11,471 research outputs found

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    Pursuing robust decisions in uncertain traffic equilibrium problems

    Get PDF
    We evaluate the robustness of agents' traffic equilibria in randomized routing games characterized by an uncertain network demand with a possibly unknown probability distribution. Specifically, we extend the so-called hose model by considering a traffic equilibrium model where the uncertain network demand configuration belongs to a polyhedral set, whose shape is itself a-priori unknown. By exploiting available data, we apply the scenario approach theory to establish distribution-free feasibility guarantees for agents' traffic equilibria of the uncertain routing game without the need to know an explicit characterization of such set. A numerical example on a traffic network testbed corroborates the proposed theoretical results

    Fair Resource Allocation in Macroscopic Evacuation Planning Using Mathematical Programming: Modeling and Optimization

    Get PDF
    Evacuation is essential in the case of natural and manmade disasters such as hurricanes, nuclear disasters, fire accidents, and terrorism epidemics. Random evacuation plans can increase risks and incur more losses. Hence, numerous simulation and mathematical programming models have been developed over the past few decades to help transportation planners make decisions to reduce costs and protect lives. However, the dynamic transportation process is inherently complex. Thus, modeling this process can be challenging and computationally demanding. The objective of this dissertation is to build a balanced model that reflects the realism of the dynamic transportation process and still be computationally tractable to be implemented in reality by the decision-makers. On the other hand, the users of the transportation network require reasonable travel time within the network to reach their destinations. This dissertation introduces a novel framework in the fields of fairness in network optimization and evacuation to provide better insight into the evacuation process and assist with decision making. The user of the transportation network is a critical element in this research. Thus, fairness and efficiency are the two primary objectives addressed in the work by considering the limited capacity of roads of the transportation network. Specifically, an approximation approach to the max-min fairness (MMF) problem is presented that provides lower computational time and high-quality output compared to the original algorithm. In addition, a new algorithm is developed to find the MMF resource allocation output in nonconvex structure problems. MMF is the fairness policy used in this research since it considers fairness and efficiency and gives priority to fairness. In addition, a new dynamic evacuation modeling approach is introduced that is capable of reporting more information about the evacuees compared to the conventional evacuation models such as their travel time, evacuation time, and departure time. Thus, the contribution of this dissertation is in the two areas of fairness and evacuation. The first part of the contribution of this dissertation is in the field of fairness. The objective in MMF is to allocate resources fairly among multiple demands given limited resources while utilizing the resources for higher efficiency. Fairness and efficiency are contradicting objectives, so they are translated into a bi-objective mathematical programming model and solved using the ϵ-constraint method, introduced by Vira and Haimes (1983). Although the solution is an approximation to the MMF, the model produces quality solutions, when ϵ is properly selected, in less computational time compared to the progressive-filling algorithm (PFA). In addition, a new algorithm is developed in this research called the θ progressive-filling algorithm that finds the MMF in resource allocation for general problems and works on problems with the nonconvex structure problems. The second part of the contribution is in evacuation modeling. The common dynamic evacuation models lack a piece of essential information for achieving fairness, which is the time each evacuee or group of evacuees spend in the network. Most evacuation models compute the total time for all evacuees to move from the endangered zone to the safe destination. Lack of information about the users of the transportation network is the motivation to develop a new optimization model that reports more information about the users of the network. The model finds the travel time, evacuation time, departure time, and the route selected for each group of evacuees. Given that the travel time function is a non-linear convex function of the traffic volume, the function is linearized through a piecewise linear approximation. The developed model is a mixed-integer linear programming (MILP) model with high complexity. Hence, the model is not capable of solving large scale problems. The complexity of the model was reduced by introducing a linear programming (LP) version of the full model. The complexity is significantly reduced while maintaining the exact output. In addition, the new θ-progressive-filling algorithm was implemented on the evacuation model to find a fair and efficient evacuation plan. The algorithm is also used to identify the optimal routes in the transportation network. Moreover, the robustness of the evacuation model was tested against demand uncertainty to observe the model behavior when the demand is uncertain. Finally, the robustness of the model is tested when the traffic flow is uncontrolled. In this case, the model's only decision is to distribute the evacuees on routes and has no control over the departure time

