
Dimension-Based Subscription Pruning for Publish/Subscribe Systems

Sven Bittner & Annika Hinze
Department of Computer Science

University of Waikato, Hamilton, New Zealand
{s.bittner, a.hinze}@cs.waikato.ac.nz

Abstract

Subscription pruning has been proven as valuable
routing optimization for Boolean subscriptions in pub-
lish/subscribe systems. It aims at optimizing subscriptions
independently of each other and is thus applicable for all
kinds of subscriptions regardless of their individual and col-
lective structures. The original subscription pruning ap-
proach tries to optimize the event routing process based on
the expected increase in network load. However, a closer
look at pruning-based routing reveals its further applica-
bility to optimizations in respect to other dimensions.

In this paper, we introduce and investigate subscrip-
tion pruning based on three dimensions of optimization:
network load, memory usage, and system throughput. We
present the algorithms to perform prunings based on these
dimensions and discuss the results of a series of practical
experiments. Our analysis reveals the advantages and dis-
advantages of the different dimensions of optimization and
allows conclusions about the suitability of dimension-based
pruning for different application requirements.

1. Introduction

One of the major challenges for distributed pub-
lish/subscribe (p/s) systems is to improve event routing.
To enhance the routing process, various optimizations have
been proposed. They range from subscription covering [13]
and subscription merging [12], which are suitable for con-
junctive subscriptions, to subscription pruning [4], having
an optimization potential for all kinds of Boolean subscrip-
tions. Whereas the former two optimizations make strong
assumptions on subscriptions, e.g., the existence of simi-
larities or other, more general relationships [5], subscrip-
tion pruning optimizes subscriptions independently of each
other. Thus, subscription pruning is a valuable routing opti-
mization applicable for general-purpose p/s systems [5].

Generally, we can optimize the routing load in p/s sys-

tems based on different dimensions (parameters). Accord-
ing to the chosen dimension, the event routing process is
improved in respect to this parameter. In this paper, we con-
sider optimizations on three important parameters affecting
distributed p/s systems: (i) network load created by event
routing, (ii) memory usage required for routing tables, and
(iii) event throughput achieved by the overall system. These
parameters determine scalability and efficiency of p/s sys-
tems, two of their major implementation concerns [10].

The original subscription pruning approach [4] bases its
optimization on the expected influence of optimized event
routing on network load (cf. Sect. 2.2). This is a suitable
solution to the optimization problem because the number
of additionally forwarded events (due to optimizing) affects
both network usage (and thus scalability) and throughput
(filtering on more messages). But we can conversely base
pruning on the other two dimensions (memory usage and
throughput). Each of these options targets different applica-
tion requirements and results in a distinctive system behav-
ior: Compared to the other optimizations, network-based
pruning causes the least increase in network load, memory-
based pruning shows the strongest reduction in routing table
sizes, and throughput-based pruning results in the most effi-
cient filtering. Thus, according to application requirements
we can choose the most suitable optimization. We are also
able to dynamically adjust our optimization based on cur-
rent system parameters, e.g., if the number of subscriptions
increases strongly, we use memory-based pruning; band-
width limitations suggest to apply network-based pruning.

In this paper, we present an investigation of subscription
pruning based on the three dimensions network load, mem-
ory usage, and system throughput. We start by giving back-
ground information on the utilized p/s model, the general
subscription pruning approach, and related optimizations in
Sect. 2. Section 3 introduces our three dimensions of opti-
mization, theoretically analyzes their effects on routing, and
proposes algorithms and heuristics to quantify these influ-
ences. Our practical experiments as well as their evaluation
is presented in Sect. 4. Finally, we conclude this paper and
present ideas for future work in Sect. 5.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29195775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Publish/subscribe and subscription pruning

In this section, we give background information on the
p/s model assumed in this paper (Sect. 2.1) and the general
subscription pruning approach (Sect. 2.2). We also analyze
related optimization approaches in Sect. 2.3.

