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Abstract 

Evacuation is essential in the case of natural and manmade disasters such as hurricanes, nuclear 

disasters, fire accidents, and terrorism epidemics. Random evacuation plans can increase risks 

and incur more losses. Hence, numerous simulation and mathematical programming models have 

been developed over the past few decades to help transportation planners make decisions to 

reduce costs and protect lives. However, the dynamic transportation process is inherently 

complex. Thus, modeling this process can be challenging and computationally demanding. The 

objective of this dissertation is to build a balanced model that reflects the realism of the dynamic 

transportation process and still be computationally tractable to be implemented in reality by the 

decision-makers. On the other hand, the users of the transportation network require reasonable 

travel time within the network to reach their destinations. 

This dissertation introduces a novel framework in the fields of fairness in network optimization 

and evacuation to provide better insight into the evacuation process and assist with decision 

making. The user of the transportation network is a critical element in this research. Thus, 

fairness and efficiency are the two primary objectives addressed in the work by considering the 

limited capacity of roads of the transportation network. Specifically, an approximation approach 

to the max-min fairness (MMF) problem is presented that provides lower computational time and 

high-quality output compared to the original algorithm. In addition, a new algorithm is 

developed to find the MMF resource allocation output in nonconvex structure problems. MMF is 

the fairness policy used in this research since it considers fairness and efficiency and gives 

priority to fairness. In addition, a new dynamic evacuation modeling approach is introduced that 



xxii 

is capable of reporting more information about the evacuees compared to the conventional 

evacuation models such as their travel time, evacuation time, and departure time. Thus, the 

contribution of this dissertation is in the two areas of fairness and evacuation. 

The first part of the contribution of this dissertation is in the field of fairness. The objective in 

MMF is to allocate resources fairly among multiple demands given limited resources while 

utilizing the resources for higher efficiency. Fairness and efficiency are contradicting objectives, 

so they are translated into a bi-objective mathematical programming model and solved using the 

𝜖-constraint method, introduced by Vira and Haimes (1983). Although the solution is an 

approximation to the MMF, the model produces quality solutions, when 𝜖 is properly selected, in 

less computational time compared to the progressive-filling algorithm (PFA). In addition, a new 

algorithm is developed in this research called the 𝜃-progressive-filling algorithm that finds the 

MMF in resource allocation for general problems and works on problems with the nonconvex 

structure problems.  

The second part of the contribution is in evacuation modeling. The common dynamic evacuation 

models lack a piece of essential information for achieving fairness, which is the time each 

evacuee or group of evacuees spend in the network. Most evacuation models compute the total 

time for all evacuees to move from the endangered zone to the safe destination. Lack of 

information about the users of the transportation network is the motivation to develop a new 

optimization model that reports more information about the users of the network. The model 

finds the travel time, evacuation time, departure time, and the route selected for each group of 

evacuees. Given that the travel time function is a non-linear convex function of the traffic 

volume, the function is linearized through a piecewise linear approximation. The developed 

model is a mixed-integer linear programming (MILP) model with high complexity. Hence, the 
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model is not capable of solving large scale problems. The complexity of the model was reduced 

by introducing a linear programming (LP) version of the full model. The complexity is 

significantly reduced while maintaining the exact output.  

In addition, the new 𝜃-progressive-filling algorithm was implemented on the evacuation model 

to find a fair and efficient evacuation plan. The algorithm is also used to identify the optimal 

routes in the transportation network. Moreover, the robustness of the evacuation model was 

tested against demand uncertainty to observe the model behavior when the demand is uncertain. 

Finally, the robustness of the model is tested when the traffic flow is uncontrolled. In this case, 

the model's only decision is to distribute the evacuees on routes and has no control over the 

departure time.  

 



1 

Chapter 1: Introduction 

1.1 Overview 

The average number of world natural catastrophes over the past 30 years (from 1987 to 2016) is 

490 with average fatalities of 53,000 and $130 billion in losses as reported by Re (2018), and 

Max (2016). However, the number of catastrophes has been increasing with 710 events in 2016 

most of which require mass evacuation to protect lives and properties. In addition, evacuation is 

essential for some manmade disasters such as nuclear disasters, fire accidents, and terrorism 

epidemics. The definition of evacuation is the removal of persons or things from an endangered 

area. The endangered area can be a building, neighborhood, city, or state. Evacuation is a natural 

reaction in emergencies to protect lives, and random evacuation plans can increase the risks and 

incur further losses. 

Hence, numerous simulation and mathematical models have been proposed over the past few 

decades to help transportation planners make decisions to reduce costs and protect lives. 

However, the dynamic transportation process is inherently complex, and modeling this process 

can be challenging and computationally demanding. Simulation models can overcome these 

challenges, but they may fail to guarantee optimality. The objective is to build a balanced 

mathematical model that reflects the realism of the dynamic transportation process and still be 

computationally tractable to be implemented in reality by the decision-makers. On the other 

hand, the users of the transportation network require reasonable travel times within the network 

to reach their destinations. The output of the model should confirm with the decision-maker and 

the user requirements.  
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1.2 Problem Statement 

The transportation in evacuations is quite different than transportation in normal conditions. Due 

to the sudden surge in demand to evacuate, the roads become massively congested, raising the 

risks of loss in properties and lives. For example, evacuation of a vast region including Houston, 

Texas, in hurricane Rita caused massive congestion where evacuees spent long times is traffic 

causing more fatalities than the actual hurricane, as reported by Litman (2006). Large-scale 

evacuations are a necessity to protect lives and properties. Hence, optimizing these evacuations 

can significantly reduce congestions and minimize costs.  

The first objective of this dissertation is to develop a novel modeling approach to enhance the 

evacuation process and to help decision-makers allocate demands on the available capacity 

resources to reduce the congestion effect and find the optimal network clearance time. 

Specifically, a mixed-integer linear programming (MILP) model is developed as a dynamic 

traffic assignment (DTA) model that we call latency-based model (LBM). To the best of our 

knowledge, there is no mathematical programming modeling approach that computes the 

estimated time each group of evacuees spends on each route. Most of the mathematical 

programming DTA models find the network clearance time (NCT), and some models compute 

the estimated average travel time (ATT) and average evacuation time (AET) of the evacuees 

(Bish et al., 2014). In this proposed model, evacuees use the set of shortest routes to reach the 

destination. There are many algorithms to find the set of shortest routes (Rhodes, 2016), for 

example. The travel time on any road segment is load-dependent as a function of the flow. The 

function used is a modified version of the Bureau of Public Roads (1964) function proposed by 

Mtoi and Moses (2014). Our model is capable of propagating the delay that takes place in 

downstream road segments to the upstream segments along the predefined routes. However, the 
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developed model's complexity is high, leading us to develop a smaller version of the original 

model with lower complexity and exact output.  Using small network examples, the results of the 

model are compared with the cell transmission model (CTM) introduced by Daganzo (1994, 

1995), which is later modified to a linear programming (LP) model by Ziliaskopoulos (2000). 

