3) in selecting the envelope parameters made the

same reason the original parameters are used in generagingP@rameter estimation more robust toward introducingaatsf
residual in the estimation (16). than using a squared error measure. This can be attributed to

the fact that the spectral distortion measure takes intowatc
that the wide mainlobe and sidelobes of modulated sinusoids
may introduce errors in parts of the spectrum where no masker
In the experiments to follow, a number of different codeis present. However, it was also found necessary to limit the
configurations were considered. These are listed in order stéepness of the attack in order to prevent artifacts froimgbe
rising complexity in Table I. The table shows what typemtroduced. Namely, we found that for smali, the coder
of coding templates were used, how they were found amdés prone to introduce roughness and click artifacts due to
whether R-D optimal segmentation (SEG) was used. Thiee discontinuities introduced by the unit step sequence. W
coding templates are defined & = {xo,...,xz}, Where again note that foro; = 0, the model reduces to that of
x:; meansi sinusoids, which may or may not be modulated32]. Hence, the envelope dictionary was designed emiyica
depending on the type of coder. For example, the AM/Cfkom the results of informal listening tests. With a more
coder uses fixed segmentation and contains coding templa&ftned distortion measure, the envelope dictionary co@d b
found by analyzing a particular segment using a set of Alesigned using standard vector quantization techniques. |
sinusoids and a set of CA sinusoids. Note that the AM codirtge following tests, an envelope dictionary for a sampling
templates can contain constant-amplitude components sifitequency of 48 kHz composed from; € {2,3,4,5},
these are included as a special case of the model (2), whilee {0.003,0.005,0.01,0.02} and an onseh; step-size of
the CA coding templates contain only CA components. lapproximately 0.5 ms was used. As a consequence of this the
order to efficiently code CA components in the AM codingnvelope dictionary size varies with the segment lengtingeS

B. Coding Templates and Segment Sizes



TABLE I Original

LIST OF EXCERPTS USED IN THE TESTS 02
Number | Name Type Length g 01
1 Castanets and Guitar | Mixed 6s 2 o |
2 Claves Solo 7s g ‘
3 Glockenspiel Solo 8s <01
4 Grand Piano Solo 11s 02 ‘
5 ABBA Mixed 10s 450 500 550
7 Bass Guitar Solo 12s dme [mel
8 English Female Speech Speech 6s 0.2 ‘
9 Castanets Solo 7s
10 Harpsichord Solo 9s g 01 1
11 Tracy Chapman Mixed 13s 2 o I
12 Triangle Solo 9s g
13 Xylophone Solo 8s —0.1r
-0.2 :
450 500 550
Time [ms]

the frequency and envelopes of transients may vary much fr@ig. 3. Signal example, xylophone, original (top) and codegOekbps using
signal to signal, no entropy coding of the envelope pararsetée CA coder (bottom).
was assumed in the rate estimates, i.e. the upper boundds use CA+SEG coder

These are 9, 10, 10 and 11 bits per envelope for 10, 20, 30 and 02
40 ms segments, respectively. Preliminary experimensaili® g 01r
also suggest that differential coding of onset times mag lea 2
to a reduction of the average bits per component. The spectra 2 —01
of the windowed gamma envelopes were stored in a lookup 0 ‘
table in order to perform fast estimation (equations (26) an 450 Tims ne] 550
(27)) using the spectral distortion measure (3). o AMICA+SEG coder
o 01
VIl. EXPERIMENTAL RESULTS ’é o
A. Signal Examples & o1
As an example of a coded signal, the xylophone coded at 30 02 oo o
kbps is shown in Figures 3 and 4. It can be seen that the CA Time [ms]

coder introduces a pre-echo and that the transient is stheare
and has lost its sharpness. In the CA+SEG coder, the pre-e

is much reduced, but the transient is still not as sharp as the
original. The AM/CA+SEG coder sharpens the attack further