2.1. Background on publish/subscribe

For this paper, we assume the attribute-value pair p/s
model: Each event message consists of a set of attribute-
value pairs presenting its content. A subscription sx is an
arbitrary Boolean filter expression; variables of this expres-
sion are referred to as predicates and specify conditions on
event messages in form of attribute-operator-value triples.
Subscriptions can be represented by a tree structure [2].

A p/s system filters all incoming event messages. When-
ever the Boolean filter expression of a subscription sx eval-
uates to true on an event message (i.e., sx is fulfilled by the
message/the event is matching sx), the respective subscriber
is notified. The filtering task is obtained by filtering algo-
rithms, e.g., [2] to directly filter on Boolean subscriptions.

A distributed p/s system consists of a network of bro-
kers [1]. Subscribers register subscriptions with one of
these brokers (referred to as local client and broker). We
assume acyclic broker connections; extensions to dynamic
reconfigurations and other topologies exist in literature [7,
14]. Brokers exchange information about subscriptions to
allow for the selective routing of events to relevant neigh-
bors (subscription forwarding [6]). To improve event rout-
ing, we can apply routing optimizations. These optimiza-
tions modify routing entries to improve the routing process.

2.2. Background on subscription pruning

Subscription pruning [4] works for arbitrary Boolean
subscriptions. It optimizes the event routing by considering
subscriptions independently of each other. The basic idea
of pruning is to generalize subscriptions sx, i.e., the pruned
subscription is fulfilled by a superset of the events fulfill-
ing sx. This generalization is obtained by removing parts
of the subscription tree. To ensure correct routing, prun-
ing is only applied to subscriptions from non-local clients.
These subscriptions are pruned to achieve an optimization;
the pruning order is determined by heuristics (Sect. 3), de-
ciding on the next pruning. Unsubscriptions do not require
a specialized handling compared to un-optimized routing.

Pruning a subscription influences various aspects of
event routing: Firstly, subscription trees become smaller
and thus routing entries require less memory. Secondly,
subscriptions become less complex resulting in more effi-
cient event filtering. Finally, a pruned subscription is ful-
filled by more event messages. Hence, the network load in-

creases and, in a distributed setting, neighbor brokers need
to filter on more messages (post-filtering). As long as the
number of additionally forwarded event messages remains
reasonably small, the overall throughput of a p/s system in-
creases. Thus, subscription pruning improves the efficiency
of event routing, decreases the sizes of routing tables, and
only slightly increases the network load for event routing.

Because subscription pruning affects all of the men-
tioned parameters, we are able to utilize this optimization
to influence these three dimensions to different degrees. We
will show how to achieve this behavior in Sect. 3.

2.3. Other routing optimizations

The main drawback of other optimizations than pruning
is their restriction to conjunctive subscriptions1. Further-
more, these optimizations rely on relationships among sub-
scriptions. Thus, they are only applicable for restricted ap-
plications and lack the support for general-purpose systems.

Covering is an optimization exploiting the fact that some
subscriptions are more general than others, i.e., there exists
a subset relationship among their sets of fulfilling messages.
The covering optimization has been applied in various p/s
systems, e.g., PADRES [11], REBECA [13], SIENA [6],
and XROUTE [8]. They only support conjunctive subscrip-
tions. Systems computing coverings for Boolean subscrip-
tions are not described in literature. Because covering is
directly aligned with the mentioned subset relationship, it
does not allow for optimizations based on different dimen-
sions. We can use pruning as an extension of covering.

The other existing routing optimization is subscription
merging [9, 11, 13, 15], which tries to summarize several
subscriptions. Again, this optimization is restricted to con-
junctive subscriptions. Finding a merger satisfying given
conditions has been proven as NP-hard problem [9]. The
general challenges one has to face when applying merging
are when, what, and how to merge [11]. The answers to
these problems influence the optimization potential of sub-
scription merging, i.e., differing solutions might optimize
the routing load according to different dimensions. We can
use subscription pruning to solve the merging problem [5].