We also show that the CTM model regulates the entrance to a road segment rather than slowing 

the traffic along the road segment, which indicates that the CTM model is insensitive to the 

length of a congested road segment. The model is also tested on a real-world network, and the 

results are compared with the CTM. Further, sensitivity analysis is implemented by changing the 

number of groups to observe the behavior of the ATT and AET.  

The second objective in this dissertation is to allocate resources of the transportation network 

fairly among the users in the evacuation process. First, a new approach to finding an 

approximation to the MMF is presented to find a fair-efficient resource allocation. The model is 

developed as a multicriteria optimization model, and the output is compared with the 

progressive-filling algorithm (PFA) output. In addition, a new algorithm is developed to find the 

MMF resource allocation. The new algorithm, called 𝜃-progressive-filling algorithm, does not 

rely on the complementary slackness condition to identify the saturated demands. Hence, the 𝜃-

progressive-filling algorithm is capable of finding the MMF resource allocation in nonconvex 

structure problems and can find the MMF resource allocation in general problems. 

In addition, the new 𝜃-progressive-filling algorithm is implemented to the LBM model to find 

the MMF evacuation time for all groups of evacuees. The results of the algorithm are compared 

with different objectives, such as the NCT and AET. Moreover, the 𝜃-progressive-filling 

algorithm is capable of finding the optimal routes in the transportation network since the 

algorithm works on problems with the nonconvex structure. The sum of absolute deviations 
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(SAD) is used as a performance measure to compare fairness, and the AET is used to compare 

the efficiency of different objectives.  

Finally, the model robustness is tested by assuming that the number of evacuees is uncertain, and 

the underlying distribution of the demand is unknown. The robust counterpart of the LBM model 

is introduced based on the box uncertainty set. The main objective is to maintain the model 

feasibility under different scenarios since that infeasible model is useless. In addition, the 

iterative 𝜃-progressive-filling algorithm is tested to achieve a robust fair and efficient 

distribution of evacuees by finding the MMF evacuation times on the given set of used routes. 

The other objective tested is the AET, which finds the most efficient evacuation plan. The mean, 

standard deviation, and maximum NCT, AET, and SAD are reported for the tested networks. The 

evacuation time and the number of evacuees are plotted for robust efficient and robust fair-

efficient objectives. The assumption is that the flow is controlled. However, the flow, in reality, 

is uncontrolled because the departure time is mostly the decision of the evacuee. Hence, the 

model is tested when the flow of evacuees is uncontrolled, given that the model decision is on 

distributing the evacuees on the predefined routes. 

1.3 Assumptions 

The evacuation model is developed based on a few assumptions as follows: 

1- The road capacities are constant with the assumption that road capacities are not affected 

by accidents such as car crashes, building collapses, or medical conditions that add to the 

expected delay. 

2- All evacuees follow the route guidance system (RGS) to achieve the optimal evacuation 

plan. 
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3- The destination nodes are uncapacitated. Hence, there are no restrictions on how many 

evacuees can be sent to a specific destination.  

4- All communities are treated fairly, assuming that the threat level is equal for all 

communities.  

1.4 Main Contributions 

This dissertation introduces a set of novel approaches, algorithms, and models to optimize the 

evacuation process with the objective of MMF. The contributions in this dissertation are 

highlighted in this section. 

1- A bi-objective optimization model is developed to find an approximate MMF resource 

allocation for general problems. The efficiency is maximized in one objective, and the 

difference between commodities is minimized in the second objective. The application 

used is a static bandwidth allocation with multiple demands. 

2- A new MILP latency-based evacuation model, we call it LBM, is developed as a DTA 

model to optimize the evacuation process. The travel time is a piecewise approximation 

to the nonlinear traffic volume function.  

3- A new LP latency-based DTA evacuation model is developed as a less complex version 

of the original model in contribution 2. The model complexity is significantly reduced 

while maintaining the exact output of the original model. The model is then compared 

with the known CTM. 

4- A new algorithm called 𝜃-progressive-filling algorithm is developed to find the MMF 

resource allocation for general problems. The algorithm does not rely on the 

complementary slackness condition to identify the blocking demands. Hence, it is 
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capable of finding the MMF resource allocation for nonconvex structure problems. In 

addition, the algorithm can be used to find the optimal routes in transportation networks.  

5- The 𝜃-progressive-filling algorithm is implemented on the LBM model. We use an 

illustrative example to show the effectiveness of the algorithm and how it can achieve a 

fair and efficient solution. The algorithm is also tested on convex and nonconvex 

structure, and the output of the two models are compared.  

6- The robust counterpart of the LBM model is introduced. The model's robustness is tested 

by assuming that the demand to evacuate is uncertain. We show that the robust model 

outperforms the nominal model in its worst case. The mean, standard deviation, and 

maximum of NCT, AET, and SAD are presented for three networks. In addition, we 

assume that the flow of evacuees is uncontrolled, i.e., the evacuee decides its departure 

time. So, the only decision the model makes is allocating evacuees on routes. The results 

are reported and compared with controlled flow evacuees.  

1.5 Dissertation Organization 

This dissertation is composed of 8 chapters. In chapter 1, an overview of the evacuation problem 

is introduced, the problem statement is addressed, and the main contributions are listed. In 

chapter 2, a general literature review is discussed in two parts. In section 2.1, a literature review 

of fairness in resource allocation is discussed. In section 2.2, the evacuation modeling literature 

review is presented. Next, an approximation approach using bi-objective optimization to solve 

the MMF problem is presented in chapter 3. Then, a new approach to model the evacuation 

process is introduced in chapter 4. Afterward, the LBM evacuation model complexity is reduced 

while maintaining the exact original model output in chapter 5. In chapter 6, a new iterative 

algorithm that finds the MMF is introduced and implemented to the LBM evacuation model. 
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Next, the LBM robustness is tested under demand uncertainty with the controlled and 

uncontrolled flow, comparing the efficient and fair-efficient outputs in chapter 7. Afterward, the 

contribution of this dissertation is summarized in addition to recommendations for future 

research in chapter 8. Finally, additional figures from chapters 3 and 7 are listed in Appendix A. 

