93 research outputs found

    Neuroanatomical Correlates of Developmental Dyscalculia: Combined Evidence from Morphometry and Tractography

    Get PDF
    Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD), a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI) to examine macro- and micro-structural impairments in 7- to 9-year-old children with DD, compared to a group of typically developing (TD) children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM) revealed reduced grey matter (GM) bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM) volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA) in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD

    Brain activity during a visuospatial working memory task predicts arithmetical performance 2 years later

    Get PDF
    Visuospatial working memory (WM) capacity is highly correlated with mathematical reasoning abilities and can predict future development of arithmetical performance. Activity in the intraparietal sulcus (IPS) during visuospatial WM tasks correlates with interindividual differences in WM capacity. This region has also been implicated in numerical representation, and its structure and activity reflect arithmetical performance impairments (e.g., dyscalculia). We collected behavioral (N = 246) and neuroimaging data (N = 46) in a longitudinal sample to test whether IPS activity during a visuospatial WM task could provide more information than psychological testing alone and predict arithmetical performance 2 years later in healthy participants aged 6–16 years. Nonverbal reasoning and verbal and visuospatial WM measures were found to be independent predictors of arithmetical outcome. In addition, WM activation in the left IPS predicted arithmetical outcome independently of behavioral measures. A logistic model including both behavioral and imaging data showed improved sensitivity by correctly classifying more than twice as many children as poor arithmetical performers after 2 years than a model with behavioral measures only. These results demonstrate that neuroimaging data can provide useful information in addition to behavioral assessments and be used to improve the identification of individuals at risk of future low academic performance

    Changes in the superior longitudinal fasciculus and anterior thalamic radiation in the left brain are associated with developmental dyscalculia

    Get PDF
    Developmental dyscalculia is a neurodevelopmental disorder specific to arithmetic learning even with normal intelligence and age-appropriate education. Difficulties often persist from childhood through adulthood lowering the individual’s quality of life. However, the neural correlates of developmental dyscalculia are poorly understood. This study aimed to identify brain structural connectivity alterations in developmental dyscalculia. All participants were recruited from a large scale, non-referred population sample in a longitudinal design. We studied 10 children with developmental dyscalculia (11.3 ± 0.7 years) and 16 typically developing peers (11.2 ± 0.6 years) using diffusion-weighted magnetic resonance imaging. We assessed white matter microstructure with tract-based spatial statistics in regions-of-interest tracts that had previously been related to math ability in children. Then we used global probabilistic tractography for the first time to measure and compare tract length between developmental dyscalculia and typically developing groups. The high angular resolution diffusion-weighted magnetic resonance imaging and crossing-fiber probabilistic tractography allowed us to evaluate the length of the pathways compared to previous studies. The major findings of our study were reduced white matter coherence and shorter tract length of the left superior longitudinal/arcuate fasciculus and left anterior thalamic radiation in the developmental dyscalculia group. Furthermore, the lower white matter coherence and shorter pathways tended to be associated with the lower math performance. These results from the regional analyses indicate that learning, memory and language-related pathways in the left hemisphere might be related to developmental dyscalculia in children

    Number Sense in Siblings of Children with Mathematical Learning Disabilities: A Longitudinal Study

    Get PDF
    Number sense, counting and logical thinking were assessed in 14 siblings of children with Mathematical Learning Disabilities (MLD) and in 41 age matched children without family members with MLD. The children were tested in kindergarten and followed up in grade 1. A 0-100 number line estimation paradigm with three formats (Arabic digits, dots and number) was used as a measure of number sense. Results reveal that siblings of children with MLD are less proficient in number line placements compared to non-siblings, with both groups having a logarithmic representation in kindergarten and grade 1. Siblings also differ from non siblings on procedural and conceptual counting knowledge and logical thinking in kindergarten. In addition, our findings suggest that nnumber line estimation in kindergarten is especially predictive for untimed procedural calculation performances in grade 1, whereas procedural counting knowledge is related to timed fact retrieval skills in grade 1. Our findings also reveal that MLD had a familial aggregation. Clinical siblings especially differ from non-clinical siblings on the estimation with Arabic numbers (in kindergarten and grade 1) and number words (in grade 1), pointing to the fact that especially symbolic number line estimation tasks on a 0-100 scale can be used as screeners for MLD. Implications for the understanding and diagnosis of MLD are discussed

    Brain Correlates of Mathematical Competence in Processing Mathematical Representations