In the next section, we present how to utilize subscription
pruning for optimizations based on different dimensions.

3. Dimension-based subscription pruning

According to the requirements of applications, we
should optimize the routing load based on different dimen-
sions. In this paper, we consider optimizations based on net-
work load (Sect. 3.1), memory usage (Sect. 3.2), and system
throughput (Sect. 3.3). We show how to use our heuristics
for practical pruning in Sect. 3.4.

1Subscriptions in DNF, e.g., [7], do not eliminate this disadvantage.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

3.1. Network load: selectivity

Network-based subscription pruning aims at minimizing
the amount of additionally routed events. Thus, to decide
on the next pruning at any system time, we need to calcu-
late its effects on the network load. We generally choose to
prune the subscription that is supporting a pruning operation
whose pruning minimally increases the network load.

To quantify the influence on network load, we utilize
the selectivity of subscriptions sx. Using an estimation
sel≈(sx) instead of the actual selectivity sel(sx) allows its
time and space efficient calculation [4]. A suitable estima-
tion contains three values, the average selavg(sx), the min-
imal selmin(sx), and the maximal possible selmax(sx) se-
lectivity. To heuristically estimate the effects of a pruning
of subscription sx leading to sy , we calculate the maximum
of the differences of all three components of our estimation:

Δ≈
sel (sx, sy) = max(selmin(sy) − selmin(sx),

selavg(sy) − selavg(sx),
selmax(sy) − selmax(sx))

We call the result the estimated selectivity degradation
Δ≈

sel(sx, sy); it estimates the decrease in selectivity of a
pruned subscription. The actual degradation Δsel(sx, sy)
is situated between 0 and selmax(sy) − selmin(sx).

In practice, sx in Δ≈
sel(sx, sy) refers to the originally

registered subscription. Comparing to the unpruned sub-
scription sx, even after several prunings, is advantageous
because the overall selectivity degradation is incorporated
in our calculations. Otherwise, several small degradation
values as the result of subsequently pruning sx might appear
as a reasonable choice; however, adding them up reveals the
total degradation of sy . Our approach of choosing the un-
pruned subscription sx for calculations avoids this problem.

3.2. Memory usage: subscription size

Memory-based subscription pruning targets at decreas-
ing the sizes of routing tables as effect of the optimization.
Thus, we should always perform the pruning operation re-
sulting in the biggest reduction in memory usage.

Again, we use an estimation describing the change in the
memory requirements mem(sx) of a subscription sx. Our
memory estimation mem≈(sx) only considers the sizes of
subscriptions themselves. We heuristically estimate the im-
provement in respect to memory usage when pruning sx to
sy as the difference in the sizes of their subscription trees:

Δ≈
mem(sx, sy) = mem≈(sx) − mem≈(sy)

We refer to the result as the estimated memory improvement
Δ≈

mem(sx, sy); it directly describes the reduction in mem-
ory (in bytes) to store the pruned subscription tree. The

actual decrease in memory usage Δmem(sx, sy) is always
greater than our estimation because the sizes of all indexing
structures are reduced by pruning operations.

In contrast to network-based pruning, in Δ≈
mem(sx, sy),

sx refers to the subscription before it is pruned to sy . This
allows us to quantify the direct influence of each pruning
on routing tables. Using the unpruned subscription would
mean to consider prunings as worthwhile even if a strong
decrease in memory is only the result of an early pruning.
Incorporating the optimization of each step avoids this.

We are aware of the fact that we always experience the
strongest reduction in memory usage if we prune the largest
subtree of a subscription. Thus, we additionally restrict our
pruning algorithm (other restrictions can be found in [4]) to
consider a pruning of node n as valid if and only if there
exists no valid pruning in the subtree rooted in n.

3.3. Throughput: computation complexity

The purpose of throughput-based pruning is to increase
the filter efficiency when using this optimization. Thus,
throughput-based pruning has to consider the filtering algo-
rithm used within the system. This allows for the execution
of prunings based on their influence on filter efficiency.