  



8 

Chapter 2: Literature Review 

In this chapter, an overview of two fields is presented. The first field is fairness, and the second 

field is evacuation. 

2.1 Fairness in Resource Allocation 

Fairness has been gaining great interest in the past few decades. The decision-maker objective is 

to maximize efficiency, but if fairness is not considered, the service receivers are not satisfied 

and claim that it is an unfair or unjust distribution of resources. However, if the objective is to 

distribute resources fairly, the decision-maker may not be satisfied if the resources are not fully 

utilized. A balanced solution between fairness and efficiency is the goal of fair resource 

allocation. Fairness, in its early development, was applied in the microeconomics of social 

welfare. Every individual or demand is assigned a utility function u based on the preference of 

the individual assuming that the decision-maker is aware of the preferences of each individual. 

The set of resources X is to be distributed among individuals. Given that 𝑥 ∈ 𝑋 is a feasible 

allocation of resources among the individuals chosen by the decision-maker, then 𝑓!(𝑥) is the 

utility of individual i for every 𝑖 = 1, . . , 𝑛. This leads to the utility set U for all individuals: 

 𝑈 = {𝑢! = 𝑓!(𝑥), ∀	𝑖 = 1, . . , 𝑛} (2-1) 

Fair distribution of resources was initiated by observing and measuring the differences in the 

level of income of individuals in a society or a country by the statistician Gini (1912). Gini 

developed the measure Gini index or the Gini coefficient to measure income inequality. Then he 

discussed the relationship between the Gini index and the Lorenz curve in Gini (1914).  Later, 

fair division of resources was introduced by Steinhaus (1948) through the Cake Cutting Problem, 

where resources are distributed fairly or what is called an envy-free division. Fairness has gained 
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significant interest, and many approaches have been developed to allocate resources fairly. The 

scope of this chapter is to review fair resource allocation approaches in general and, more 

specifically, in networks. 

The chapter is organized as follows. In section 2.1.1, the early development of fairness in 

resource distribution is discussed. In section 2.1.2, some measures of fairness are explored. 

Policies for resource sharing such as Lexicographic ordering, max-min fairness (MMF), 

proportional fairness, and (𝑝, 𝛼)-proportional fairness are discussed in section 2.1.3. In section 

2.1.4, MMF is discussed in detail. Finally, some applications in fairness are presented in section 

2.1.5. 

 In section 2.1.5.1, fairness in communication networks is discussed. In section 2.1.5.2, fairness 

in facility location is discussed. In section 2.1.5.3, fairness in air traffic control is reviewed. 

Fairness in job scheduling is discussed in section 2.1.5.4. In section 2.1.5.5, fairness in 

evacuation and traffic management is reviewed. 

2.1.1 Fairness Early Development  

The classical fair division of an object between two partners is by letting one partner halve the 

object and the other to choose their half. The first partner is satisfied by being allowed to split the 

object into two halves, and the other is pleased by being given the freedom to choose one of the 

two halves. This problem is known by the cake cutting problem or envy-free division, and an 

example of a divisible object is a land (pasture or field). Using this method becomes complicated 

if the number of partners is more than three. Steinhaus (1948) has proposed an approach to 

solving this problem for n partners proposed by B. Knaster and S. Banach. Every partner has the 

right to cut a part of the cake until the last one cuts the last piece he touched, then he is 
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eliminated. The remaining n – 1 repeat the same procedure until two partners are left, then the 

classical rule is applied. Examples of divisible resources are salary, bonus, performance 

incentives, and severance pay.  

Steinhaus then proposed an approach to fairly divide indivisible objects such as houses, animals, 

cars, etc. among n partners. Every partner estimates the value of each object, and then every 

object value is decided by the highest estimated value and attributed to the partner who estimated 

it. Then, partners who received higher-value objects compensate the partners with the lower-

value objects to reduce the differences to zero. See Brams and Taylor (1996) and Golovin (2005) 

for more details. 

Fairness has been applied in the microeconomic theory of social welfare (Mas-Colell et al., 

1995). Every consumer is assigned a utility function based on their preferences of the desired 

commodities, then all utility functions of all consumers are aggregated into a social welfare 

function. The objective is to maximize the social welfare function with respect to fairness and 

justice. A way to fairly maximize the utility functions of all consumers is to maximize the worst-

off utility function or to rank alternatives based on their worst outcomes, given their 

probabilities. This approach is called maximin or Rawlsian social welfare function by Rawls 

(1971), but it is not Pareto optimal in most cases. Another approach is the leximin ordering of 

social welfare function by using lexicographical ordering by Chen (2000), and it provides a 

Pareto optimal solution for the optimal leximin social welfare function. Lexicographical ordering 

will be discussed in detail in a later section. Finally, max-min fairness is the most widely 

accepted approach since it fairly distributes resources and maximizes the utilization of the 

system. The relationship between Leximin maximum and the max-min fair solution will be 

discussed in detail in section 2.1.3. 
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2.1.2 Fairness Measures 

In this section, some measures are used to determine the variability in the distributed resources 

among the set of demands. However, some of these measures can be employed as objectives. 

2.1.2.1 Basic Fairness Measures 

To measure equity or fairness, simple statistical measures such as the mean, standard deviation, 

and variance can give an excellent indication of how the resource is distributed on individual 

demands. The resource can be bandwidth in communication networks, distance in facility 

location, or processing time in job scheduling. In addition, these measures can be set as 

objectives in mathematical programming. Some of the basic statistical measures discussed in 

Leclerc et al. (2012) are the maximum of absolute deviations (MAD), the sum-of-squared 

deviations (SSD), and the sum of the absolute deviations (SAD). Note that 𝑢! is the resource 

assigned to demand i given that the number of demands is n, and 𝑢"  is the average 

resource of all the n demands. 

 𝑀𝐴𝐷 = max
!"#,%,..,'

|𝑢! − 𝑢A| (2-2) 

 
𝑆𝑆𝐷 = 	C(𝑢! − 𝑢A)%

'

!"#

 (2-3) 

 
𝑆𝐴𝐷 = 	C|𝑢! − 𝑢A|

'

!"#

 (2-4) 

These measures perform well as objectives in mathematical programming. However, there are 

drawbacks associated with these measures if they are employed as objectives. These measures 

can produce superior results with low total deviation but with poor efficiency. All demands can 

be assigned zero resources and still provide excellent results. Another drawback is that some 

demands are assigned zero resources at the cost of improving other demands with more 
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resources. These measures quantify the differences on average and not considering every 

demand independently.   

2.1.2.2 Gini Index 

One of the measures to measure the income inequality in a society developed by Gini (1912) is 

the Gini index or Gini coefficient, as shown in (2-5). We denote by 𝑢! the level of income of 

individual i. If the income of all individuals is equal, the absolute difference among incomes is 

zero indicating perfect equality. However, if one individual receives all the income and all others 

receive zero income, the Gini index equals one, as seen in (2-6). Values greater than one are 

possible if the utility function of an individual is negative. 

 
𝒢 = 	

∑ ∑ F𝑢! − 𝑢(F'
!"#

'
("#

2𝑛∑ 𝑢!'
!"#

 (2-5) 

 0 ≤ 𝒢 ≤ 1 (2-6) 

To find the Gini index value from the Lorenz curve shown in Figure 2-1, the shaded area is 

divided by both the shaded and the striped areas under the curve. If the Lorenz curve falls on the 

line of equality, then the shaded area becomes zero resulting in the Gini index value of zero. See 

Gastwirth (1972) for more details. 

 
Figure 2-1: Lorenz curve 
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2.1.2.3 Jain's Index 

Jain's index, illustrated in (2-7), is derived from the coefficient of variation (COV). The 

variability of a series of numbers is measured independently by the COV. See Abdi (2010) for 

more illustration. Jain's index is equal to 1 (1 + 𝐶𝑂𝑉%)⁄ , indicating a negative correlation with 

the COV. Jain's index is bounded by "
#
 and 1, and the higher the index, the fairer the solution is, 

as shown in (2-8). If k out of n demands are allocated resources fairly, Jain's index is equal to 

𝑘 𝑛⁄ , meaning that it is very intuitive. See Jain et al. (1999) for more details. 

 
𝒥 = 	

(∑ 𝑢!'
!"# )%

𝑛∑ 𝑢!%'
!"#

 (2-7) 

 1
𝑛 ≤ 𝒥 ≤ 1 (2-8) 

2.1.2.4 Unfairness 

The unfairness measure provides an insight into the maximum difference between the highest 

value, and the lowest value of the assigned resource in the form of a fraction is the unfairness 

𝑢(𝑥) Correa et al. (2007). 𝑣!(𝑥) is the cost of the resource 𝑥! 	∀	𝑖 ∈ 𝐷 given D is the set of 

demands, as shown in (2-9). The lower bound of the fraction is one indicating perfect fairness, as 

seen in (2-10). 

 
𝑈(𝑥) = 𝑚𝑎𝑥 T

𝑣!(𝑥)
𝑣((𝑥)

:	𝑖, 𝑗 ∈ 𝐷, 	𝑥! , 𝑥( > 0	X (2-9) 

 𝑢(𝑥) ≥ 1 (2-10) 

There are four variations of the unfairness measure. These fairness measures are loaded 

unfairness, normal unfairness, user equilibrium unfairness, and free-flow unfairness. In loaded 

unfairness, the ratio is the entity travel time to the fastest traveler on the same source-destination 
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pair. Normal unfairness delivers the ratio of the length of the entity path to the shortest path of 

the same source-destination pair. User equilibrium unfairness provides the ratio of the entity 

travel time to the travel time on the same source-destination pair under user equilibrium. Finally, 

the ratio of the entity travel time to the length of the fastest path for the same source-destination 

pair is found by the free-flow unfairness, for more details see Jahn (2005). 

2.1.2.5 Price of Fairness (POF) 

The price of fairness is a measure of the percentage of utilization lost when fairness is 

incorporated in the model (Bertsimas and Farias, 2011). To find an efficient solution and its 

optimal allocation, the model (2-11)-(2-12) is solved, and the optimal value is denoted with 

SYSTEM(U). 

 𝑀𝑎𝑥	𝑒)𝑢 (2-11) 

 subject to  

 𝑢 ∈ 𝑈 (2-12) 

If the decision-maker objective is to distribute the resources among demands fairly, the sum of 

utilities is denoted by FAIR(𝑈;Φ) = 𝑒)Φ(𝑈). Since efficiency and fairness are conflicting 

objectives, the sum of utilities will mostly decrease, resulting in a loss in efficiency. The 

percentage of loss can be measured by the price of fairness POF(𝑈; 	Φ) in (2-13). The closer the 

POF to 0, the lower efficiency compromised. 

 
POF(𝑈; 	Φ) =

SYSTEM(𝑈) − FAIR(𝑈;Φ)
SYSTEM(𝑈)  (2-13) 

The upper bounds of the POF when MMF and PF are the fairness schemes considered as seen in 

(2-14) and (2-15). See Bertsimas and Farias (2011) for more details. 
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POF(𝑈;Φ*+) ≤ 1 −

2√𝑛 − 1
𝑛 	, (2-14) 

 POF(𝑈;Φ,,+) ≤ 1 −
4𝑛

(𝑛 + 1)%	, (2-15) 

where Φ*+ is the proportional fairness scheme, and Φ,,+ is the max-min fairness scheme. 

2.1.3 Policies for Resource Sharing 

2.1.3.1 Lexicographic Ordering 

To find an equitable solution using lexicographic ordering, the lexicographic minimax model 

(2-16) is applied.  

𝑀𝑖𝑛
-
j 𝑀𝑎𝑥
("#,..,'

𝑓((𝑥) , 𝑥 ∈ 𝒳l, (2-16) 

where 𝒳 is the set of feasible solutions, and 𝑓( , 𝑗 = 1, . . , n are the objective functions. The model 

(2-16) is solved to find the lexicographic minimax vector of optimal solutions. A vector is 

leximin larger than another vector if the non-decreasing ordered vector is lexicographically 

larger than the other non-decreasing ordered vector. The vector x is said to be lexicographically 

greater than the vector y (x ≻ y) if 𝑥! = 𝑦! and 𝑥( > 𝑦( for all j > i. The vector x is said to be 

lexicographically greater than or equal the vector y (x ≽ y) if 𝑥 ≻ 𝑦 or 𝑥 = 𝑦. The relationship 

between the MMF vector and lexmin maximal vector can be described by the following 

statement. If a vector 𝑥	 ∈ 𝒳 is MMF over the set 𝒳, then the vector is lexmin maximal over the 

set 𝒳. A vector 𝑥 is lexmin maximal over the set 𝒳 if for all 𝑦 ∈ 𝒳, 𝑥 ≽ 𝑦. However, the 

opposite relationship is not always true. The lexmin maximal vector 𝑥 is not necessarily MMF 

vector over the set 𝒳 since the lexmin maximal vector 𝑥 is not necessarily unique. For example, 
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Figure 2-2 A does not have an MMF solution since the two points (2,4) and (4,2) contradict the 

MMF definition, as we will discuss in the next section. However, these two points are leximin 

maximal solutions. Although Figure 2-2 B has a unique leximin maximal point (4,2), it is not 

MMF since 𝑥% can be increased by decreasing 𝑥#. See Radunović and Boudec (2007) for more 

details. 

