8 research outputs found

    Energy Efficient Mobile Sink Based Routing Model For Maximizing Lifetime of Wireless Sensor Network

    Get PDF
    Recently, wide adoption of wireless sensor networks (WSNs) has been seen for provision real-time and non-real-time application services. Provisioning these application service requires energy efficient routing design for WSN. Clustering technique is an efficient mechanism that plays a major role in minimizing energy dissipation of WSN. However, the existing model are designed considering minimizing energy consumption of sensor device considering homogenous. However, it incurs energy overhead among cluster head. Further, maximizing coverage time is not considered by exiting clustering approach considering heterogeneous network affecting lifetime performance. For overcoming issues of routing data packets in WSN, mobile sink has been used. Here, the sensor device will transmit packet in multihop fashion to the rendezvous and the mobile sink will move towards rendezvous points (RPs) to collect data, as opposed to all nodes. However, the exiting model designed so far incurs packet delay (latency) and energy (storage) overhead among sensor device. For overcoming research challenges, this work present energy efficient mobile sink based routing model for maximizing lifetime of wireless sensor network. Experiment are conducted to evaluate the performance of proposed model shows significant performance in terms of communication, routing overhead and lifetime of sensor network

    Energy efficient clustering and routing optimization model for maximizing lifetime of wireless sensor network

    Get PDF
    Recently, the wide adoption of WSNs (Wireless-Sensor-Networks) is been seen for provision non-real time and real-time application services such as intelligent transportation and health care monitoring, intelligent transportation etc. Provisioning these services requires energy-efficient WSN. The clustering technique is an efficient mechanism that plays a main role in reducing the energy consumption of WSN. However, the existing model is designed considering reducing energy- consumption of the sensor-device for the homogenous network. However, it incurs energy-overhead (EO) between cluster-head (CH). Further, maximizing coverage time is not considered by the existing clustering approach considering heterogeneous networks affecting lifetime performance. In order to overcome these research challenges, this work presents an energy efficient clustering and routing optimization (EECRO) model adopting cross-layer design for heterogeneous networks. The EECRO uses channel gain information from the physical layer and TDMA based communication is adopted for communication among both intra-cluster and inter-cluster communication. Further, clustering and routing optimization are presented to bring a good trade-off among minimizing the energy of CH, enhancing coverage time and maximizing the lifetime of sensor-network (SN). The experiments are conducted to estimate the performance of EECRO over the existing model. The significant-performance is attained by EECRO over the existing model in terms of minimizing routing and communication overhead and maximizing the lifetime of WSNs

    A Data Collecting Strategy for Farmland WSNs using a Mobile Sink

    Get PDF
    To the characteristics of large number of sensor nodes, wide area and unbalanced energy consumption in farmland Wireless Sensor Networks, an efficient data collection strategy (GCMS) based on grid clustering and a mobile sink is proposed. Firstly, cluster is divided based on virtual grid, and the cluster head is selected by considering node position and residual energy. Then, an optimal mobile path and residence time allocation mechanism for mobile sink are proposed. Finally, GCMS is simulated and compared with LEACH and GRDG. Simulation results show that GCMS can significantly prolong the network lifetime and increase the amount of data collection, especially suitable for large-scale farmland Wireless Sensor Networks

    Optimizing Energy Consumption for Big Data Collection in Large-Scale Wireless Sensor Networks With Mobile Collectors

    No full text
    Big sensor-based data environment and the emergence of large-scale wireless sensor networks (LS-WSNs), which are spread over wide geographic areas and contain thousands of sensor nodes, require new techniques for energy-efficient data collection. Recent approaches for data collection in WSNs have focused on techniques using mobile data collectors (MDCs) or sinks. Compared to traditional methods using static sinks, the MDC techniques give two advantages for data collection in LS-WSNs. These techniques can handle data collection over spatially separated geographical regions, and have been shown to require lower node energy consumption. Two common models for data collection using MDCs have been proposed: data collection using data mule (MULE), and sensor network with mobile access point (SENMA). The MULE and SENMA approaches can be characterized as representative of the multihop and the single-hop approaches for mobile data collection in WSNs. Although the basic architectures for MULE and SENMA have been well studied, the emergence of LS-WSNs which require partitioning the network into multiple groups and clusters prior to data collection has not been particularly addressed. This paper presents analytical approaches to determine the node energy consumption for LS-WSN MDC schemes and gives models for determining the optimal number of clusters for minimizing the energy consumption. The paper also addresses the tradeoffs when the LS-WSN MULE and SENMA models perform well.</p

    Optimizing Energy Consumption for Big Data Collection in Large-Scale Wireless Sensor Networks With Mobile Collectors

    No full text
    Big sensor-based data environment and the emergence of large-scale wireless sensor networks (LS-WSNs), which are spread over wide geographic areas and contain thousands of sensor nodes, require new techniques for energy-efficient data collection. Recent approaches for data collection in WSNs have focused on techniques using mobile data collectors (MDCs) or sinks. Compared to traditional methods using static sinks, the MDC techniques give two advantages for data collection in LS-WSNs. These techniques can handle data collection over spatially separated geographical regions, and have been shown to require lower node energy consumption. Two common models for data collection using MDCs have been proposed: data collection using data mule (MULE), and sensor network with mobile access point (SENMA). The MULE and SENMA approaches can be characterized as representative of the multihop and the single-hop approaches for mobile data collection in WSNs. Although the basic architectures for MULE and SENMA have been well studied, the emergence of LS-WSNs which require partitioning the network into multiple groups and clusters prior to data collection has not been particularly addressed. This paper presents analytical approaches to determine the node energy consumption for LS-WSN MDC schemes and gives models for determining the optimal number of clusters for minimizing the energy consumption. The paper also addresses the tradeoffs when the LS-WSN MULE and SENMA models perform well.</p

    Optimal Route Planning with Mobile Nodes in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSN) are a collection of sensor nodes that sense their surroundings and relay their proximal information for further analysis. They utilize wireless communication technology to allow monitoring areas remotely. A major problem with WSNs is that the sensor nodes have a set sensing radius, which may not cover the entire field space. This issue would lead to an unreliable WSN that sometimes would not discover or report about events taking place in the field space. Researchers have focused on developing techniques for improving area coverage. These include allowing mobile sensor nodes to dynamically move towards coverage holes through the use of a path planning approach to solve issues such as maximizing area coverage. An approach is proposed in this thesis to maximize the area of network coverage by the WSN through a Mixed Integer Linear Programming (MILP) formulation which utilizes both static and mobile nodes. The mobile nodes are capable of travelling across the area of interest, to cover empty ‘holes’ (i.e. regions not covered by any of the static nodes) in a WSN. The goal is to find successive positions of the mobile node through the network, in order to maximize the network area coverage, or achieve a specified level of coverage while minimizing the number of iterations taken. Simulations of the formulation on small WSNs show promising results in terms of both objectives
    corecore