and reduces the pre-echo. can be achieved with either AM or SEG, with the AM coder
In Figure 5 the rate-distortion curve$or a representative peing less complex than the CA+SEG coder. For other signals
transient sinusoidal signal, glockenspiel, are shown f& tsych as the castanets, though, the R-D curves show that
CA coder, the AM/CA coder and the AM coder. Similarlyjmprovements can be gained by the combination of AM and
in Figure 6, the same is shown for the CA+SEG coder, the.p optimal segmentation.
AM/CA+SEG coder and the AM+SEG coder. The signal has |n Figure 7 the R-D optimal segmentation boundaries are
a duration of approximately 10 s and R-D optimization Washown for the AM coder and the AM/CA coder for 30 kbps
performed on the entire signal. For the fixed segmentatiq@ the excerpt Castanets. It can be seen that a higher coding
it can be seen that there is a clear improvement for the AMficiency is achieved as longer segments are chosen around
and AM/CA coders in terms of a reduction of the distortiofhe transients when AM coding templates are included. It
compared to the CA coder at the same rate. Also, the proposgsk also found that when R-D optimal segmentation was
coder saturates at lower distortions than the CA coder fgged, there was still an advantage of using the onsets, i.e.
glOCkenSpiel. It can also be seen from figure Figure 6, thiﬁﬁprovements were still gained by a"own}g # 0in (2)
when R-D optimal segmentation is employed, the rate @fonstrainings, = 0 VI, i.e. reducing the model to that of [30],
convergence is higher for all coders. An interesting ole@Im  [33], |ed to shorter segments and a loss in perceived quality
is also that the rate-regularized coder, the AM coder, pev$0 The ability of the model to position onsets of the individual
similarly to the AM/CA coder. This means that the duadinusoids at arbitrary positions within each segment hawspr
analyses of the AM/CA coder can be avoided with very ||tt|ﬁ) be an important one. The effect of the rate_regu|arized
loss of performance. From these figures, it seems that fsr titimation procedure is illustrated in Figure 8, where #te-r
particular excerpts, the glockenspiel, very little is &veid by gistortion curves of the AM coder for different regularipat
combining AM and SEG. It looks as if similar performanceonstants are shown for 2 s of claves. It can be seen that in

o _ _ _ . the region 20-40 kbps, approximately 5 kbps can be saved
In information theory the relatiod (R) is traditionally referred to as the d larizati D di h . |
distortion-rate curve. We refer to this relationship usiing aesthetically more comparg to no regularization. Depending on the signal at

pleasing term rate-distortion curve. hand, this result may vary.

4. Signal example, xylophone, coded at 30 kbps using theSEG
er (top) and using the AM/CA+SEG coder (bottom).



610 stationary for the most parts but has very steep attackse whi
o ACA the castanet excerpt has very stochastic and strongly rakedul
51 ' —AM characteristics. The excerpts 5 and 11 are pop music camain
450 mixtures of multiple instruments and vocal.

C. Informal Listening Tests

Informal listening tests revealed that pre-echos are lglear
reduced and that the transients are better modeled using the
proposed model than with constant-amplitude sinusoids. Fo
many signals, though, the improvements are fairly subtleesi
they are already handled well using constant-amplitude-sin
" 5 - 0 o soids. Often, the improvements are perceived as an increase

Rate [kbps] of bandwidth of the coded signal. For critical excerpts,hsuc
_ . dictort i dor (dastiah the AM/ as castanets the improvement are clearly audible. The tfpes
e ) R e ooy s et i . SGNUS that benefi from the AM coder are signals that ekfib
glockenspiel. fast onsets, impulse-like signals, transitions betwederdint
stationary parts of signals, and percussive instruments. A
x 10° ; mixture of these types of signals with stationary ones may al
- - - AM/CA+SEG benefit from it. It was also found that the AM coder improves
o ZTShsES the perceived quality of sinusoidally coded speech. Namely
the speech was found to suffer less from the tonal artifact
often encountered in sinusoidal speech coding. Expersnent
showed that the AM coder proved R-D optimal for plosives,
in transitions in pitch and in transitions between voiced an
unvoiced sounds. For speech, it may also be beneficial to
incorporate a model for frequency modulation [50]. Infofma
listening tests also revealed that the perceptual distorti
measure (3) does not fully reflect the perceived improvement
caused by the AM. For example, the relative improvement in
% 10 2 2 ‘ ‘ terms of rate-distortion between the CA coder and the AM
Rate [kbps] coder appears small for the castanets, while the perceived
Fig. 6. The rate-distortion curves of the CA+SEG coder (edstted), difference is large. Thls.may be expllalr'led by the fa.Ct that
the AM/CA+SEG coder (dashed) and the AM+SEG coder (soliygig-D the model [38] was derived for predicting the masking of
optimal segmentation for the glockenspiel. sinusoidal component, and that the castanets are not very
sinusoidal by nature unlike signals like the glockenspiel,
claves and xylophone. The perceptual distortion measyre (3
B. Test Material does, though, form a robust measure for estimation of model