 
Figure 2-2: two-dimensional examples to illustrate the difference between leximin maximum 

solution and MMF solution 

2.1.3.2 Max-Min Fairness 

MMF is a state where all resources are utilized with the fairest possible allocation. A vector 𝛾 ∈

Γ is said to be max-min fair if it is feasible, and if there exists 𝛾$% > 𝛾$	for 𝑠 ∈ 	 {1, … , 𝑛}, 

then 𝛾&% < 𝛾& ≤ 𝛾$ for 𝑡 ∈ 	 {1, … , 𝑛}. Let us assume that the vector 𝛾 is MMF on the set Γ. 

A component 𝛾$ in the vector 𝛾 cannot be increased without worsening another 

component 𝛾& that is less than or equal to 𝛾$ on the same set. Water-filling or progressive-

filling algorithm is an algorithm that gives the MMF solution introduced by Bertsekas and 

Gallager (1987). See Nace (2008) for more illustration. MMF solution is unique and provides the 

fairest solution with the highest efficiency. As a result, it is a widely accepted approach to find a 

fair and efficient resource allocation solution. The algorithm is called water filling or 

progressive-filling since it starts filling the lowest capacity components with the available 

A) B) 
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resource until the component is filled, then it proceeds with the other components until the 

resource is consumed or all components are filled. Suppose there is a set of demands K, and the 

goal is to supply these demands with the resource 𝛼. At iteration 𝑛 = 0, the set of blocking 

demands 𝐵' is an empty set meaning that the resource in all demands in constraint (2-18) is 

maximized when maximizing 𝛼 in the objective function (2-17). 

 𝑀𝑎𝑥	𝛼,  (2-17) 

 subject to  

 	𝑓.(𝑥) ≥ 	𝛼, ∀	𝑘 ∈ 𝐾\𝐵' (2-18) 

 	𝑓.(𝑥) ≥ 	 𝜆. , ∀	𝑘 ∈ 𝐵' (2-19) 

 𝑥 ∈ Χ.  (2-20) 

The progressive-filling algorithm to find the max-min fair solution is defined as follows: 

- Set n := 0 and 𝐿/ = ∅; 

- While 𝐿' 	≠ 𝐾 do: 

- Set n = n+1.  Solve the LP problem 𝑃', compute 𝛼; 

- Identify the set 𝐾' of saturated demands in iteration n, set 𝜆. = 𝛼	∀𝑘 ∈ 𝐾' and 𝐵' =

𝐵'0# ∪ 𝐾'. 

The flow vector obtained at the last step is leximin maximal, and the obtained multicommodity 

flow is thus a max-min fair one. 

The iterative approach to find MMF flow in networks is very common, but there are some 

challenges related to it. The first challenge with this approach is solving the LP model a number 
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of times that can be computationally demanding, depending on the size of the network.  Another 

challenge is in identifying the blocking constraints. The method to identify the blocking 

constraints in MMF is to identify the binding constraints through the dual variables. The 

corresponding dual variables to the binding constraints are positive according to the strict 

complementary slackness theorem, but the complementary slackness condition is not necessary. 

As a result, only a subset of the binding constraints is identified in each iteration leading to 

degeneracy since 𝛼' = 𝛼'1# = 𝛼'1% = ⋯. This would lead to higher computational time, but 

convergence is guaranteed. In addition, the water filling algorithm has some limitations 

depending on the structure of the problem. The feasible space has to be convex, and the utility 

function is concave for the water filling algorithm to work. Bin Obaid and Trafalis (2016) 

introduced an approximation model to find the max-min fair solution for bandwidth allocation in 

communication networks. The model works on convex and non-convex problems. However, the 

max-min fair solution is not guaranteed based on the structure of the problem. Next, we discuss 

the concept of proportional fairness as an alternative fairness concept.  

2.1.3.3 Proportional Fairness (PF) 

Given a set of users K, a vector of rates 𝑥 with components 𝑥. , 𝑘 ∈ 𝐾 is proportionally fair if it is 

feasible and if for any other vector of rates 𝑦 with components 𝑦. , 𝑘 ∈ 𝐾, the aggregate 

proportional changes are less than or equal to zero as seen in (2-21). 

 C
𝑦. − 𝑥.
𝑥..∈3

≤ 0 (2-21) 

Proportional fairness is applied when the service received is proportional to the amount paid by 

the service receiver. Suppose bandwidth is sent to a set of demands K through a network with a 

set of capacitated resources J of capacity C, and a set A given 𝐴(. = 1 if demand k uses resource 
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j. The objective (2-22) is to maximize the utility function for all demands subject to capacity 

constraints (2-23) and non-negativity constraints (2-24). 

 𝑀𝑎𝑥	C𝑈.(𝑥.)
.∈3

, (2-22) 

subject to 

 𝐴𝑥 ≤ 𝐶, (2-23) 

 𝑥 ≥ 0. (2-24) 

Assume that the amount paid 𝑤. per unit time is decided by user k and receives flow 𝑥. 

proportional to 𝑚. given that 𝑥. = 𝑚. 𝜆.⁄  where 𝜆. is the cost per unit of time. Now the 

objective (2-25) is to maximize the utility of user k and minimize the amount paid by every user 

given that the amount paid is non-negative (2-26). 

 𝑀𝑎𝑥	𝑈. }
𝑚.

𝜆.
~ − 𝑚. , (2-25) 

subject to  

 𝑚! ≥ 0. (2-26) 

Suppose that the vector m is known. The optimal solution of the objective (2-27) subject to the 

constraints (2-28) and (2-29) is proportionally fair. See Bonald et al. (2006) for more details. If 

𝑚. = 1	∀	𝑘 ∈ 𝐾, the vector of rates is a Nash bargaining solution. See Kelly (1997) and Kelly et 

al. (1998) for more details. 

