1,688 research outputs found

    Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems

    Full text link
    Explicit Runge-Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretization on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge-Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.Comment: 37 pages, 3 pages of appendi

    Efficient Explicit Time Stepping of High Order Discontinuous Galerkin Schemes for Waves

    Full text link
    This work presents algorithms for the efficient implementation of discontinuous Galerkin methods with explicit time stepping for acoustic wave propagation on unstructured meshes of quadrilaterals or hexahedra. A crucial step towards efficiency is to evaluate operators in a matrix-free way with sum-factorization kernels. The method allows for general curved geometries and variable coefficients. Temporal discretization is carried out by low-storage explicit Runge-Kutta schemes and the arbitrary derivative (ADER) method. For ADER, we propose a flexible basis change approach that combines cheap face integrals with cell evaluation using collocated nodes and quadrature points. Additionally, a degree reduction for the optimized cell evaluation is presented to decrease the computational cost when evaluating higher order spatial derivatives as required in ADER time stepping. We analyze and compare the performance of state-of-the-art Runge-Kutta schemes and ADER time stepping with the proposed optimizations. ADER involves fewer operations and additionally reaches higher throughput by higher arithmetic intensities and hence decreases the required computational time significantly. Comparison of Runge-Kutta and ADER at their respective CFL stability limit renders ADER especially beneficial for higher orders when the Butcher barrier implies an overproportional amount of stages. Moreover, vector updates in explicit Runge--Kutta schemes are shown to take a substantial amount of the computational time due to their memory intensity

    Optimal stability polynomials for numerical integration of initial value problems

    Full text link
    We consider the problem of finding optimally stable polynomial approximations to the exponential for application to one-step integration of initial value ordinary and partial differential equations. The objective is to find the largest stable step size and corresponding method for a given problem when the spectrum of the initial value problem is known. The problem is expressed in terms of a general least deviation feasibility problem. Its solution is obtained by a new fast, accurate, and robust algorithm based on convex optimization techniques. Global convergence of the algorithm is proven in the case that the order of approximation is one and in the case that the spectrum encloses a starlike region. Examples demonstrate the effectiveness of the proposed algorithm even when these conditions are not satisfied

    REVIEW OF NUMERICAL SCHEMES AND BOUNDARY CONDITIONS APPLIED TO WAVE PROPAGATION PROBLEMS

    Get PDF
    As a review framework, the present study describes the application and performance of different numerical schemes for Computational Aeroacoustics (CAA) of simple wave propagation problems. The current approach aims to simulate pulse propagation on the near field by the use of different spatial and temporal numerical schemes for the full and Linearized Euler Equations (LEE) in a dimensional and dimensionless formulation. Comparisons of processing time, residual error and quality of results are present and discussed shedding light to the relevant parameters which play important role in aeroacoustics. The investigation is focused on different Gaussian pulse propagation cases in unbounded and bounded domains which is solved by using optimized spatial and temporal schemes for reducing dissipative and dispersive errors. The numerical results are compared with the exact analytical solutions when available, showing good agreement

    A fourier pseudospectral method for some computational aeroacoustics problems

    No full text
    A Fourier pseudospectral time-domain method is applied to wave propagation problems pertinent to computational aeroacoustics. The original algorithm of the Fourier pseudospectral time-domain method works for periodical problems without the interaction with physical boundaries. In this paper we develop a slip wall boundary condition, combined with buffer zone technique to solve some non-periodical problems. For a linear sound propagation problem whose governing equations could be transferred to ordinary differential equations in pseudospectral space, a new algorithm only requiring time stepping is developed and tested. For other wave propagation problems, the original algorithm has to be employed, and the developed slip wall boundary condition still works. The accuracy of the presented numerical algorithm is validated by benchmark problems, and the efficiency is assessed by comparing with high-order finite difference methods. It is indicated that the Fourier pseudospectral time-domain method, time stepping method, slip wall and absorbing boundary conditions combine together to form a fully-fledged computational algorithm
    • …
    corecore