23,760 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Optimal Caching and Routing in Hybrid Networks

    Full text link
    Hybrid networks consisting of MANET nodes and cellular infrastructure have been recently proposed to improve the performance of military networks. Prior work has demonstrated the benefits of in-network content caching in a wired, Internet context. We investigate the problem of developing optimal routing and caching policies in a hybrid network supporting in-network caching with the goal of minimizing overall content-access delay. Here, needed content may always be accessed at a back-end server via the cellular infrastructure; alternatively, content may also be accessed via cache-equipped "cluster" nodes within the MANET. To access content, MANET nodes must thus decide whether to route to in-MANET cluster nodes or to back-end servers via the cellular infrastructure; the in-MANET cluster nodes must additionally decide which content to cache. We model the cellular path as either i) a congestion-insensitive fixed-delay path or ii) a congestion-sensitive path modeled as an M/M/1 queue. We demonstrate that under the assumption of stationary, independent requests, it is optimal to adopt static caching (i.e., to keep a cache's content fixed over time) based on content popularity. We also show that it is optimal to route to in-MANET caches for content cached there, but to route requests for remaining content via the cellular infrastructure for the congestion-insensitive case and to split traffic between the in-MANET caches and cellular infrastructure for the congestion-sensitive case. We develop a simple distributed algorithm for the joint routing/caching problem and demonstrate its efficacy via simulation.Comment: submitted to Milcom 201

    A Survey of Network Optimization Techniques for Traffic Engineering

    Get PDF
    TCP/IP represents the reference standard for the implementation of interoperable communication networks. Nevertheless, the layering principle at the basis of interoperability severely limits the performance of data communication networks, thus requiring proper configuration and management in order to provide effective management of traffic flows. This paper presents a brief survey related to network optimization using Traffic Engineering algorithms, aiming at providing additional insight to the different alternatives available in the scientific literature

    Optimized network structure and routing metric in wireless multihop ad hoc communication

    Full text link
    Inspired by the Statistical Physics of complex networks, wireless multihop ad hoc communication networks are considered in abstracted form. Since such engineered networks are able to modify their structure via topology control, we search for optimized network structures, which maximize the end-to-end throughput performance. A modified version of betweenness centrality is introduced and shown to be very relevant for the respective modeling. The calculated optimized network structures lead to a significant increase of the end-to-end throughput. The discussion of the resulting structural properties reveals that it will be almost impossible to construct these optimized topologies in a technologically efficient distributive manner. However, the modified betweenness centrality also allows to propose a new routing metric for the end-to-end communication traffic. This approach leads to an even larger increase of throughput capacity and is easily implementable in a technologically relevant manner.Comment: 25 pages, v2: fixed one small typo in the 'authors' fiel

    Dimension-Based Subscription Pruning for Publish/Subscribe Systems

    Get PDF
    Subscription pruning has been proven as valuable routing optimization for Boolean subscriptions in publish/ subscribe systems. It aims at optimizing subscriptions independently of each other and is thus applicable for all kinds of subscriptions regardless of their individual and collective structures. The original subscription pruning approach tries to optimize the event routing process based on the expected increase in network load. However, a closer look at pruning-based routing reveals its further applicability to optimizations in respect to other dimensions. In this paper, we introduce and investigate subscription pruning based on three dimensions of optimization: network load, memory usage, and system throughput. We present the algorithms to perform prunings based on these dimensions and discuss the results of a series of practical experiments. Our analysis reveals the advantages and disadvantages of the different dimensions of optimization and allows conclusions about the suitability of dimension-based pruning for different application requirements
    • ā€¦
    corecore