665 research outputs found

    Integration of capillary and EWOD technologies for autonomous and low-power consumption micro-analytical systems

    Get PDF
    This work presents a miniaturized system combining, on the same microfluidic chip, capillarity and electrowetting-on-dielectric (EWOD) techniques for movement and control of fluids. The change in hydrophobicity occurring at the edge between a capillary channel and a hydrophobic layer is successfully exploited as a stop-and-go valve, whose operation is electronically controlled through the EWOD electrodes. Taking into account the variety of microfluidic operation resulting from the combination of the two handling techniques and their characteristic features, this work prompts the development of autonomous, compact and low-power consumption lab-on-chip systems

    Electrowetting-Based Digital Microfluidics Platform for Automated Enzyme-linked Immunosorbent Assay

    Get PDF
    Electrowetting is the effect by which the contact angle of a droplet exposed to a surface charge is modified. Electrowetting-on-dielectric (EWOD) exploits the dielectric properties of thin insulator films to enhance the charge density and hence boost the electrowetting effect. The presence of charges results in an electrically induced spreading of the droplet which permits purposeful manipulation across a hydrophobic surface. Here, we demonstrate EWOD-based protocol for sample processing and detection of four categories of antigens, using an automated surface actuation platform, via two variations of an Enzyme-Linked Immunosorbent Assay (ELISA) methods. The ELISA is performed on magnetic beads with immobilized primary antibodies which can be selected to target a specific antigen. An antibody conjugated to HRP binds to the antigen and is mixed with H 2O 2/Luminol for quantification of the captured pathogens. Assay completion times of between 6 and 10 min were achieved, whilst minuscule volumes of reagents were utilized.Peer reviewe

    Fully integrated digital microfluidics platform for automated immunoassay; a versatile tool for rapid, specific detection of a wide range of pathogens

    Get PDF
    © 2018 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.With the tangible threat posed by the release of chemical and biological warfare (CBW) agents, detection of airborne pathogens is a critical military and security concern. Recent air sampling techniques developed for biocollection take advantage of Electrowetting on Dielectric (EWOD) to recover material, producing highly concentrated droplet samples. Bespoke EWOD-based digital microfluidics platforms are very well suited to take full advantage of the microlitre concentrated droplet resulting from this recovery process. In this paper we present a free-standing, fully automated DMF platform for immunoassay. Using this system, we demonstrate the automated detection of four classes of CBW agent simulant biomolecules and organisms each representing credible threat agents. Taking advantage of the full magnetic separation process with antibody-bound microbeads, rapid and complete separation of specific target antigen can be achieved with minimal washing steps allowing for very rapid detection. Here, we report clear detection of four categories of antigens achieved with assay completion times of between six and ten minutes. Detection of HSA, Bacillus atrophaeus (BG spores), MS2 bacteriophage and Escherichia coli are demonstrated with estimated limit of detection of respectively 30 ng ml -1, 4 × 10 4 cfu ml -1, 10 6 pfu ml -1 and 2 × 10 7 cfu ml -1. The fully-integrated portable platform described in this paper is highly compatible with the next generation of electrowetting-coupled air samplers and thus shows strong potential toward future in-field deployable biodetection systems and could have key implication in life-changing sectors such as healthcare, environment or food security.Peer reviewe

    Digital microfluidic devices: the role of the dielectric layer

    Get PDF
    Digital microfluidics (DMF) is a field which has emerged in the last decade as a re-liable and versatile tool for sensing applications based on liquid reactions. DMF allows the discrete displacement of droplets, over an array of electrodes, by the application of voltage, and also the dispensing from a reservoir, mixing, merging and splitting fluidic operations. The main drawback of these devices is due to the need of high driving volt-ages for droplet operations. In this work, alternative dielectric layers combinations were studied aiming the reduction of these driving voltages. DMF chips were designed, pro-duced and optimized according to the theory of electrowetting-on-dielectric, adopting different combinations of parylene-C and tantalum pentoxide (Ta2O5) as dielectric ma-terials, and Teflon as hydrophobic layer. With both devices’ configurations, i.e., Parylene as single dielectric, and multilayer chips combining Parylene and Ta2O5, it was possible to perform all the fluidic opera-tions in the microliter down to hundreds of nanoliters range. Multilayer chips presented significant reduction on driving voltages for droplet op-erations in silicone oil filler medium: from 70 V (parylene only) down to 30 V (parylene/Ta2O5) for dispensing; and from 50 V (parylene only) down to 15 V (parylene/Ta2O5) for movement. Peroxidase colorimetric reactions were successfully performed as proof-of-concept, using multilayer configuration devices