Considering the non-canonical algorithm presented
in [2], we can heuristically derive filter efficiency by the
minimal number of fulfilled predicates pmin(sx) [2]. This
parameter describes the number of predicates that is re-
quired to lead to a fulfilled subscription sx. If it holds
pmin(sx) > pmin(sy), sx needs to be evaluated less fre-
quent than sy , assuming they share the same predicates.

So, we can heuristically estimate the improvement in re-
spect to throughput when pruning sx leading to sy as:

Δ≈
eff (sx, sy) = pmin(sy) − pmin(sx)

We name Δ≈
eff (sx, sy) the estimated throughput improve-

ment. Because we do not introduce new predicates when
pruning (we remove some of them), Δ≈

eff (sx, sy) > 0
means that we need to evaluate the pruned subscription
tree less frequent. Generally, the greater Δ≈

eff (sx, sy), the
rarer the pruned subscription is evaluated. Hence, filter-
ing becomes more efficient, which means a higher system
throughput.

As in network-based pruning, sx in Δ≈
eff (sx, sy) refers

to the originally registered subscription. This allows us to
incorporate the influence of all performed prunings into our
heuristic. Otherwise, a strong decrease in pmin(sx) would
only be regarded in one pruning operation; our heuristic,
conversely, considers this case in all subsequent prunings.

3.4. Practical dimension-based pruning

When optimizing by pruning, we always perform the
most effective pruning operation based on the currently

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

used dimension of optimization. Comparing the heuristic
ratings of two choices of pruning might not allow us to de-
cide on the more effective one. This happens if both choices
result in the same degradation/improvement in respect to the
applied optimization. To circumvent these cases, we should
refer to another dimension to decide on the most effective
pruning. The order of dimensions depends on current ap-
plication requirements. For our experiments, we use the
following orders of heuristics for our pruning options:

Network-based pruning: Δ≈
sel , Δ≈

eff , Δ≈
mem

Memory-based pruning: Δ≈
mem , Δ≈

sel , Δ≈
eff

Throughput-based pruning: Δ≈
eff , Δ≈

sel , Δ≈
mem

This procedure should allow for the determination of the
most effective of several pruning options. If all heuristics
show the same value, the chosen option is arbitrary.

We can determine the most effective pruning by utiliz-
ing a priority queue: Initially, we insert the most effective
pruning of each subscription into our queue. Using the de-
scribed orders of dimensions places the most effective prun-
ing on top: Δ≈

sel is ordered in a descending manner, Δ≈
eff

and Δ≈
mem in an ascending one. After performing the over-

all most effective pruning, the new most effective pruning of
the just optimized subscription is reinserted into the queue.

By using this scheme, we can apply routing optimiza-
tions step by step. Either we perform a specified num-
ber of optimizations, or we optimize until a given degrada-
tion/improvement is reached. In our experiments, presented
in the next section, we investigate the influence of perform-
ing different amounts of pruning operations in batch.

4. Experiments and evaluation

We now present an evaluation of a series of experiments
undertaken to analyze and compare subscription pruning
based on the three dimensions. In Sect. 4.1, we show our re-
sults and describe their illustration within this paper. Their
detailed discussion and analysis is presented in Sect. 4.2.

As application area, we have chosen an online-auction
scenario. Subscriptions conform to three classes typical for
online book auctions [4]. Event messages also follow the
characteristic distributions for these auctions [3]. We reg-
ister 200,000 subscriptions in our experiments. Our results
represent the average values for publishing 100,000 events.

We analyze a centralized and a distributed setting.
The former allows for conclusions about the effects of
dimension-based pruning in general. The latter setting
shows the effects on the distributed system; it involves five
brokers connected as a line. We analyze network load,
memory usage, and event throughput. In our experiments,
we use machines equipped with a 2 GHz processor and 512
MB of main memory, and connected by a 10 Mbps network.

