98 research outputs found

    Improved Earth Oblateness Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise

    Get PDF
    Satellite laser ranging (SLR) observations are routinely applied toward the estimation of dynamic oblateness, C(sub 20), which is the largest globally integrated component of Earth's time-variable gravity field. Since 2002, GRACE and GRACE Follow-On have revolutionized the recovery of higher spatial resolution features of global time-variable gravity, with SLR continuing to provide the most reliable estimates of C (sub 20).We quantify the effect of various SLR processing strategies on estimating C(sub 20) and demonstrate better signal recovery with the inclusion of GRACE-derived low-degree gravity information in the forward model. This improved SLR product modifies the Antarctic and Greenland Ice Sheet mass trends by -15.4 and -3.5 Gt/year, respectively, as compared to CSR TN11, and improves global mean sea level budget closure by modifying sea level rise by +0.08 mm/year. We recommend that this new C(sub 20) product be applied to RL06 GRACE data products for enhanced accuracy and scientific interpretation

    The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation

    Get PDF
    The Ice, Cloud, and land Elevation Satellite (ICESat) mission used laser altimetry measurements to determine changes in elevations of glaciers and ice sheets, as well as sea ice thickness distribution. These measurements have provided important information on the response of the cryosphere (Earths frozen surfaces) to changes in atmosphere and ocean condition. ICESat operated from 2003-2009 and provided repeat altimetry measurements not only to the cryosphere scientific community but also to the ocean, terrestrial and atmospheric scientific communities. The conclusive assessment of significant ongoing rapid changes in the Earths ice cover, in part supported by ICESat observations, has strengthened the need for sustained, high accuracy, repeat observations similar to what was provided by the ICESat mission. Following recommendations from the National Research Council for an ICESat follow-on mission, the ICESat-2 mission is now under development for planned launch in 2018. The primary scientific aims of the ICESat-2 mission are to continue measurements of sea ice freeboard and ice sheet elevation to determine their changes at scales from outlet glaciers to the entire ice sheet, and from 10s of meters to the entire polar oceans for sea ice freeboard. ICESat carried a single beam profiling laser altimeter that produced approximately 70 m diameter footprints on the surface of the Earth at approximately 150 m along-track intervals. In contrast, ICESat-2 will operate with three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. Each of the beams will have a nominal 17 m diameter footprint with an along-track sampling interval of 0.7 m. The differences in the ICESat-2 measurement concept are a result of overcoming some limitations associated with the approach used in the ICESat mission. The beam pair configuration of ICESat-2 allows for the determination of local cross-track slope, a significant factor in measuring elevation change for the outlet glaciers surrounding the Greenland and Antarctica coasts. The multiple beam pairs also provide improved spatial coverage. The dense spatial sampling eliminates along-track measurement gaps, and the small footprint diameter is especially useful for sea surface height measurements in the often narrow leads needed for sea ice freeboard and ice thickness retrievals. The ICESat-2 instrumentation concept uses a low energy 532 nm (green) laser in conjunction with single-photon sensitive detectors to measure range. Combining ICESat-2 data with altimetry data collected since the start of the ICESat mission in 2003, such as Operation IceBridge and ESAs CryoSat-2, will yield a 15+ year record of changes in ice sheet elevation and sea ice thickness. ICESat-2 will also provide information of mountain glacier and ice cap elevations changes, land and vegetation heights, inland water elevations, sea surface heights, and cloud layering and optical thickness

    Earth observation for water resource management in Africa

    Get PDF

    Water Resources Management and Modeling

    Get PDF
    Hydrology is the science that deals with the processes governing the depletion and replenishment of water resources of the earth's land areas. The purpose of this book is to put together recent developments on hydrology and water resources engineering. First section covers surface water modeling and second section deals with groundwater modeling. The aim of this book is to focus attention on the management of surface water and groundwater resources. Meeting the challenges and the impact of climate change on water resources is also discussed in the book. Most chapters give insights into the interpretation of field information, development of models, the use of computational models based on analytical and numerical techniques, assessment of model performance and the use of these models for predictive purposes. It is written for the practicing professionals and students, mathematical modelers, hydrogeologists and water resources specialists

    Proceedings Of The 18th Annual Meeting Of The Asia Oceania Geosciences Society (Aogs 2021)

