5,468 research outputs found

    Convergence of adaptive mixtures of importance sampling schemes

    Full text link
    In the design of efficient simulation algorithms, one is often beset with a poor choice of proposal distributions. Although the performance of a given simulation kernel can clarify a posteriori how adequate this kernel is for the problem at hand, a permanent on-line modification of kernels causes concerns about the validity of the resulting algorithm. While the issue is most often intractable for MCMC algorithms, the equivalent version for importance sampling algorithms can be validated quite precisely. We derive sufficient convergence conditions for adaptive mixtures of population Monte Carlo algorithms and show that Rao--Blackwellized versions asymptotically achieve an optimum in terms of a Kullback divergence criterion, while more rudimentary versions do not benefit from repeated updating.Comment: Published at http://dx.doi.org/10.1214/009053606000001154 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An optimized tuned mass damper/harvester device

    Get PDF
    Much work has been conducted on vibration absorbers, such as tuned mass dampers (TMD), where significant energy is extracted from a structure. Traditionally, this energy is dissipated through the devices as heat. In this paper, the concept of recovering some of this energy electrically and reuse it for structural control or health monitoring is investigated. The energy-dissipating damper of a TMD is replaced with an electromagnetic device in order to transform mechanical vibration into electrical energy. That gives the possibility of controlled damping force whilst generating useful electrical energy. Both analytical and experimental results from an adaptive and a semi-active tuned mass damper/harvester are presented. The obtained results suggest that sufficient energy might be harvested for the device to tune itself to optimise vibration suppression

    Optimization and sensitivity analysis of computer simulation models by the score function method

    Get PDF
    Experimental Design;Simulation;Optimization;Queueing Theory

    Identification of Nonlinear Systems From the Knowledge Around Different Operating Conditions: A Feed-Forward Multi-Layer ANN Based Approach

    Full text link
    The paper investigates nonlinear system identification using system output data at various linearized operating points. A feed-forward multi-layer Artificial Neural Network (ANN) based approach is used for this purpose and tested for two target applications i.e. nuclear reactor power level monitoring and an AC servo position control system. Various configurations of ANN using different activation functions, number of hidden layers and neurons in each layer are trained and tested to find out the best configuration. The training is carried out multiple times to check for consistency and the mean and standard deviation of the root mean square errors (RMSE) are reported for each configuration.Comment: "6 pages, 9 figures; The Second IEEE International Conference on Parallel, Distributed and Grid Computing (PDGC-2012), December 2012, Solan

    Adaptive Multiple Importance Sampling for Gaussian Processes

    Get PDF
    In applications of Gaussian processes where quantification of uncertainty is a strict requirement, it is necessary to accurately characterize the posterior distribution over Gaussian process covariance parameters. Normally, this is done by means of standard Markov chain Monte Carlo (MCMC) algorithms. Motivated by the issues related to the complexity of calculating the marginal likelihood that can make MCMC algorithms inefficient, this paper develops an alternative inference framework based on Adaptive Multiple Importance Sampling (AMIS). This paper studies the application of AMIS in the case of a Gaussian likelihood, and proposes the Pseudo-Marginal AMIS for non-Gaussian likelihoods, where the marginal likelihood is unbiasedly estimated. The results suggest that the proposed framework outperforms MCMC-based inference of covariance parameters in a wide range of scenarios and remains competitive for moderately large dimensional parameter spaces.Comment: 27 page

    Dynamic importance sampling for uniformly recurrent markov chains

    Full text link
    Importance sampling is a variance reduction technique for efficient estimation of rare-event probabilities by Monte Carlo. In standard importance sampling schemes, the system is simulated using an a priori fixed change of measure suggested by a large deviation lower bound analysis. Recent work, however, has suggested that such schemes do not work well in many situations. In this paper we consider dynamic importance sampling in the setting of uniformly recurrent Markov chains. By ``dynamic'' we mean that in the course of a single simulation, the change of measure can depend on the outcome of the simulation up till that time. Based on a control-theoretic approach to large deviations, the existence of asymptotically optimal dynamic schemes is demonstrated in great generality. The implementation of the dynamic schemes is carried out with the help of a limiting Bellman equation. Numerical examples are presented to contrast the dynamic and standard schemes.Comment: Published at http://dx.doi.org/10.1214/105051604000001016 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore