204 research outputs found

    Reinforcement learning-based decision support system for COVID-19

    Get PDF
    Globally, informed decision on the most effective set of restrictions for the containment of COVID-19 has been the subject of intense debates. There is a significant need for a structured dynamic framework to model and evaluate different intervention scenarios and how they perform under different national characteristics and constraints. This work proposes a novel optimal decision support framework capable of incorporating different interventions to minimize the impact of widely spread respiratory infectious pandemics, including the recent COVID-19, by taking into account the pandemic's characteristics, the healthcare system parameters, and the socio-economic aspects of the community. The theoretical framework underpinning this work involves the use of a reinforcement learning-based agent to derive constrained optimal policies for tuning a closed-loop control model of the disease transmission dynamics

    An Overview of Catastrophic AI Risks

    Full text link
    Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes

    Emerging Threats of Synthetic Biology and Biotechnology

    Get PDF
    Synthetic biology is a field of biotechnology that is rapidly growing in various applications, such as in medicine, environmental sustainability, and energy production. However these technologies also have unforeseen risks and applications to humans and the environment. This open access book presents discussions on risks and mitigation strategies for these technologies including biosecurity, or the potential of synthetic biology technologies and processes to be deliberately misused for nefarious purposes. The book presents strategies to prevent, mitigate, and recover from ‘dual-use concern’ biosecurity challenges that may be raised by individuals, rogue states, or non-state actors. Several key topics are explored including opportunities to develop more coherent and scalable approaches to govern biosecurity from a laboratory perspective up to the international scale and strategies to prevent potential health and environmental hazards posed by deliberate misuse of synthetic biology without stifling innovation. The book brings together the expertise of top scholars in synthetic biology and biotechnology risk assessment, management, and communication to discuss potential biosecurity governing strategies and offer perspectives for collaboration in oversight and future regulatory guidance

    Spreading News: The Coverage Of Epidemics By American Newspapers And Its Effects On Audiences - A Crisis Communication Approach

    Get PDF
    Launched in 2002 in response to inadequate communications during the anthrax attacks and in preparations to the threats posed by H5N1, the Centers for Disease Control and Prevention (CDC)’s Crisis and Emergency Risk Communication (CERC) framework provides health professionals with trainings, tools, and resources to help them communicate effectively during emergencies and public health crises. Since that time, the framework has been used by the organization during outbreaks of infectious diseases. A core argument of CERC is that lack of certainty, efficacy, and trust serve as barriers to compliance with and support in CDC during an outbreak. According to CERC, providing the public with information about health and social risks, as well as information about ways individuals and organizations may ameliorate threats, could counter these perceptions, improve communications, and eventually save lives. However, the dissemination of the organization’s crisis messages depends largely on the mass media coverage. Understanding the news media’s agenda, priorities and role during outbreaks is essential for improving the cooperation between CDC and journalists. However, CERC provides little information about the actual behavior of journalists during crises, as reflected in news coverage of past outbreaks. This work aims to fill that gap in our understanding of the routinization of news during epidemics and its impact on audiences by systematically analyzing the coverage of epidemics in leading newspapers and using experiments to test its effects. This study analyzed 5,006 articles from leading American newspapers covering three epidemics: H1N1, Ebola, and Zika. Using a mixed method of automated and manual content analysis, it identified three distinct themes used to cover the diseases; pandemic, scientific, and social. Next, manual content analysis was conducted to assess the prevalence of information components theorized by CERC to increase certainty, efficacy and trust- information about medical/health risks, social/economic disruptions, and potential individual and organizational responses to ameliorate risks and reduce harm. Analysis of the themes based on CERC principles demonstrated substantial discrepancies between what CDC aims to communicate during epidemics and what the media actually disseminated to the public. An experiment (n = 321) found that exposure to articles representing the themes affected perceptions of certainty, efficacy, and trust, that in turn were associated with intentions to comply with CDC. The experiment also demonstrated the ability of coverage that follows CERC principles more closely to reduce harmful perceptions that were associated with behavioral intentions in target audiences. Implications for public health organizations and communicators are discussed, including ways to improve cooperation with journalists and the use of alternative direct-channels for filling gaps in news media coverage

    Emerg Infect Dis

    Get PDF
    Emerging Infectious Diseases is providing access to these abstracts on behalf of the ICEID 2022 program committee (http://www.iceid.org), which performed peer review. ICEID is organized by the Centers for Disease Control and Prevention and Task Force for Global Health, Inc.Emerging Infectious Diseases has not edited or proofread these materials and is not responsible for inaccuracies or omissions. All information is subject to change. Comments and corrections should be brought to the attention of the authors.Suggested citation: Authors. Title [abstract]. International Conference on Emerging Infectious Diseases 2022 poster and oral presentation abstracts. Emerg Infect Dis. 2022 Sep [date cited]. http://www.cdc.gov/EID/pdfs/ICEID2022.pdf2022PMC94238981187

    2007 Guideline for isolation precautions preventing transmission of infectious agents in healthcare settings

    Get PDF
    2007. Last update: Feburary 15, 2017The Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings 2007 updates and expands the 1996 Guideline for Isolation Precautions in Hospitals.Ebola Virus Disease Update [2014]: Updated recommendations for healthcare workers can be found at Ebola: U.S. Healthcare Workers and Settings (https://www.cdc.gov/vhf/ebola/healthcare-us/).Measles Update [November 2011]: Updated recommendations can be found at Immunization of Healthcare Personnel: Recommendations of the Advisory Committee on Immunization Practices (ACIP) (https://www.cdc.gov/mmwr/pdf/rr/rr6007.pdf).Tdap Vaccine Recommendations [2011]: Update: Current recommendations can be found at CDC Tdap / Td ACIP Vaccine Recommendations (https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/tdap-td.html).Suggested citation: Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee, 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings https://www.cdc.gov/infectioncontrol/guidelines/isolation/isolation-guidelines.pdfSupersededHICPACPrevention and ControlInfectious Diseas

    Emerging infectious diseases

    Get PDF
    Emerging Infectious Diseases is providing access to these abstracts on behalf of the ICEID 2008 program committee, which performed peer review. Emerging Infectious Diseases has not edited or proofread these materials and is not responsible for inaccuracies or omissions. All information is subject to change.Comments and corrections should be brought to the attention of the authors.Slide Sessions -- Foodborne & waterborne diseases I -- Influenza I -- Surveillance: International -- Zoonotic & animal diseases I -- Methicillin-resistant stapylococcal infections -- Vectorborne diseases -- Foodborne & waterborne diseases II -- Influenza II -- Surveillance: Domestic -- Zoonotic & animal diseases II -- Noscomial infections -- Respiratory diseases -- Health communications -- Blood, organ, & tissue safety -- Tropical diseases -- New rapid diagnostics -- Mobile populations & infectious diseases -- Vaccine-preventable diseases -- Tuberculosis -- Sexually transmitted diseases -- -- Poster Abstracts -- Vaccines & vaccine-preventable diseases -- Antimicrobial resistance -- Climate changes -- Foodborne & waterborne infections -- Health communication -- Infectious causes of chronic diseases -- Influenza -- New or rapid diagnostics -- Nosocomial infections -- Outbreak investigation: Lab & epi response -- Sexually transmitted diseases -- Surveillance: International & new strategies -- Travelers' health & disease importation -- Tropical infections & parasitic diseases -- Vector-borne diseases -- Women, gender, sexual minorities & infectious diseases -- Zoonotic & animal diseases -- Vaccines & vaccine-preventable diseases -- Antimicrobial resistance -- Emerging aspects of HIV -- Foodborne & waterborne infections -- Health communication -- Molecular epidemiology -- Outbreak investigation: Lab & epi response -- Poverty & infectious diseases -- Surveillance: International & new strategies -- Tropical infections & parasitic diseases -- Vector-borne diseases -- Zoonotic & animal diseases -- Vaccines & vaccine-preventable diseases -- Antimicrobial resistance -- Blood, organ, & other tissue safety -- Foodborne & waterborne infections -- Host & microbial genetics -- Influenza -- Molecular epidemiology -- New or rapid diagnostics -- Outbreak investigation: Lab & epi response -- Prevention effectiveness, cost effectiveness, & cost studies -- Surveillance: International & new strategies -- Vector-borne diseases -- Zoonotic & animal diseases -- Vaccines & vaccine-preventable diseases -- Antimicrobial resistance -- Bioterrorism preparedness -- Emerging opportunistic infections -- Foodborne & waterborne infections -- Healthcare worker safety -- Influenza -- Laboratory proficiency testing/quality assurance -- Modeling -- Nosocomial infections -- Outbreak investigation: Lab & epi response -- Vector-borne diseases -- Viral hepatitis -- Zoonotic & animal diseases -- Vaccines & vaccine-preventable diseases -- Antimicrobial resistance -- Emerging opportunistic infections -- Foodborne & waterborne infections -- Influenza -- New or rapid diagnostics -- Nosocomial infections -- Outbreak investigation: Lab & epi response -- Social determinants of infectious disease disparities -- Surveillance: International & new strategies -- Tuberculosis -- Vector-borne diseases -- Zoonotic & animal diseases -- -- Additional Poster Abstracts.Abstracts published in advance of the conference