4.1. Experimental results

We present our experimental results in Fig. 1. Abscissae
show the proportional number of performed prunings and
range from 0, describing the un-optimized situation, to 1,
i.e., any other pruning removes a complete subscription. We
always show the behaviors of our three heuristics, described
by the indexes of the labels of the shown curves.

Figures 1(a) and 1(d) show our results regarding time ef-
ficiency. The behavior in the centralized setting is depicted
in Fig. 1(a); Fig. 1(d) represents the distributed system. Or-
dinates show the average filtering time per event in seconds.

The expected network load (centralized) is illustrated in
Fig. 1(b). The ordinate describes the proportional number
of matching events. The actual load (distributed) is shown
in Fig. 1(e). There, the ordinate represents the proportional
increase in routed events compared to the un-optimized sit-
uation, i.e., 1.0 means a doubled number of event messages.

Figure 1(c) (central) and Fig. 1(f) (distributed) show the
behavior of our last parameter, memory usage. Ordinates
present the proportional decrease in predicate/subscription
associations; Fig. 1(c) considers all subscriptions, Fig. 1(f)
only those from non-local subscribers, e.g., 0.5 states that
the number of registered predicates is reduced by 50%.

4.2. Discussion of results

The intention of our heuristics is to achieve optimiza-
tions in respect to different parameters. We now want to in-
vestigate whether our heuristics influence the quantitatively
measured parameters to different degrees and whether these
behaviors align with our expectations (Sect. 1).

Analyzing the throughput in a single broker (Fig. 1(a)),
throughput-based pruning results in the most time efficient
filtering for up to 43% of all optimizations. Then, network-
based pruning shows a higher throughput, i.e., smaller fil-
tering times. Worst time efficiency is achieved by memory-
based pruning. These results align with our expectations
except of network-based pruning emerging as the most effi-
cient solution. This behavior results out of our throughput-
based heuristic: We consider pmin(sx) as the only factor
influencing throughput. But, the selectivity of predicates
does also have an effect: Pruning general predicates results
in less fulfilled predicates per subscription. This, in turn,
yields to less subscription evaluations. This pruning of little
selective predicates is obtained by network-based pruning.
After a certain amount of prunings this influence of selectiv-
ities becomes more worthwhile to consider than pmin(sx).

For the expected network load in the centralized set-
ting (Fig. 1(b)), the best results (least routed messages) are
achieved by the network-based followed by the throughput
and memory-based heuristics. In network-based pruning,
up to 75% of all prunings, the amount of messages increases

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Fi
lte

ri
ng

 ti
m

e
pe

r
ev

en
t i

n
se

c Timesel
Timeeff

Timemem

(a) Time efficiency (centralized).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Pr
op

or
t.

no
. o

f
m

at
ch

in
g

ev
en

ts Eventssel
Eventseff
Eventsmem

(b) Expected network load (centralized).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Pr
op

. r
ed

uc
tio

n
in

 p
re

d/
su

b
as

so
c.

Memorysel
Memoryeff
Memorymem

(c) Memory usage (centralized).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Fi
lte

ri
ng

 ti
m

e
pe

r
ev

en
t i

n
se

c

Timesel
Timeeff

Timemem

(d) Time efficiency (distributed).

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Pr
op

or
t.

in
cr

ea
se

 in
 n

et
w

or
k

lo
ad Networksel

Networkeff
Networkmem

(e) Actual network load (distributed).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

Proportional number of prunings

Pr
op

. r
ed

uc
tio

n
in

 p
re

d/
su

b
as

so
c.

Memorysel
Memoryeff
Memorymem

(f) Memory usage (distributed).

Figure 1. Time efficiency, network load, and memory usage in both settings.

only slightly. For throughput-based pruning, the sharp bend
in the curve occurs at 50% of prunings. The memory-based
optimization does not consider network load (approx. 5%).