    Dynamic traffic assignment: model classifications and recent advances in travel choice principles

    Get PDF
    Dynamic Traffic Assignment (DTA) has been studied for more than four decades and numerous reviews of this research area have been conducted. This review focuses on the travel choice principle and the classification of DTA models, and is supplementary to the existing reviews. The implications of the travel choice principle for the existence and uniqueness of DTA solutions are discussed, and the interrelation between the travel choice principle and the traffic flow component is explained using the nonlinear complementarity problem, the variational inequality problem, the mathematical programming problem, and the fixed point problem formulations. This paper also points out that all of the reviewed travel choice principles are extended from those used in static traffic assignment. There are also many classifications of DTA models, in which each classification addresses one aspect of DTA modeling. Finally, some future research directions are identified.postprin

    Environmentally sustainable toll design for congested road networks with uncertain demand

    Get PDF
    This article proposes a new road toll-design model for congested road networks with uncertain demand that can be used to create a sustainable urban transportation system. For policy assessment and strategic planning purposes, the proposed model extends traditional congestion pricing models to simultaneously consider congestion and environmental externalities due to vehicular use. Based on analyses of physical and environmental capacity constraints, the boundary conditions under which a road user on a link should pay either a congestion toll or an extra environmental tax are identified. The sustainable toll design model is formulated as a two-stage robust optimization problem. The first-stage problem before the realization of the future travel demand aims to minimize a risk-averse objective by determining the optimal toll. The second stage after the uncertain travel demand has been determined is a scenario-based route choice equilibrium formulation with physical and environmental capacity constraints. A heuristic algorithm that combines the sample average approximation approach and a sensitivity analysisbased method is developed to solve the proposed model. The upper and lower bounds of the model solution are also estimated. Two numerical examples are given to show the properties of the proposed model and solution algorithm and to investigate the effects of demand variation and the importance of including risk and environmental taxation in toll design formulations. © Taylor & Francis Group, LLC.postprin

    Road network equilibrium approaches to environmental sustainability

    Get PDF
    Environmental sustainability is closely related to transportation, especially to the road network, because vehicle emissions and noise damage the environment and have adverse effects on human health. It is, therefore, important to take their effect into account when designing and managing road networks. Road network equilibrium approaches have been used to estimate this impact and to design and manage road networks accordingly. However, no comprehensive review has summarized the applications of these approaches to the design and management of road networks that explicitly address environmental concerns. More importantly, it is necessary to identify this gap in the literature so that future research can improve the existing methodologies. Hence, this paper summarizes these applications and identifies potential future research directions in terms of theories, modelling approaches, algorithms, analyses, and applications.postprin

    Optimization and Integration of Electric Vehicle Charging System in Coupled Transportation and Distribution Networks

    Get PDF
    With the development of the EV market, the demand for charging facilities is growing rapidly. The rapid increase in Electric Vehicle and different market factors bring challenges to the prediction of the penetration rate of EV number. The estimates of the uptake rate of EVs for light passenger use vary widely with some scenarios gradual and others aggressive. And there have been many effects on EV penetration rate from incentives, tax breaks, and market price. Given this background, this research is devoted to addressing a stochastic joint planning framework for both EV charging system and distribution network where the EV behaviours in both transportation network and electrical system are considered. And the planning issue is formulated as a multi-objective model with both the capital investment cost and service convenience optimized. The optimal planning of EV charging system in the urban area is the target geographical planning area in this work where the service radius and driving distance is relatively limited. The mathematical modelling of EV driving and charging behaviour in the urban area is developed
    corecore