    Get PDF
    The 18th Annual Meeting of the Asia Oceania Geosciences Society (AOGS 2021) was held from 1st to 6th August 2021. This proceedings volume includes selected extended abstracts from a challenging array of presentations at this conference. The AOGS Annual Meeting is a leading venue for professional interaction among researchers and practitioners, covering diverse disciplines of geosciences

    Changement de masse des glaciers à l’échelle mondiale par analyse spatiotemporelle de modèles numériques de terrain

    Get PDF
    Les glaciers de la planète rétrécissent rapidement, et produisent des impacts qui s'étendent de la hausse du niveau de la mer et la modification des risques cryosphériques jusqu'au changement de disponibilité en eau douce. Malgré des avancées significatives durant l'ère satellitaire, l'observation des changements de masse des glaciers est encore entravée par une couverture partielle des estimations de télédétection, et par une faible contrainte sur les erreurs des évaluations associées. Dans cette thèse, nous présentons une estimation mondiale et résolue des changements de masse des glaciers basée sur l'analyse spatio-temporelle de modèles numériques de terrain. Nous développons d'abord des méthodes de statistiques spatio-temporelles pour évaluer l'exactitude et la précision des modèles numériques de terrain, et pour estimer des séries temporelles de l'altitude de surface des glaciers. En particulier, nous introduisons un cadre spatial non stationnaire pour estimer et propager des corrélations spatiales multi-échelles dans les incertitudes d'estimations géospatiales. Nous générons ensuite des modèles numériques de terrain massivement à partir de deux décennies d'archives d'images optiques stéréo couvrant les glaciers du monde entier. À partir de ceux-ci, nous estimons des séries temporelles d'altitude de surface pour tous les glaciers de la Terre à une résolution de 100,m sur la période 2000--2019. En intégrant ces séries temporelles en changements de volume et de masse, nous révélons une accélération significative de la perte de masse des glaciers à l'échelle mondiale, ainsi que des réponses régionalement distinctes qui reflètent des changements décennaux de conditions climatiques. En utilisant une grande quantité de données indépendantes et de haute précision, nous démontrons la validité de notre analyse pour produire des incertitudes robustes et cohérentes à différentes échelles de la structure spatio-temporelle de nos estimations. Nous espérons que nos méthodes favorisent des analyses spatio-temporelles robustes, en particulier pour identifier les sources de biais et d'incertitudes dans les études géospatiales. En outre, nous nous attendons à ce que nos estimations permettent de mieux comprendre les facteurs qui régissent le changement des glaciers et d'étendre nos capacités de prévision de ces changements à toutes échelles. Ces prédictions sont nécessaires à la conception de politiques adaptatives sur l'atténuation des impacts de la cryosphère dans le contexte du changement climatique.The world's glaciers are shrinking rapidly, with impacts ranging from global sea-level rise and changes in freshwater availability to the alteration of cryospheric hazards. Despite significant advances during the satellite era, the monitoring of the mass changes of glaciers is still hampered by a fragmented coverage of remote sensing estimations and a poor constraint of the errors in related assessments. In this thesis, we present a globally complete and resolved estimate of glacier mass changes by spatiotemporal analysis of digital elevation models. We first develop methods based on spatiotemporal statistics to assess the accuracy and precision of digital elevation models, and to estimate time series of glacier surface elevation. In particular, we introduce a non-stationary spatial framework to estimate and propagate multi-scale spatial correlations in uncertainties of geospatial estimates. We then massively generate digital elevation models from two decades of stereo optical archives covering glaciers worldwide. From those, we estimate time series of surface elevation for all of Earth's glaciers at a resolution of 100,m during 2000--2019. Integrating these time series into volume and mass changes, we identify a significant acceleration of global glacier mass loss, as well as regionally-contrasted responses that mirror decadal changes in climatic conditions. Using a large amount of independent, high-precision data, we demonstrate the validity of our analysis to yield robust and consistent uncertainties at different scales of the spatiotemporal structure of our estimates. We expect our methods to foster robust spatiotemporal analyses, in particular to identify sources of biases and uncertainties in geospatial assessments. Furthermore, we anticipate our estimates to advance the understanding of the drivers that govern glacier change, and to extend our capabilities of predicting these changes at all scales. Such predictions are critically needed to design adaptive policies on the mitigation of cryospheric impacts in the context of climate change
    • …
    corecore