4,190 research outputs found

    A Comparison of Nature Inspired Algorithms for Multi-threshold Image Segmentation

    Full text link
    In the field of image analysis, segmentation is one of the most important preprocessing steps. One way to achieve segmentation is by mean of threshold selection, where each pixel that belongs to a determined class islabeled according to the selected threshold, giving as a result pixel groups that share visual characteristics in the image. Several methods have been proposed in order to solve threshold selectionproblems; in this work, it is used the method based on the mixture of Gaussian functions to approximate the 1D histogram of a gray level image and whose parameters are calculated using three nature inspired algorithms (Particle Swarm Optimization, Artificial Bee Colony Optimization and Differential Evolution). Each Gaussian function approximates thehistogram, representing a pixel class and therefore a threshold point. Experimental results are shown, comparing in quantitative and qualitative fashion as well as the main advantages and drawbacks of each algorithm, applied to multi-threshold problem.Comment: 16 pages, this is a draft of the final version of the article sent to the Journa

    Closure in artificial cell signalling networks - investigating the emergence of cognition in collectively autocatalytic reaction networks

    Get PDF
    Cell Signalling Networks (CSNs) are complex biochemical networks responsible for the coordination of cellular activities in response to internal and external stimuli. We hypothesize that CSNs are subsets of collectively autocatalytic reaction networks. The signal processing or cognitive abilities of CSNs would originate from the closure properties of these systems. We investigate how Artificial CSNs, regarded as minimal cognitive systems, could emerge and evolve under this condition where closure may interact with evolution. To assist this research, we employ a multi-level concurrent Artificial Chemistry based on the Molecular Classifier Systems and the Holland broadcast language. A critical issue for the evolvability of such undirected and autonomous evolutionary systems is to identify the conditions that would ensure evolutionary stability. In this paper we present some key features of our system which permitted stable cooperation to occur between the different molecular species through evolution. Following this, we present an experiment in which we evolved a simple closed reaction network to accomplish a pre-specified task. In this experiment we show that the signal-processing ability (signal amplification) directly resulted from the evolved systems closure properties

    A multilevel evolutionary algorithm for optimizing numerical functions

    Get PDF
    This is a study on the effects of multilevel selection (MLS) theory in optimizing numerical functions. Based on this theory, a Multilevel Evolutionary Optimization algorithm (MLEO) is presented. In MLEO, a species is subdivided in cooperative populations and then each population is subdivided in groups, and evolution occurs at two levels so called individual and group levels. A fast population dynamics occurs at individual level. At this level, selection occurs among individuals of the same group. The popular genetic operators such as mutation and crossover are applied within groups. A slow population dynamics occurs at group level. At this level, selection happens among groups of a population. The group level operators such as regrouping, migration, and extinction-colonization are applied among groups. In regrouping process, all the groups are mixed together and then new groups are formed. The migration process encourages an individual to leave its own group and move to one of its neighbour groups. In extinction-colonization process, a group is selected as extinct, and replaced by offspring of a colonist group. In order to evaluate MLEO, the proposed algorithms were used for optimizing a set of well known numerical functions. The preliminary results indicate that the MLEO theory has positive effect on the evolutionary process and provide an efficient way for numerical optimization

    OPTIMUM MULTILEVEL THRESHOLDING HYBRID GA-PSO BY ALGORITHM

    Get PDF
    The conventional multilevel thresholding methods are efficient for bi-level thresholding. However, these methods are computationally very expensive for use in multilevel thresholding because the search of optimum threshold do in depth to optimize the objective function. To overcome these drawbacks, a hybrid method of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), called GA-PSO, based multilevel thresholding is presented in this paper. GA-PSO algorithm is used to find the optimal threshold value to maximize the objective function of the Otsu method. GA-PSO method proposed has been tested on five standard test images and compared with particle swarm optimization algorithm (PSO) and genetic algorithm (GA). The results showed the effectiveness in the search for optimal multilevel threshold of the proposed algorithm

    Image multi-level-thresholding with Mayfly optimization

    Get PDF
    Image thresholding is a well approved pre-processing methodology and enhancing the image information based on a chosen threshold is always preferred. This research implements the mayfly optimization algorithm (MOA) based image multi-level-thresholding on a class of benchmark images of dimension 512x512x1. The MOA is a novel methodology with the algorithm phases, such as; i) Initialization, ii) Exploration with male-mayfly (MM), iii) Exploration with female-mayfly (FM), iv) Offspring generation and, v) Termination. This algorithm implements a strict two-step search procedure, in which every Mayfly is forced to attain the global best solution. The proposed research considers the threshold value from 2 to 5 and the superiority of the result is confirmed by computing the essential Image quality measures (IQM). The performance of MOA is also compared and validated against the other procedures, such as particle-swarm-optimization (PSO), bacterial foraging optimization(BFO), firefly-algorithm(FA), bat algorithm (BA), cuckoo search(CS) and moth-flame optimization (MFO) and the attained p-value of Wilcoxon rank test confirmed the superiority of the MOA compared with other algorithms considered in this wor

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined
    corecore