 𝑀𝑎𝑥	C𝑚.
.∈3

log 𝑥. , (2-27) 

subject to 
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 𝐴𝑥 ≤ 𝐶,  (2-28) 

 𝑥 ≥ 0.  (2-29) 

2.1.3.4 (p, α) - Proportional Fairness 

Let 𝑝 = (𝑝#, 𝑝%, … , 𝑝4) and α are positive numbers. A vector of rates 𝑥 with components 𝑥. , 𝑘 ∈

𝐾 is (𝑝, 𝛼) proportionally fair if it is feasible and for any other vector y with components 𝑦. , 𝑘 ∈

𝐾 the aggregate proportional changes are less than or equal to zero as shown in (2-30). 

 C𝑝.
𝑦. − 𝑥.
𝑥.5.∈3

≤ 0 (2-30) 

 Although max-min fairness is a widely accepted approach for fair and efficient resource 

allocation, some researchers claim that max-min fairness gives absolute priority to fairness. (p, 

α) – proportional fairness is a generalization of max-min fairness and proportional fairness. Since 

fairness and utilization are contradicting objectives, (p, α)-proportional fairness compromises 

between resource utilization, in objective (2-22), and proportional fair solution in objective 

(2-27). Note that (p, α) – proportional fairness, as shown in (2-31), is a generalization to 

proportional fairness (Mo, 2000). For 𝛼 = 0, the maximum utilization is found 𝑈(0) = ∑ 𝑥..∈3 , 

and for 𝛼 = 1, the result is the proportional fair solution 𝑈(1) = ∑ log(𝑥.).∈3 . 

 
𝑈.(𝑥. , 𝛼) = �

𝑥.#06

1 − 𝛼 		𝑓𝑜𝑟	𝛼 ≠ 1													

log(𝑥.) 	𝑓𝑜𝑟	𝛼 = 1													
 (2-31) 

As 𝛼 goes to ∞, the solution converges to max-min fairness. See Mo and Walrand (2000) for 

more details. 
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2.1.4 Max-Min Fairness in Resources Allocation 

Among the policies of resource sharing, MMF is the fairest policy since it starts with the least 

fortunate group of individuals or demands, then proceeds with the next group to improve 

efficiency. MMF in networks early exploration by Megiddo (1974) introduces the concept of 

distributing the flow fairly, based on lexicographic ordering, instead of maximizing the overall 

flow in the network. In addition, Bertsekas et al. (1992) were among the first to explore MMF for 

multicommodity flow networks. Leximin ordering and its applications, such as microeconomic 

theories in social welfare, are discussed in the literature. See Hulme and Mosley (1996), for 

example. A vector is leximin larger than another vector if the non-decreasing ordered vector is 

lexicographically larger than the other non-decreasing ordered vector. The vector x is said to be 

lexicographically greater than the vector y (x ≻ y) if 𝑥! = 𝑦! and 𝑥( > 𝑦( for all j > i. The vector x 

is said to be lexicographically greater than or equal the vector y (x ≽ y) if 𝑥 ≻ 𝑦 or 𝑥 = 𝑦. The 

relationship between MMF vector and lexmin maximal vector can be described by the following 

statement. If a vector 𝑥	 ∈ 𝒳 is MMF over the set 𝒳, then the vector is lexmin maximal over the 

set 𝒳. A vector 𝑥 is lexmin maximal over the set 𝒳 if for all 𝑦 ∈ 𝒳, 𝑥 ≽ 𝑦. However, the 

opposite relationship is not always true. The lexmin maximal vector 𝑥 is not necessarily MMF 

vector over the set 𝒳 since lexmin maximal vector 𝑥 is not necessarily unique. Hence, an MMF 

vector 𝑥 is lexmin maximal vector over the set 𝒳 and unique. The reader is referred to 

Radunovic and Le Boudec (2007). The most common approach to find MMF flow in a 

multicommodity network is using the PFA. To find MMF in multicommodity network, each 

commodity is assigned a fixed path, and all commodity flows are increased simultaneously until 

a blocking commodity is reached, then the blocking commodity flow and the capacity it is 

occupying are removed from the network. See Nace (2006) for more details. This process is 
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repeated until all commodity flows are removed from the network. Another method to find MMF 

in resource allocation in flow networks introduced by Retvari et al (2007) is the polyhedral 

approach. Geometry is used to find MMF flows in networks where the number of commodities 

represents the number of dimensions of the polyhedron. Changing the flow of one commodity 

would result in a change in the flow of other commodities sharing the same capacity of the 

network, forming a polyhedron. The MMF flow solution point in the polyhedron can be located 

by maximizing the distance between the point and the zero axes for each commodity. The 

drawbacks of this approach are that the path for each commodity has to be predefined to identify 

the right-hand side values of the constraints, and the model is solved iteratively, which can lead 

to high computational time. A paper by Amaldi et al. (2014) introduce an approach to find the 

max throughput subject to MMF flow by building an MIP model. Each commodity follows a 

single path that is predefined as a parameter, and a 0-1 variable represents each commodity to 

follow one path among a number of possible paths. Another 0-1 variable is defined to indicate 

whether a link is a bottleneck in addition to flow variables of the links and the commodities. This 

problem rises to an exponential number of variables as the network’s size increases. As a result, 

the author suggests a branch and price to solve the problem. Moreover, the network topology is 

an important factor in the fair distribution of commodity flows, as illustrated by Carvalho (2012). 

Semi-analytical methods were used to solve the problem on the nearest neighbor graph using the 

shortest path flow, where the distance between the source and sink is a function of the shortest 

paths. Bashllari et al. (2007) have explored the rerouting of flow under disruption in two 

scenarios, partial rerouting, and global rerouting. Their approach to solving the problem is by 

dynamic programming solving an LP model in each iteration. A number of papers deal with the 

dynamic flow, and others optimize the static flow (offline). It is infeasible to update the traffic 
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routing depending on the traffic distribution variation since operators cannot afford it. However, 

the commodity flow demand can be forecasted in the average or worst-case scenario to optimize 

under static flow as discussed by Nace and Pi (2012). The flow of bandwidth in the internet 

protocol (IP) network is measured by Mbs/sec and required to be unsplittable leading to higher 

complexity. The unsplittable flow problem (UFP) complexity is NP-complete. However, multi-

protocol label switching (MPLS) technology allows the bandwidth traffic to be split among 

multiple paths. In the next chapter, the assumption is that the traffic is static (offline), and the 

multicommodity flow can be split among different routes. 

