376 research outputs found

    Optimized Performance Evaluation of LTE Hard Handover Algorithm with Average RSRP Constraint

    Full text link
    Hard handover mechanism is adopted to be used in 3GPP Long Term Evolution (3GPP LTE) in order to reduce the complexity of the LTE network architecture. This mechanism comes with degradation in system throughput as well as a higher system delay. This paper proposes a new handover algorithm known as LTE Hard Handover Algorithm with Average Received Signal Reference Power (RSRP) Constraint (LHHAARC) in order to minimize number of handovers and the system delay as well as maximize the system throughput. An optimized system performance of the LHHAARC is evaluated and compared with three well-known handover algorithms via computer simulation. The simulation results show that the LHHAARC outperforms three well-known handover algorithms by having less number of average handovers per UE per second, shorter total system delay whilst maintaining a higher total system throughput.Comment: 16 pages, 9 figures, International Journal of Wireless & Mobile Networks (IJWMN

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Low-complexity medium access control protocols for QoS support in third-generation radio access networks

    Get PDF
    One approach to maximizing the efficiency of medium access control (MAC) on the uplink in a future wideband code-division multiple-access (WCDMA)-based third-generation radio access network, and hence maximize spectral efficiency, is to employ a low-complexity distributed scheduling control approach. The maximization of spectral efficiency in third-generation radio access networks is complicated by the need to provide bandwidth-on-demand to diverse services characterized by diverse quality of service (QoS) requirements in an interference limited environment. However, the ability to exploit the full potential of resource allocation algorithms in third-generation radio access networks has been limited by the absence of a metric that captures the two-dimensional radio resource requirement, in terms of power and bandwidth, in the third-generation radio access network environment, where different users may have different signal-to-interference ratio requirements. This paper presents a novel resource metric as a solution to this fundamental problem. Also, a novel deadline-driven backoff procedure has been presented as the backoff scheme of the proposed distributed scheduling MAC protocols to enable the efficient support of services with QoS imposed delay constraints without the need for centralized scheduling. The main conclusion is that low-complexity distributed scheduling control strategies using overload avoidance/overload detection can be designed using the proposed resource metric to give near optimal performance and thus maintain a high spectral efficiency in third-generation radio access networks and that importantly overload detection is superior to overload avoidance

    Advanced mobile network monitoring and automated optimization methods

    Get PDF
    The operation of mobile networks is a complex task with the networks serving a large amount of subscribers with both voice and data services, containing extensive sets of elements, generating extensive amounts of measurement data and being controlled by a large amount of parameters. The objective of this thesis was to ease the operation of mobile networks by introducing advanced monitoring and automated optimization methods. In the monitoring domain the thesis introduced visualization and anomaly detection methods that were applied to detect intrusions, mal-functioning network elements and cluster network elements to do parameter optimization on network-element-cluster level. A key component in the monitoring methods was the Self-Organizing Map. In the automated optimization domain several rule-based Wideband CDMA radio access parameter optimization methods were introduced. The methods tackled automated optimization in areas such as admission control, handover control and mobile base station cell size setting. The results from test usage of the monitoring methods indicated good performance and simulations indicated that the automated optimization methods enable significant improvements in mobile network performance. The presented methods constitute promising feature candidates for the mobile network management system.reviewe

    Adaptive Beamforming and Adaptive Modulation-Assisted Network Performance of Multiuser Detection-Aided FDD and TDD CDMA Systems

    No full text
    The network performance of a frequency division duplex and time division duplex (TDD) code division multiple access (CDMA)-based system is investigated using system parameters similar to those of the Universal Mobile Telecommunication System. The new call blocking and call dropping probabilities, the probability of low-quality access, and the required average transmit power are quantified both with and without adaptive antenna arrays (AAAs), as well as when subjected to shadow fading. In some of the scenarios investigated, the system’s user capacity is doubled with the advent of adaptive antennas. The employment of adaptive modulation techniques in conjunction with AAAs resulted in further significant network capacity gains. This is particularly so in the context of TDD CDMA, where the system’s capacity becomes poor without adaptive antennas and adaptive modulation owing to the high base station (BS) to BS interference inflicted as a consequence of potentially using all time slots in both the uplink and downlink of the emerging wireless Internet. Index Terms—Adaptive beamforming, adaptive modulation, code division multiple access (CDMA) systems, Universal Mobile Telecommunication System Terrestrial Radio Access (UTRA), wireless network performance

    WCDMA in Malaysia

    Get PDF
    Wideband Code Division Multiple Access (WCDMA) A 3G highspeed digital data service provided by cellular carriers that use the time division multiplexing (TDMA) or GSM technology worldwide, including AT&T (formerly Cingular) and T-Mobile in the U.S. WCDMA works on WCDMA cell phones as well as laptops and portable devices with WCDMA modems [1]. Users have typically experienced downstream data rates up to 400 Kbps [1]. WCDMA has been used in the Japanese Freedom of Mobile Multimedia Access (FOMA) system and in the Universal Mobile Telecommunications System (UMTS); a third generation follow-on to the 2G GSM networks deployed worldwide [1]. Although TDMA and GSM carriers both use TDMA modulation, WCDMA stems from CDMA. Part of the 3GPP initiative, the International Telecommunication Union (ITU) refers to WCDMA as the Direct Sequence (DS) interface within the IMT-2000 global 3G standards [1]

    3G migration in Pakistan

    Get PDF
    The telecommunication industry in Pakistan has come a long way since the country\u27s independence in 1947. The initial era could be fairly termed as the PTCL (Pakistan Telecommunication Company Limited) monopoly, for it was the sole provider of all telecommunication services across the country. It was not until four decades later that the region embarked into the new world of wireless communication, hence ending the decades old PTCL monopoly. By the end of the late 1990\u27s, government support and international investment in the region opened new doors to innovation and better quality, low cost, healthy competition. Wireless licenses for the private sector in the telecommunication industry triggered a promising chain of events that resulted in a drastic change in the telecommunication infrastructure and service profile. The newly introduced wireless (GSM) technology received enormous support from all stakeholders (consumers, regulatory body, and market) and caused a vital boost in Pakistan\u27s economy. Numerous tangential elements had triggered this vital move in the history of telecommunications in Pakistan. Entrepreneurs intended to test the idea of global joint ventures in the East and hence the idea of international business became a reality. The technology had proven to be a great success in the West, while Pakistan\u27s telecom consumer had lived under the shadow of PTCL dominance for decades and needed more flexibility. At last the world was moving from wired to wireless! Analysts termed this move as the beginning of a new era. The investors, telecommunication businesses, and Pakistani treasury prospered. It was a win-win situation for all involved. The learning curve was steep for both operators and consumers but certainly improved over time. In essence, the principle of deploying the right technology in the right market at the right time led to this remarkable success. The industry today stands on the brink of a similar crossroads via transition from second generation to something beyond. With the partial success of 3G in Europe and the USA, the government has announced the release of three 3G licenses by mid 2009. This decision is not yet fully supported by all but still initiated parallel efforts by the operators and the vendors to integrate this next move into their existing infrastructure
    corecore