    Guideline for isolation precautions preventing transmission of infectious agents in healthcare settings, 2007

    Get PDF
    Jane D. Siegel, Emily Rhinehart, Marguerite Jackson, Linda Chiarello; the Healthcare Infection Control Practices Advisory Committee.The Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings 2007 updates and expands the 1996 Guideline for Isolation Precautions in Hospitals. The following developments led to revision of the 1996 guideline: 1. The transition of healthcare delivery from primarily acute care hospitals to other healthcare settings (e.g., home care, ambulatory care, free-standing specialty care sites, long-term care) created a need for recommendations that can be applied in all healthcare settings using common principles of infection control practice, yet can be modified to reflect setting-specific needs. Accordingly, the revised guideline addresses the spectrum of healthcare delivery settings. Furthermore, the term \u201cnosocomial infections\u201c is replaced by \u201chealthcare associated infections\u201d (HAIs) to reflect the changing patterns in healthcare delivery and difficulty in determining the geographic site of exposure to an infectious agent and/or acquisition of infection. 2. The emergence of new pathogens (e.g., SARS-CoV associated with the severe acute respiratory syndrome [SARS], Avian influenza in humans), renewed concern for evolving known pathogens (e.g., C. difficile, noroviruses, community-associated MRSA [CA-MRSA]), development of new therapies (e.g., gene therapy), and increasing concern for the threat of bioweapons attacks, established a need to address a broader scope of issues than in previous isolation guidelines. 3. The successful experience with Standard Precautions, first recommended in the 1996 guideline, has led to a reaffirmation of this approach as the foundation for preventing transmission of infectious agents in all healthcare settings. New additions to the recommendations for Standard Precautions are Respiratory Hygiene/Cough Etiquette and safe injection practices, including the use of a mask when performing certain high-risk, prolonged procedures involving spinal canal punctures (e.g., myelography, epidural anesthesia). The need for a recommendation for Respiratory Hygiene/Cough Etiquette grew out of observations during the SARS outbreaks where failure to implement simple source control measures with patients, visitors, and healthcare personnel with respiratory symptoms may have contributed to SARS coronavirus (SARS-CoV) transmission. The recommended practices have a strong evidence base. The continued occurrence of outbreaks of hepatitis B and hepatitis C viruses in ambulatory settings indicated a need to re-iterate safe injection practice recommendations as part of Standard Precautions. The addition of a mask for certain spinal injections grew from recent evidence of an associated risk for developing meningitis caused by respiratory flora. 4. The accumulated evidence that environmental controls decrease the risk of life-threatening fungal infections in the most severely immunocompromised patients (allogeneic hematopoietic stem-cell transplant patients) led to the update on the components of the Protective Environment (PE). 5. Evidence that organizational characteristics (e.g., nurse staffing levels and composition, establishment of a safety culture) influence healthcare personnel adherence to recommended infection control practices, and therefore are important factors in preventing transmission of infectious agents, led to a new emphasis and recommendations for administrative involvement in the development and support of infection control programs. 6. Continued increase in the incidence of HAIs caused by multidrug-resistant organisms (MDROs) in all healthcare settings and the expanded body of knowledge concerning prevention of transmission of MDROs created a need for more specific recommendations for surveillance and control of these pathogens that would be practical and effective in various types of healthcare settings.This document is intended for use by infection control staff, healthcare epidemiologists, healthcare administrators, nurses, other healthcare providers, and persons responsible for developing, implementing, and evaluating infection control programs for healthcare settings across the continuum of care. The reader is referred to other guidelines and websites for more detailed information and for recommendations concerning specialized infection control problems.Siegel JD, Rhinehart E, Jackson M, Chiarello L, and the Healthcare Infection Control Practices Advisory Committee, 2007 Guideline for Isolation Precautions: Preventing Transmission of Infectious Agents in Healthcare Settings, June 2007.Infectious DiseasePrevention and ControlSupersededHICPACEBeltrami/JHageman\u200eMarch \u200e26, \u200e2014
    • …
    corecore