2.1.5 Applications in Fairness 

2.1.5.1 Fairness in Communication networks 

Recently, more than 90% of the literature of fair resource allocation has been extensively applied 

specifically in communication networks and networks in general. Megiddo (1974) has introduced 

fairness to networks. He finds the optimal solution to the fair and maximum flows using the 

lexicographical ordering of the individual flows for sources and sinks. Nace and Pióro (2008) 

discuss the max-min fairness approach and its variations to fairly distribute bandwidth among a 

set of demands in communication networks. Max-min fair bandwidth allocation is studied in 

different network structures such as multi-channel wireless mesh networks, wireless multihop 

networks, cellular networks, and packet switches and routers by Tang et al. (2006), Thulasiraman 

et al. (2011), Boche et al. (2007), and Pan and Yang (2007) respectively. When the bandwidth 

demand is very high, the network or routers become congested. Mahajan et al. (2001) and Siu 

and Tzeng (1995) explore congestion in routers and asynchronous transfer mode (ATM) 

networks, respectively. 
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Another application is in communication networks, where fairness in resource allocation is 

applied in the area of wireless sensor networks. Wireless sensors are placed in remote and hard 

to reach areas to sense the environment such as temperature, wind speed, humidity, etc. Then, 

send the data to the server through the shortest path to optimize the energy. The source of energy 

for these sensors is from solar panels or wind propellers. Some sensors sense and send the 

information while other sensors sense information, receive information from different sensors, 

and send the information to other sensors or the server, and these processes require energy. The 

objective is to maximize the utilization and fairly sense the data from all the sensors in the 

network. Sridharan and Krishnamachari (2009) uses max-min fairness to maximize the 

utilization and fairly collect information from all sensors in the network. Hsu et al. (2010) claim 

that it is inefficient to use max-min fairness for underwater sensor networks (UWSN) and 

proposes MILP model to find a max-min fair solution. 

2.1.5.2 Fairness in Facility Location 

Fairness in resource allocation is applied to other applications in networks. Fairness is applied in 

facility location and location-allocation problems. When placing public facilities such as schools, 

libraries, or outpatient clinics, minimizing the distance from the facility to the service receivers is 

the main objective. However, minimizing the total distances may result in placing the facility 

very far from some service receivers and very close to others, which may drive some service 

receivers to claim that it is unfair or unjust. Beheshtifar and Alimoahmmadi (2015) develop a 

model with multiple objectives to determine optimal sites for new clinics. Two of the objectives 

are minimizing the total distance to reach the clinics and minimizing the inequity to access the 

clinics. Buzna et al. (2014) propose an approach to solve the facility location problem using a 

lexicographic minimax objective to find an equitable and efficient solution.  
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However, when placing fire stations, police departments, or ambulance stations, modeling the 

problem can be slightly different. The problem becomes a set covering problem since the 

response time is a vital factor in the rescue process. Goldberg (2004) develops a mixed-integer 

programming (MIP) model that determines the optimal location and dispatching process of 

ambulances. The model maximizes the number of potential patients covered locations (within 

nine minutes distance) and fairly allocates the patients to the ambulance locations by distributing 

the demand fairly among the ambulance locations. We conclude that fairness can be applied not 

only to service receivers but also to service providers. Another example of locating facilities 

fairly is by Erkut et al. (2008). They introduced a multicriteria facility location model for solid 

waste, and one of the objectives is to locate the facilities fairly.  

2.1.5.3 Fairness in Air Traffic Control (ATC) 

The demand for air transportation has been increasing significantly, leading to air traffic 

congestion and more challenging scheduling tasks. The scheduling process starts with strategic 

planning, where flights are assigned takeoff and landing slots. Before execution, tactical 

planning takes place due to uncontrolled delays caused by inclement weather or technical issues. 

These delays incur a cost in billions of dollars. Decision-making tools are being developed to 

improve the scheduling process. The majority of the optimization models fail in considering the 

distribution of delay equally among the airline carriers. As a result, minimizing the total delay 

minutes (or total cost) is an efficient solution, but it remains unimplemented due to the lack of 

fairness. Jonker et al. (2005) have proposed an MIP model imposing fairness using real-world 

data spanning across six days. Since fairness and efficiency are contradicting objectives, they 

achieved fairness, compromising less than 10% of the total cost. See Jonker et al. (2005) for 

more details. 
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2.1.5.4 Fairness in Job Scheduling 

Job scheduling on parallel processors has been extensively studied in the past few decades. Job 

scheduling can become very challenging as the number of jobs increases since they are 

scheduled over time and space. In addition, jobs are scheduled on multiple threads, which leads 

to an extremely large number of combinations. As a result, the model complexity is NP-

complete. Hence, approximation models and heuristics have been introduced in the literature. 

See Feitelson and Rudolph (1995) and Schwiegelshohn and Yahyapour (1998) for more details. 

Due to the high demand of different size job processing, the fairness issue has arisen. Algorithms 

and heuristics are introduced for fair job scheduling. See Wang et al. (2013) and Zaharia et al. 

(2010). Another application of fair scheduling is applied in heterogeneous vehicular networks by 

Zhang et al. (2016). They used a max-min fair scheduling approach to maximize the mobile 

service amount. See Thawari et al. (2012) and Zhang (2016) for more details. 

2.1.5.5 Fairness in Evacuation and Traffic Management 

Fairness has been applied to evacuation processes and traffic management. The objective of fair 

evacuation models is to minimize the total evacuation time and fairly allocate evacuees to the 

shortest route with minimum travel time. The delay experienced by the evacuees due to 

congestion is a main factor in the evacuation process. A very common approach to model an 

evacuation model is the CTM developed by Daganzo (1993). The objective in CTM is to 

minimize the NCT, or system optimal (SO), neglecting fairness in routing the evacuees, which 

may cause high congestion in some parts of the network and lead to further losses in lives and 

properties. User equilibrium (UE) or Wardrop's rule by Wardrop (1952) is the optimal fair 

solution that schedules travelers on the shortest routes such that no traveler can improve their 
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travel time by changing routes. The result is a fair distribution of resources and minimum 

congestion over the network.  

2.1.6 Summary 

Fairness is applicable in applications with multiple demands. The set of demands are assigned 

utility functions based on their preferences. Then the utilities are maximized fairly for a fair-

efficient solution given that fairness is more important than efficiency in some applications. 