In order to evaluate the proposed method for parametparameters and for the R-D optimization. When the R-D
coding of transients, we conducted a formal listening test. optimal segmentation is employed, the effects of the AM
addition, we report our experience from informal listeningoder are less audible compared to the CA coder for excerpts
tests to give the reader some indications as to the natwvbere the signals exhibit fast onsets. Examples of this are
of the improvements that were made. In the informal arglockenspiel and claves while for castanets, the comlinati
formal listening tests, the excerpts shown in Table Il weief the AM coder and R-D optimal segmentation results in
used. These represent a wide variety of different types @fignificant improvements. The use of variable bit-rate afid R
signals, many of which are known to be critical excerpts ipptimization has also been found to improve performance for
perceptual audio coding [37]. All the signals were monopbiontransients for all the coders, since more bits can be aktdcat
and were 16 bit signals sampled at 48 kHz and they haf@s critical signal parts, such as transients, this way.

a length of 6-12 s. Many more signals were used in the
development, but these are the ones that have been tegjedUSHRA Test

extensively. In ITU-R BS.1534-1 [49] it is recommended to In order to quantify the improvements gained by the differ-

use.excerpts_ that are known _to be cr itical in testing of audéq“ methods for handling of transients, we use a subjective
podmg algorithms. Problematic transients by no mea'nsrocqgtening test. We use the MUSHRA test (MUIti-Stimulus
in all excerpts. Consequently, these tests are concernidym est with Hidden Reference and Anchors) [49], which is a

with excerpts that are known to _be critical _yet different o ouble blind test for subjective assessment of intermediat

type. For example, the glockenspiel excerpt is very tondl aB|uality level of coding systems. For each excerpt, therste
3Some of the processed excerpts are available on first authongpage were asked to rank 8 differently processed versions relativ

at http://kom.aau.dk/"mgc/projects/gamma to a known reference on a score from 0 to 100. These
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Fig. 7. Example of R-D optimal segmentation boundaries (indtteby Fig. 9. Results of the MUSHRA listening test. MOS scores fiffecent
vertical lines) for castanets for the AM/CA+SEG coder (tap)l the CA+SEG coders averaged over all excerpts and all listeners. Tloe ears indicate the
coder (bottom) operating at 30 kbps. Note that both the sigstabwn are the 95% confidence intervals.

original.

critical excerpts, it is of interest to investigate the pemfiance

for the individual excerpts. These are shown in Table Illhwit
the excerpt being identified by the number in Table Il. From
Figure 9 we see that the AM/CA+SEG coder scores about 10
points higher at average than the CA+SEG coder, and more
than 20 points higher than the CA coder. Although the AM
coder does not seem to perform significantly better than the
CA coder in this test, the AB preference test in [41] showed a
significant preference for the AM/CA coder over the CA coder.
In the table, it can be seen that for particular excerptsh sisc
the castanets (excerpt 9), there is a huge improvement in the
o combination of AM and the R-D optimal segmentation over
%0 % o the CA coder both with and without optimal segmentation, in
Rate [kbps] fact the R-D optimal segmentation helps very little withthe

AM model. It can also be seen that there is a fairly small loss
on average in the rate-regularized estimation procedutkeof
AM+SEG coder compared to the AM/CA+SEG, except for the
glockenspiel (excerpt 3). Taking the confidence intervats i

included the hidden reference (denoted HR), an anchor lo@ccount, this difference is too small to be of any statistica
pass filtered at 7 kHz and an anchor low-pass filtered at $§nificance. The reason for the fairly poor performance of
kHz (denoted Anchor 7 kHz and Anchor 3.5 kHz, respeéhe AM+SEG coder Compared to the AM/CA+SEG coder for
tively). The remaining 5 versions were the AM, CA, CA+SEGthe glockenspiel is that the same regularization constaast w
AM+SEG and the AM/CA+SEG coders all operating at 39sed for processing all excerpts, and for the glockenspiel,
kbps. In the MUSHRA test the hidden reference is used tBis constant is not close to the optimal It is interesting
verify the consistency of responses of subjects becauseya Vi@ note that the glockenspiel scores the highest among all
high score is expected here. The anchors are included to&@¥§erpt. This is not surprising because the glockenspgelasi
able to make comparisons between different listening tedgsvery tonal and the AM model is well-suited for handling
and because they constitute a well-defined and simple sigi@ non-stationary parts of this signal. This also holdsttfer
modification. In order to limit the length of the listeningstea  very similar signals of SQAM, such as the claves, xylophone,
representative subset of the excerpts listed in Table Il wingle and others.

