93 research outputs found

    Deep Learning Based Models for Offline Gurmukhi Handwritten Character and Numeral Recognition

    Get PDF
    Over the last few years, several researchers have worked on handwritten character recognition and have proposed various techniques to improve the performance of Indic and non-Indic scripts recognition. Here, a Deep Convolutional Neural Network has been proposed that learns deep features for offline Gurmukhi handwritten character and numeral recognition (HCNR). The proposed network works efficiently for training as well as testing and exhibits a good recognition performance. Two primary datasets comprising of offline handwritten Gurmukhi characters and Gurmukhi numerals have been employed in the present work. The testing accuracies achieved using the proposed network is 98.5% for characters and 98.6% for numerals

    Does color modalities affect handwriting recognition? An empirical study on Persian handwritings using convolutional neural networks

    Full text link
    Most of the methods on handwritten recognition in the literature are focused and evaluated on Black and White (BW) image databases. In this paper we try to answer a fundamental question in document recognition. Using Convolutional Neural Networks (CNNs), as eye simulator, we investigate to see whether color modalities of handwritten digits and words affect their recognition accuracy or speed? To the best of our knowledge, so far this question has not been answered due to the lack of handwritten databases that have all three color modalities of handwritings. To answer this question, we selected 13,330 isolated digits and 62,500 words from a novel Persian handwritten database, which have three different color modalities and are unique in term of size and variety. Our selected datasets are divided into training, validation, and testing sets. Afterwards, similar conventional CNN models are trained with the training samples. While the experimental results on the testing set show that CNN on the BW digit and word images has a higher performance compared to the other two color modalities, in general there are no significant differences for network accuracy in different color modalities. Also, comparisons of training times in three color modalities show that recognition of handwritten digits and words in BW images using CNN is much more efficient

    An Online Numeral Recognition System Using Improved Structural Features – A Unified Method for Handwritten Arabic and Persian Numerals

    Get PDF
    With the advances in machine learning techniques, handwritten recognition systems also gained importance. Though digit recognition techniques have been established for online handwritten numerals, an optimized technique that is writer independent is still an open area of research. In this paper, we propose an enhanced unified method for the recognition of handwritten Arabic and Persian numerals using improved structural features. A total of 37 structural based features are extracted and Random Forest classifier is used to classify the numerals based on the extracted features. The results of the proposed approach are compared with other classifiers including Support Vector Machine (SVM), Multilayer Perceptron (MLP) and K-Nearest Neighbors (KNN). Four different well-known Arabic and Persian databases are used to validate the proposed method. The obtained average 96.15% accuracy in recognition of handwritten digits shows that the proposed method is more efficient and produces better results as compared to other techniques

    Recognition of off-line handwritten cursive text

    Get PDF
    The author presents novel algorithms to design unconstrained handwriting recognition systems organized in three parts: In Part One, novel algorithms are presented for processing of Arabic text prior to recognition. Algorithms are described to convert a thinned image of a stroke to a straight line approximation. Novel heuristic algorithms and novel theorems are presented to determine start and end vertices of an off-line image of a stroke. A straight line approximation of an off-line stroke is converted to a one-dimensional representation by a novel algorithm which aims to recover the original sequence of writing. The resulting ordering of the stroke segments is a suitable preprocessed representation for subsequent handwriting recognition algorithms as it helps to segment the stroke. The algorithm was tested against one data set of isolated handwritten characters and another data set of cursive handwriting, each provided by 20 subjects, and has been 91.9% and 91.8% successful for these two data sets, respectively. In Part Two, an entirely novel fuzzy set-sequential machine character recognition system is presented. Fuzzy sequential machines are defined to work as recognizers of handwritten strokes. An algorithm to obtain a deterministic fuzzy sequential machine from a stroke representation, that is capable of recognizing that stroke and its variants, is presented. An algorithm is developed to merge two fuzzy machines into one machine. The learning algorithm is a combination of many described algorithms. The system was tested against isolated handwritten characters provided by 20 subjects resulting in 95.8% recognition rate which is encouraging and shows that the system is highly flexible in dealing with shape and size variations. In Part Three, also an entirely novel text recognition system, capable of recognizing off-line handwritten Arabic cursive text having a high variability is presented. This system is an extension of the above recognition system. Tokens are extracted from a onedimensional representation of a stroke. Fuzzy sequential machines are defined to work as recognizers of tokens. It is shown how to obtain a deterministic fuzzy sequential machine from a token representation that is capable'of recognizing that token and its variants. An algorithm for token learning is presented. The tokens of a stroke are re-combined to meaningful strings of tokens. Algorithms to recognize and learn token strings are described. The. recognition stage uses algorithms of the learning stage. The process of extracting the best set of basic shapes which represent the best set of token strings that constitute an unknown stroke is described. A method is developed to extract lines from pages of handwritten text, arrange main strokes of extracted lines in the same order as they were written, and present secondary strokes to main strokes. Presented secondary strokes are combined with basic shapes to obtain the final characters by formulating and solving assignment problems for this purpose. Some secondary strokes which remain unassigned are individually manipulated. The system was tested against the handwritings of 20 subjects yielding overall subword and character recognition rates of 55.4% and 51.1%, respectively

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject
    • …
    corecore