    Get PDF
    The ability to extract numerical information from different representation formats (e.g., equations, tables, or diagrams) is a key component of mathematical competence but little is known about its neural correlate. Previous studies comparing mathematically less and more competent adults have focused on mental arithmetic and reported differences in left angular gyrus (AG) activity which were interpreted to reflect differential reliance on arithmetic fact retrieval during problem solving. The aim of the present functional magnetic resonance imaging study was to investigate the brain correlates of mathematical competence in a task requiring the processing of typical mathematical representations. Twenty-eight adults of lower and higher mathematical competence worked on a representation matching task in which they had to evaluate whether the numerical information of a symbolic equation matches that of a bar chart. Two task conditions without and one condition with arithmetic demands were administered. Both competence groups performed equally well in the non-arithmetic conditions and only differed in accuracy in the condition requiring calculation. Activation contrasts between the groups revealed consistently stronger left AG activation in the more competent individuals across all three task conditions. The finding of competence-related activation differences independently of arithmetic demands suggests that more and less competent individuals differ in a cognitive process other than arithmetic fact retrieval. Specifically, it is argued that the stronger left AG activity in the more competent adults may reflect their higher proficiency in processing mathematical symbols. Moreover, the study demonstrates competence-related parietal activation differences that were not accompanied by differential experimental performance

    Parietal dysfunction in children with prenatal alcohol exposure

    Get PDF
    The parietal lobe has been shown to be one of the regions most affected by prenatal alcohol exposure. Functional domains dependent on intact parietal functioning, including mathematical and visuospatial ability, have been consistently implicated in fetal alcohol spectrum disorders. This thesis examines, in children, using blood oxygenation level dependent (BOLD) functional Magnetic Resonance Imaging, the effect of prenatal alcohol exposure on brain activation during symbolic and nonsymbolic number processing, and place learning in a virtual environment. These functional domains were investigated using tasks of proximity judgment and exact addition to assess neural correlates of symbolic number processing in 65 children (mean age ± SD = 9.45 ± 0.42 years), nonsymbolic number comparison at varying difficulties in 34 children (11.55 ± 1.15 years), and place learning in a virtual reality computer generated (CG) arena in 57 children (9.44 ± 0.42 years; 29 boys). In the symbolic number processing tasks greater prenatal alcohol exposure was related to less activation in the right horizontal intraparietal sulcus known to mediate mental representation and manipulation of quantity. Children with fetal alcohol syndrome and partial fetal alcohol syndrome appeared to compensate for this deficit by increased activation of the left angular gyrus during the proximity judgment task. Syndromal children with fetal alcohol syndrome or partial fetal alcohol syndrome also demonstrated poor recruitment of the right horizontal intraparietal sulcus during nonsymbolic number comparison, indicating that mental representation and manipulation of quantity are impaired in children with heavy prenatal alcohol exposure, irrespective of the representation format used. This impairment was compensated for by the left angular gyrus, with only exposed children needing to recruit the left angular gyrus to a greater extent as number comparison task difficulty increased. Further, reduced activation of the right posterior superior parietal lobule in children with increasing prenatal alcohol exposure suggests that exposed children may be less able to employ the attentional systems associated with number processing. Notably, activation of nonsyndromal heavily exposed children was impaired in the right posterior superior parietal lobule, but spared in the right horizontal intraparietal sulcus. In boys only, prenatal alcohol exposure was associated with poorer place learning and reduced activation during place learning in the precuneus and posterior cingulate, as well as parahippocampal gyrus, frontal and temporal lobes, caudate, insula, claustrum, lentiform nucleus and thalamus. In girls, prenatal alcohol exposure was not associated with place learning performance or activation during place learning in any regions. These results confirm that boys and girls use different navigation strategies that rely on different brain regions and suggest that the regions used by boys are more susceptible to alcohol damage, while the regions used by girls are relatively spared. In conclusion, all the tasks investigated showed prenatal alcohol exposure related alterations in parietal function, with the impairments being widespread throughout the parietal lobe bilaterally. Notably, activation of the bilateral precuneus was affected by prenatal alcohol exposure in both the spatial navigation and nonsymbolic number comparison tasks. It is possible that this is a key region linking the deficits in number processing and visuospatial skills in children with prenatal alcohol exposure

    Reduced 2D form coherence and 3D structure from motion sensitivity in developmental dyscalculia

    Get PDF
    Developmental dyscalculia (DD) is a specific learning disability affecting the development of numerical and arithmetical skills. The origin of DD is typically attributed to the suboptimal functioning of key regions within the dorsal visual stream (parietal cortex) which support numerical cognition. While DD individuals are often impaired in visual numerosity perception, the extent to which they also show a wider range of visual dysfunctions is poorly documented. In the current study we measured sensitivity to global motion (translational and flow), 2D static form (Glass patterns) and 3D structure from motion in adults with DD and control subjects. While sensitivity to global motion was comparable across groups, thresholds for static form and structure from motion were higher in the DD compared to the control group, irrespective of associated reading impairments. Glass pattern sensitivity predicted numerical abilities, and this relation could not be explained by recently reported differences in visual crowding. Since global form sensitivity has often been considered an index of ventral stream function, our findings could indicate a cortical dysfunction extending beyond the dorsal visual stream. Alternatively, they would fit with a role of parietal cortex in form perception under challenging conditions requiring multiple element integration
    corecore