14,374 research outputs found

    Alarm-Based Prescriptive Process Monitoring

    Full text link
    Predictive process monitoring is concerned with the analysis of events produced during the execution of a process in order to predict the future state of ongoing cases thereof. Existing techniques in this field are able to predict, at each step of a case, the likelihood that the case will end up in an undesired outcome. These techniques, however, do not take into account what process workers may do with the generated predictions in order to decrease the likelihood of undesired outcomes. This paper proposes a framework for prescriptive process monitoring, which extends predictive process monitoring approaches with the concepts of alarms, interventions, compensations, and mitigation effects. The framework incorporates a parameterized cost model to assess the cost-benefit tradeoffs of applying prescriptive process monitoring in a given setting. The paper also outlines an approach to optimize the generation of alarms given a dataset and a set of cost model parameters. The proposed approach is empirically evaluated using a range of real-life event logs

    How markets slowly digest changes in supply and demand

    Full text link
    In this article we revisit the classic problem of tatonnement in price formation from a microstructure point of view, reviewing a recent body of theoretical and empirical work explaining how fluctuations in supply and demand are slowly incorporated into prices. Because revealed market liquidity is extremely low, large orders to buy or sell can only be traded incrementally, over periods of time as long as months. As a result order flow is a highly persistent long-memory process. Maintaining compatibility with market efficiency has profound consequences on price formation, on the dynamics of liquidity, and on the nature of impact. We review a body of theory that makes detailed quantitative predictions about the volume and time dependence of market impact, the bid-ask spread, order book dynamics, and volatility. Comparisons to data yield some encouraging successes. This framework suggests a novel interpretation of financial information, in which agents are at best only weakly informed and all have a similar and extremely noisy impact on prices. Most of the processed information appears to come from supply and demand itself, rather than from external news. The ideas reviewed here are relevant to market microstructure regulation, agent-based models, cost-optimal execution strategies, and understanding market ecologies.Comment: 111 pages, 24 figure

    Applied Data Science Approaches in FinTech: Innovative Models for Bitcoin Price Dynamics

    Get PDF
    Living in a data-intensive environment is a natural consequence to the continuous innovations and technological advancements, that created countless opportunities for addressing domain-specific challenges following the Data Science approach. The main objective of this thesis is to present applied Data Science approaches in FinTech, focusing on proposing innovative descriptive and predictive models for studying and exploring Bitcoin Price Dynamics and Bitcoin Price Prediction. With reference to the research area of Bitcoin Price Dynamics, two models are proposed. The first model is a Network Vector Autoregressive model that explains the dynamics of Bitcoin prices, based on a correlation network Vector Autoregressive process that models interconnections between Bitcoin prices from different exchange markets and classical assets prices. The empirical findings show that Bitcoin prices from different markets are highly interrelated, as in an efficiently integrated market, with prices from larger and/or more connected exchange markets driving other prices. The results confirm that Bitcoin prices are unrelated with classical market prices, thus, supporting the diversification benefit property of Bitcoin. The proposed model can predict Bitcoin prices with an error rate of about 11% of the average price. The second proposed model is a Hidden Markov Model that explains the observed time dynamics of Bitcoin prices from different exchange markets, by means of the latent time dynamics of a predefined number of hidden states, to model regime switches between different price vectors, going from "bear'' to "stable'' and "bear'' times. Structured with three hidden states and a diagonal variance-covariance matrix, the model proves that the first hidden state is concentrated in the initial time period where Bitcoin was relatively new and its prices were barely increasing, the second hidden state is mostly concentrated in a period where Bitcoin prices were steadily increasing, while the third hidden state is mostly concentrated in the last period where Bitcoin prices witnessed a high rate of volatility. Moreover, the model shows a good predictive performance when implemented on an out of sample dataset, compared to the same model structured with a full variance-covariance matrix. The third and final proposed model, falls within the area of Bitcoin Price Prediction. A Hybrid Hidden Markov Model and Genetic Algorithm Optimized Long Short Term Memory Network is proposed, aiming at predicting Bitcoin prices accurately, by introducing new features that are not usually considered in the literature. Moreover, to compare the performance of the proposed model to other models, a more traditional ARIMA model has been implemented, as well as a conventional Genetic Algorithm-optimized Long Short Term Memory Network. With a mean squared error of 33.888, a root mean squared error of 5.821 and a mean absolute error of 2.510, the proposed model achieves the lowest errors among all the implemented models, which proves its effectiveness in predicting Bitcoin prices

    Forecasting and policy making

    Get PDF
    This chapter investigates the use of economic forecasting in policy making. Forecasts are used in many policy areas to project the consequences of particular policy measures for policymakers’ targets. After reviewing some important forecasts of fiscal authorities and central banks, we proceed to focus on the role of forecasts in monetary policy. A formal framework serves to differentiate the role of forecasts in simple feedback rules versus optimal control policies. We then provide empirical evidence that central bank policies in the United States and the euro area are well described by interest rate rules responding to forecasts of inflation and economic activity rather than outcomes. Next, we provide a detailed exposition of methods for producing forecasts and the associated forecasting models. Practical applications with U.S. or euro area data are reported. Particular issues discussed include the use of economic structure in interpreting forecasts and the implementation of different conditioning assumptions regarding future policy that play a role in practice. We also compare the accuracy of model and expert forecasts and measure the degree of forecast heterogeneity. Finally, we utilize macroeconomic models to study the interaction of forecasting and policy by evaluating the performance and robustness of forecast versu
    corecore