5 research outputs found

    Fast and exact continuous collision detection with Bernstein sign classification

    Get PDF
    We present fast algorithms to perform accurate CCD queries between triangulated models. Our formulation uses properties of the Bernstein basis and Bézier curves and reduces the problem to evaluating signs of polynomials. We present a geometrically exact CCD algorithm based on the exact geometric computation paradigm to perform reliable Boolean collision queries. Our algorithm is more than an order of magnitude faster than prior exact algorithms. We evaluate its performance for cloth and FEM simulations on CPUs and GPUs, and highlight the benefits

    Fast collision detection for deformable models using representativetriangles.

    Get PDF
    Abstract We present a new approach to accelerate collision detection for deformable models. Our formulation applies to all triangulated models and significantly reduces the number of elementary tests between features of the mesh, i.e., vertices, edges and faces. We introduce the notion of Representative-Triangles, standard geometric triangles augmented with mesh feature information and use this representation to achieve better collision query performance. The resulting approach can be combined with bounding volume hierarchies and works well for both inter-object and self-collision detection. We demonstrate the benefit of Representative-Triangles on continuous collision detection for cloth simulation and N-body collision scenarios. We observe up to a one-order of magnitude reduction in featurepair tests and up to a 5X improvement in query time

    A Surface Mass-Spring Model with New Flexion Springs and Collision Detection Algorithms Based on Volume Structure for Real-time Soft-tissue Deformation Interaction

    Get PDF
    A critical problem associated with surgical simulation is balancing deformation accuracy with real-time performance. Although the canonical surface mass-spring model (MSM) can provide an excellent real-time performance, it fails to provide effective shape restoration behavior when generating large deformations. This significantly influences its deformation accuracy. To address this problem, this paper proposes a modified surface MSM. In the proposed MSM, a new flexion spring is first developed to oppose bending based on the included angle between the initial position vector and the deformational position vector, improving the shape restoration performance and enhance the deformational accuracy of MSM; then, a new type of surface triangular topological unit is developed for enhancing the computational efficiency and better adapting to the different topological soft tissue deformational models. In addition, to further improve the accuracy of deformational interactions between the soft tissue and surgical instruments, we also propose two new collision detection algorithms. One is the discrete collision detection with the volumetric structure (DCDVS), applying a volumetric structure to extend the effective range of collision detection; the other is the hybrid collision detection with the volumetric structure (HCDVS), introducing the interpolation techniques of the continuous collision detection to DCDVS. Experimental results show that the proposed MSM with DCDVS or HCDVS can achieve accurate and stable shape restoration and show the real-time interactive capability in the virtual artery vessel and heart compared with the canonical surface MSM and new volume MSM

    Optimized continuous collision detection for deformable triangle meshes

    Get PDF
    We present different approaches for accelerating the process of continuous collision detection for deformable triangle meshes. The main focus is upon the collision detection for simulated virtual clothing, especially for situations involving a high number of contact points between the triangle meshes, such as multi-layered garments. We show how the culling efficiency of bounding volume hierarchies may be increased by introducing additional bounding volumes for edges and vertices of the triangle mesh. We present optimized formulas for computing the time of collision for these primitives analytically, and describe an efficient iterative scheme that ensures that all collisions are treated in the correct chronological order

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character
    corecore