chosen. Nine experts listeners participated in the test (th

authors not included). The test was performed on speakers VIlI. DiscussioN

in a listening room. As the proposed coders do no incorporateAs can be concluded from the listening test results, the
residual coding and are thus not complete parametric coderproposed parametric coding of transients in combinatiah wi
reference coder has not been included in this test. In MUSHR®D optimal segmentation leads to a significant gain in audio
tests the hidden reference define known points on the sealequality as compared to constant-amplitude sinusoidalnmpdi
Figure 9 the resulting MOS (Mean Opinion Score) scores 8iwitching between different window lengths and shapes or
the different coder configurations averaged over all exserwoders (e.g. [9], [18]) has traditionally been achieved Hay+
and listeners are shown. Since we are dealing with particukdent detection schemes. However, there may be a mismatch

Distortion

Fig. 8. The rate-distortion curves of the AM coder for diéfet regularization
constants for claves optimized over 2 s.



10

TABLE Il
RESULTS OF THEMUSHRA LISTENING TEST. MOS SCORES FOR
DIFFERENT CODER CONFIGURATIONS FOR THE INDIVIDUAL EXCERPS.
Excerpt 1 3 5 7 9 10 | 11

on the one hand and AM as presented here on the other hand
is that TNS and gain modification operate on the input and
output signals and hence shape the noise, whereas in AM, the

AM 5T 70 a1 T 45 T 43 T 56 | 39 signal model is modified to fit the input signal.

AM+SEG 67| 79 | 58| 71 | 66 | 68 | 58

AM/CA+SEG | 65| 92 | 62| 68 | 72 | 71| 59 IX. S

CA 32| 60| 41| 42 | 29 | 65| 43 - SUMMARY

CA+SEG 47 | 84 | 64| 63 | 35 | 65| 55 . - ; .

HR 99 | 99 | 99 | 100 | 100 | 99 | 100 In .thIS paper, methods for efficient parametric coding of
Anchor 7kHz | 47 | 66 | 56 | 62 | 47 | 42| 52 transient audio signals have been presented. We propose a
Anchor3.5kHz| 22 | 33 | 24 | 27 | 22 | 24| 27 specific model for handling of transients based on amplitude

modulated sinusoids. In this model, each sinusoid is moedla
by a different envelope known as a gamma envelope each

between the classification of transients and the R-D optin2§iNd characterized by and onset, an attack and a decay
coder. Based on R-D optimization and/or the rate-reguddrizParameter. These degrees of freedom have proven to be
estimation method robustness against such problems isdjaiimPortant in efficient coding of transients. Existing metso

but this comes at the cost of additional complexity. We alsSume either that the modulating signal is the same for all
note that the R-D optimal allocation scheme is similar t6°MPonents, that the onset always occurs at the start of a
the so-called bit reservoir method for handling of transienS€9ment, or that no attack parameter is necessary. Combined
(see [16]). Rate-distortion optimal allocation (varialste) with a constant-amplitude sinusoidal model, efficient ogdi

in itself does not, however, ensure that more bits are sp&ftPoth stationary and transient signals is achieved using
when transients are present. Rather, it spends the bitsewH@e-distortion optimization based on a perceptual distor
most distortion can be reduced, and hence it depends on fgasure. The rate-distortion optimization leads to optima
appropriateness of the signal model. allocat|0|j and segmentation and therefore ehmmate;ealeel n
The scores from the MUSHRA test reported here may far transient det.e.ctors. Informal and fo.rme}l Ilsten|ngtges
further improved by residual coding since noise componerg/e@l that for critical excerpts the combination of amjulé
are not efficiently coded using sinusoids. Many parametfigodulation and rate-distortion optimal segmentation set
audio coders employ residual noise coding that only encod@i€ improvements over a sinusoidal coder using only the op
a spectral and a coarse temporal envelope (e.g. [13], [51t]51_1al segmenltatlon. This shov_vs that segmentation tecksiqu
It is also possible to improve performance of parametrff® Not substitutes for good signal models.
audio coders for transient signals by employing waveform
approximating residual coding as done in [52], [53]. In such X. ACKNOWLEDGMENT