For our last parameter, memory usage, memory-based
pruning shows the best results (cf. Fig. 1(c) and 1(f)). The
other two heuristics reveal nearly the same influence; net-
work is slightly more effective than throughput-based prun-
ing. However, the benefit of our memory-based optimiza-
tion is not that significant: Memory is reduced by at most
10% more than for the other heuristics. After 70% of prun-
ings, the reduction in memory using any heuristic is similar.
Though, memory-based pruning is advantageously to uti-
lize for unpruned subscriptions if the overall pruning goal
is to reduce memory usage by little pruning operations. The
influence of all heuristics on memory usage is similar in the
centralized (Fig. 1(c)) and the distributed (Fig. 1(f)) setting.

The throughput in the distributed system is not only in-
fluenced by the registered subscriptions but also by addi-
tionally routed and post-filtered messages. This is reflected
in our time efficiency measurements (Fig. 1(d)): The over-
all best filter efficiency is achieved by our network-based
heuristic (4.2 ms per message). For throughput-based prun-
ing, it is 6.5 ms (network-based filters 35% faster). Look-
ing at the overall behavior of these heuristics, we realize
a similar developing as in the centralized case: Initially,
throughput-based pruning results in the most efficient filter-
ing. After several prunings, network-based pruning shows

the highest throughput. The reason is again the inaccuracy
of our throughput-based heuristic. The difference between
network and throughput-based pruning is not as significant
as in the central setting because additionally routed events
need to be sent, received, and filtered in several brokers.
Memory-based pruning shows no throughput improvement.

The network load in the distributed setting (cf. Fig. 1(e))
performs as predicted: Network-based pruning only slightly
increases additionally routed messages. At 75% of all prun-
ings (sharp bend in the curve), the network load is increased
by 37%. For throughput-based pruning, the sharp bend oc-
curs at 50%. There, network utilization has grown by 26%;
for network-based pruning, at this point the load increased
by 10%. Memory-based pruning does not consider the net-
work utilization: The sharp bend already occurs at 5%.

Altogether, our experiments prove that all three heuris-
tics optimize according to their target dimension: Network-
based pruning affects the network load to the smallest ex-
tend. Additionally, it supports the largest number of pruning
operations (75% of all possible) without strongly increasing
the network load (increase by 37%). Memory-based prun-
ing results in the strongest decrease in routing table sizes.
It is especially useful for unpruned subscriptions; sizes of
routing tables are up to 10% smaller than for the other opti-
mizations after the same amount of prunings. Throughput-
based pruning results in the highest filter efficiency by re-
quiring the smallest number of prunings, when applied to

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

unpruned subscriptions (18% higher after 35% of prunings).
However, for the distributed setting network-based prun-

ing is the best dimension of optimization. This is due to
the strong impact of additionally routed events on system
throughput: Even if filtering in a single broker is more effi-
cient, the overall throughput might degrade. Thus, network-
based pruning achieves the best overall result regarding
efficiency with an improvement of 53% compared to un-
optimized routing. At the same time, network load in-
creases by only 37% and memory usage is reduced by 67%.

The reduction in space usage when applying memory-
based pruning is not as significant as expected. Due to the
strong decrease in throughput, using more space (and thus
less time) efficient algorithms might become a better choice.

5. Conclusion and future work

In this paper, we have investigated the behavior of event
routing in p/s systems when applying different approaches
of routing optimizations. For our analysis, we have identi-
fied three dimensions of parameters characterizing p/s sys-
tems: (i) network load created by event routing, (ii) memory
usage required for routing tables, and (iii) event throughput
achieved by the overall system. We have determined sub-
scription pruning as a routing optimization allowing for an
optimization based on these three dimensions.

To perform dimension-based pruning, we have devel-
oped heuristics estimating the effects of prunings on the re-
spective parameter. By applying these heuristics, we are
able to decide on the most effective pruning operation from
all registered subscriptions. This allows us to perform prun-
ings according to their influence on the three parameters.