    HIGH VOLTAGE SWITCHING SYSTEM FOR ELECTROWETTING ON-DIELECTRIC (EWOD)

    Get PDF
    Electrowetting-On-Dielectric (EWOD) is becoming a standout amongst all the broadly used method for controlling small amount of liquid on a flat electrode surface. Scaling down the EWOD process has been a technological development recently as it appeared to have better integration and automation of numerous procedures on a single device. The applied voltage plays an important role in this study. A low voltage will diminish the ionization effect happening within the droplet. Insufficient ionization will further cause the inability of droplet movement. Therefore, a high voltage must be applied to initiate droplet movement. This study focuses on high voltage switching system for electrowetting process. Results achieved shown that MOSFET IRF 740 acted as the best switching component for the system. Besides, this study proves the feasibility of electrowetting by describing the fabrication and testing of different dielectric layers using high voltage switching system. As for the coating of dielectric layer, cooking oil showed the most noticeable results out of all the material

    Analysis and Measurement of Forces in an Electrowetting-Driven Oscillator

    Full text link

    New Application for Indium Gallium Zinc Oxide thin film transistors: A fully integrated Active Matrix Electrowetting Microfluidic Platform

    Get PDF
    The characterization and fabrication of active matrix TFTs [Thin Film Transistors] have been studied for applying an addressable microfluidic electrowetting channel device. The a-IGZO [Amorphous Indium Gallium Zinc Oxide] is used for electronic switching device to control the microfluidic device because of its high mobility, transparency, and easy to fabrication. The purpose of this dissertation is to optimize each IGZO TFT process including the optimization of a-IGZO properties to achieve robust device for application. To drive the IGZO TFTs, the channel resistance of IGZO layer and contact resistance between IGZO layer and source/drain (S/D) electrode are discussed in this dissertation. In addition, the generalization of IGZO sputter condition is investigated by calculation of IGZO and O2 [Oxygen] incorporation rate at different oxygen partial pressure and different sputter targets. To develop the robust IGZO TFTs, the different passivation layers deposited by RF [Radio Frequency] magnetron sputter are investigated by comparing the electrical characteristics of TFTs. The effects PECVD [Plasma Enhanced Chemical Vapor Deposition] of SiO2 [Silicon Dioxide] passivation layers on IGZO TFTs is studied the role of hydrogen and oxygen with analyzed and compared the concentration by the SIMS [Secondary Ion Mass Spectroscopy]. In addition, the preliminary electrowetting tests are performed for electrowetting phenomena, the liquid droplet actuation, the comparison between conventional electrowetting and Laplace barrier electrowetting, and the different size electrode effect for high functional properties. The active matrix addressing method are introduced and investigated for driving the electrowetting microfluidic channel device by Pspice simulation. Finally, the high resolution electrowetting microfluidic device (16ⅹ16 matrix) is demonstrated by driving liquid droplet and channel moving using active matrix addressing method and fully integrated IGZO TFTs

    Principles of microfluidic actuation by modulation of surface stresses

    Get PDF
    Development and optimization of multifunctional devices for fluidic manipulation of films, drops, and bubbles require detailed understanding of interfacial phenomena and microhydrodynamic flows. Systems are distinguished by a large surface to volume ratio and flow at small Reynolds, capillary, and Bond numbers are strongly influenced by boundary effects and therefore amenable to control by a variety of surface treatments and surface forces. We review the principles underlying common techniques for actuation of droplets and films on homogeneous, chemically patterned, and topologically textured surfaces by modulation of normal or shear stresses
    corecore