coding schemes, the residual coder may compensate foserror-l-he authors would like to thank A. Kohlrausch and A

introduced by the sinusoidal coder. Harma both of Philips Research Laboratories, Eindhover, Th
Recently, preliminary results on linearization of the gp@c Netherlands, and Sgren Holdt Jensen of the Department of

temporal psychoacoustical model [54] have been reportedd‘%mmunication Technology, Aalborg University, Denmark,
[55]. Such a linearization results in a distortion measia t for their constructive comments and suggestions

defines a norm and would thus be applicable to the AM esti-

mation problem at the cost of increased complexity. Further

if such a measure is shown to reflect temporal aspects better APPENDIXI

than (3), this could lead to improved coding of transients d<°URIER TRANSFORM OFWINDOWED GAMMA ENVELOPE

presented here as well as to more refined envelope dictionaryrhe estimation of model parameters and calculation of

design. distortions require that the spectra of the windowed gamma e
Compared to the singlebanded AM of e.g. [15], the modeklopes are computed. Doing this by FFTs may be prohibitive

proposed in this paper has the advantage that different émlow complexity applications and storing them in memory

velopes are allowed for different sinusoids, which is aipart may also not be feasible. Here, we instead derive a clos@a-fo

ular advantage for mixtures of sources (see e.g. [34]). Somgpression for generating the discrete-time Fourier foans

interesting parallels can be drawn to related work in audiirectly in the frequency domain. The discrete-time Faurie

coding. In [25] transient locations are modified in order tgransform of the windowed gamma envelope can be found

achieve more efficient coding of transients. This is, in assenfrom the following finite sum:

what is happening when the onsets are quantized, and seen in

the light of [25], onsets should be estimated very preciaaly

then quantized jointly to a coarse grid. A successful tool in

dealing with efficient coding of transients in transform icagd

is TNS [22]. TNS is based on linear predictive coding ofith w(n) being the tapered von Hann window (7). In finding

transform coefficients. Since amplitude modulation mayjss the discrete.Fourier transform we shall use the following

well be interpreted as a frequency domain filtering, thernis transform pair:

duality in TNS and AM. One conceptual difference between 9o

TNS and gain modification [23] as applied in transform coding n®z(n) & 45— X(w). (32)

N—n;—1
Z)(w) = Z n®e Pmw(n 4 ny)e i) - (31)
n=0




Assuming that; < M — 1 and splitting the sum (31) up into [7]

three different sums having different window parts, we get

M—l—nl
Zi(w) = § n‘”e*'&”v(n + nl)eﬂ“’("ﬂ”)
n=0
N*M*l*’nl
n=M—n;
N—-1—-my
n=N-—-M-—-n;

o - dwntm).

n e—ﬁlne—jw(n+m)

+
(33)

+ n®e Pmy(n — N 4 2M + n;)

(8]

El

(10]

(11]

with v(n) being the modified von Hann window in (8). Tediouélz]

calculations now lead to the following closed-form expiess

(13]

of the discrete-time Fourier transform of the windowed gaamm

envelopes:
Zl(w) = jaz o 1 iwm 1— (e—ﬁl —jw)]\[_nl
Owe |\ 2 1 — e Bi—jw
1 1— (e_ﬂl_j“""jﬁ)M—nl

L emdoniiFrutis i
4 1 — e~ Bi—jw+izr
1— (e—ﬁz—jw—jﬁ)M—nz

ZeJwmi—jifrmi—izhr S
4 1 — e Bi—jw—izr
(efﬁlfjw)lﬂfnl _ (efﬁlfjw)Nfo’nl

—Jjwny

e -
+ 1 — e Bi—jw

—Bi—jw\N—M—n —Bi—jw\N—n

+ le—jwnl (6 A=y ) b — (6 =y ) ! (34)

2 1 — e Bi—jw
L demitig i ()

4

(efﬁz*ijrjﬁ)N*m*M _ (efﬁzfjvajﬁ)N*m
X —

1 — e~ Bi—jwtizr

L om0

(e=Bi=dw=iFrYN=m=M _ (o=Bi=ju—iFr\N=n
X

1 _ e Pioi%

In evaluating these expressions for particular parametieies

(14]

(15]

[16]
(17]
(18]
(19]

[20]

(21]

(22]

(23]

(24]

and frequencies L'Hospital’s rule must be used. For the code
presented in [41], where the window is simply a von Hanps)
window with a fixed length, the corresponding expression is

much simpler.
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