We ran a series of experiments to analyze and compare
subscription pruning based on the three dimensions. We
have been able to show that network-based pruning causes
the least increase in network load, memory-based pruning
shows the strongest reduction in routing table sizes, and
throughput-based pruning results in the most efficient fil-
tering. However, the advantages of memory-based pruning
are not as significant as expected; memory usage is reduced
by at most 10% more than in our other optimizations. This
effect is only achieved when optimizing on unpruned sub-
scriptions. Also throughput-based pruning performs only
slightly better than our network-based optimization; this ef-
fect only holds up to around 35% of all possible prunings.

Network-based pruning achieves the overall best results:
Compared to un-optimized routing, it improves filter effi-
ciency by 53%, and, at the same time, it reduces the memory
requirements for routing tables by 67%. These beneficial
behavior increases the network load by only 37%. Hence,
when aiming at general-purpose p/s systems, network load
is the favorable dimension of optimization. Specialized sys-
tem, although, might optimize based on one of the other

dimensions to achieve their specific optimization goals.
In the future, we want to further improve our heuristic for

the network-based optimization. We also plan to investigate
the question of how to dynamically determine the number of
pruning operations leading to the best overall optimization.

References

[1] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An Efficient Multicast Protocol
for Content-based Publish-Subscribe Systems. In Proceed-
ings of ICDCS ’99, pages 262–272, USA, June 1999.

[2] S. Bittner and A. Hinze. A Detailed Investigation of Memory
Requirements for Publish/Subscribe Filtering Algorithms.
In Proceedings of CoopIS 2005, pages 148–165, Agia Napa,
Cyprus, October 31–November 4 2005.

[3] S. Bittner and A. Hinze. Event Distributions in Online Book
Auctions. Technical Report 03/2006, Comp. Sc. Depart-
ment, Waikato University, February 2006.

[4] S. Bittner and A. Hinze. Pruning Subscriptions in Dis-
tributed Publish/Subscribe Systems. In Proceedings of
ACSC 2006, Hobart, Australia, January 16–19 2006.

[5] S. Bittner and A. Hinze. Subscription Tree Pruning: A
Structure-Independent Routing Optimization for General-
Purpose Pub/Sub Systems. Technical Report 01/2006,
Comp. Sc. Department, Waikato University, January 2006.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[7] A. Carzaniga, M. J. Rutherford, and A. L. Wolf. A Routing
Scheme for Content-Based Networking. In Proceedings of
INFOCOM 2004, Hong Kong, China, March 7–11 2004.

[8] R. Chand and P. A. Felber. A Scalable Protocol for Content-
Based Routing in Overlay Networks. In Proceedings of
NCA 2003, pages 123–130, USA, April 16–18 2003.

[9] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Query
Merging: Improving Query Subscription Processing in a
Multicast Environment. IEEE TKDE, 15(1):174–191, 2003.

[10] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. In Proceedings of
SIGMOD 2001, pages 115–126, USA, May 2001.

[11] G. Li, S. Hou, and H.-A. Jacobsen. A Unified Approach to
Routing, Covering and Merging in Publish/Subscribe Sys-
tems based on Modified Binary Decision Diagrams. In Pro-
ceedings of ICDCS ’05, pages 447–457, USA, June 2005.

[12] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, TU Darmstadt, September 2002.

[13] G. Mühl and L. Fiege. Supporting Covering and Merg-
ing in Content-Based Publish/Subscribe Systems: Beyond
Name/Value Pairs. IEEE DSOnline, 2(7), 2001.

[14] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient Content-
Based Event Dispatching in the Presence of Topological Re-
configuration. In Proceedings of ICDCS ’03, pages 234–
243, Rhode Island, USA, May 19–22 2003.

[15] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das,
and P. Larson. Summary-based Routing for Content-based
Event Distribution Networks. ACM SIGCOMM Computer
Communication Review, 34(5):59–74, 2004.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