There is no single method to find a fair and efficient resource allocation. Every approach has its 

strength points and weaknesses. Using basic statistical measures may not give the fairest, or the 

most efficient solution since the average or total deviation is minimized, disregarding the 

individual allocations. Gini index, Jain's index, and unfairness are non-linear functions and can 

lead to more computational complexity. Max-min fairness can be computationally demanding 

with the problem size if the progressive-filling algorithm is used. Finding a proportional fair or 

(p, α) – proportional fair solution can be challenging. Lagrangean duality is one of the 

approaches to find a proportional fair solution. 

2.2 Evacuation Modeling 

2.2.1 Evacuation Overview 

An early exploration of evacuation process improvement in theatre buildings by Smith (1882) 

was by redesigning the doorways, hallways, and stairways of a theatre to preventing congestion 

in case of emergencies. The author's approach to preventing clogging the exit doors and hallways 

is by dividing them by partitions allowing only one person to fit forming a line of people to avoid 

body contact. Evacuation has been gaining great interest in the past few decades, and simulation 

and mathematical programming models have been developed. A wide variety of evacuation 
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models has been explored with different objectives. Evacuation models are categorized under 

two main categories; vehicle-based evacuation and structure evacuation. Structure evacuation 

covers the evacuation of pedestrians from buildings such as stadiums, skyscrapers, and theaters. 

See Kiski and Francis (1985) for example. On the other hand, vehicle-based evacuation includes 

private vehicle evacuation and mass-transit evacuation such as bus-based evacuation by Bish et 

al. (2014) and Margulis et al. (2006) respectively. Based on a specific objective, evacuation 

procedures are modeled as microscopic or macroscopic by Parisi and Dorso (2005) Yusoff et al. 

(2008) respectively. Microscopic focuses on the movement of individual entities while the 

macroscopic focuses on the overall flow of evacuees. Mesoscopic models cover both 

microscopic and macroscopic as proposed by Di Gangi (2011). The evacuation models are also 

classified as static and dynamic models. In static models, the time has no effect on the model by 

Kagaris (1999) while dynamic evacuation models incorporate time in the model by Kaufman et 

al. (1998). 

2.2.2 Objectives of Evacuation Models in Flow Networks 

There are several objectives in these evacuation models such as system optimal (SO), user 

equilibrium (UE), nearest allocation (NA), and constrained system optimal (CSO). The objective 

in SO as defined by Wardrop (1952) is to minimize the total evacuation time of evacuees to 

minimize the NCT. In UE, the evacuation time for each group or individual on all routes is 

minimized so that no individual can improve their travel time by changing routes (Nash 

equilibrium). Evacuees are assigned to the nearest shelter or safe destination in NA by 

Southworth (1991). The models SO and UE/NA are contradicting since the SO does not consider 

the distribution of the individual evacuation times.  
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2.2.2.1 Wardrop's First Principle 

The objectives in most mathematical programming traffic assignment models are the NCT 

known as SO, or the UE. UE or the First Wardrop principle by Wardrop (1952) is that the 

evacuation time of all evacuees is minimized, and no individual evacuee can improve their travel 

time by changing routes. This objective provides the best solution for each individual. Nash 

equilibrium is another fair resource allocation approach introduced by Nash (1951) in network 

games. An n-person game consists of n players, and each player has a finite set of strategies and 

a payoff function 𝑝!. The Nash equilibrium point solution is when each player maximizes their 

strategy if the other players' strategies are fixed. Hence, each player has an optimal strategy 

against other players. Charnes and Cooper (1961) observed the relationship between Wardrop 

equilibrium and Nash equilibrium. Nash equilibrium converges to Wardrop equilibrium as the 

number of players increases in a network game with a finite number of players as proved by 

Haurie and Marcotte (1985). For more illustration, see Correa and Stier-Moses (2011). UE is 

equivalent to MMF, where the maximum evacuation time of all evacuees is minimized until it 

cannot be improved any further. Then the next group of evacuees' evacuation time that can be 

improved is minimized until they cannot be improved. This process is repeated until all travel 

times are minimized to obtain an optimal MMF solution. In the MMF solution, no individual can 

improve their travel time without worsening another individual's travel time that is less than or 

equal to them. See Friesz et al. (1993) and Smith (1993) for example. To find the MMF solution, 

the water filling or progressive-filling algorithm, introduced by Bertsekas (1987),  is used. The 

progressive-filling algorithm works only on convex problem since it uses the complementary 

slackness to identify the evacuation time that cannot be improved any further. In some cases, 
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MMF flow may not use routes shorter than the used ones. However, the Nash equilibrium does 

not leave shorter routes unused. See Correa et al. (2007) for more details. 

Selfish routing regained a great interest in the recent years after Wardrop's first principle UE. 

Lack of fairness can motivate evacuees to act selfishly to reach their destination in the shortest 

time possible. Game theory or network games is the common approach that addresses selfish 

routing. See Anshelevich and Ukkusuri (2009), Hayrapetyan et al. (2007), Nikolova  and Stier-

Moses (2011), and van Essen et al. (2016). 

2.2.2.2 Wardrop's Second Principle 

SO or the second Wardrop's principle introduced by Wardrop (1952) in the traffic assignment 

models is the NCT in the optimization models. In SO, the maximum evacuation time on any 

route is minimized to maximize the evacuation efficiency disregarding the individual travel 

times. However, SO results in unfair assignment of traffic on the same or different origin-

destination pairs. See Tuydes-Yaman and Ziliaskopoulos (2014) for example. Modeling the 

congestion effect in the problem is a challenging task since it contributes greatly to the model 

complexity as the load dependent travel time is a non-linear function of the traffic volume. In 

addition, minimizing the maximum travel time of the traffic in flow networks is an NP-hard 

problem even with linear latency functions and with a single source and terminal as shown by 

Correa et al. (2007). The drawback of SO is that the model does not consider the congestion in 

different parts of the network as the model objective is to minimize the network clearance time. 

Hence, parts of the network can be highly congested leading to longer evacuation time. See 

Correa (2007) for more illustration. 

CSO, which is a compromised objective between SO and UE, has been explored by Jahn et al. 

(2005) to balance the system efficiency and the fairness in static traffic assignment networks. 
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Lujak et al. (2015) proposed a static traffic assignment modeling approach to find a fair-efficient 

solution based on Nash Welfare optimization. Finding a fair and efficient solution using CSO is 

also applicable in facility location. Bayram et al. (2015) introduce a non-linear static model with 

CSO objective to compromise system efficiency and users' interest in shelter location in 

evacuation which is an application under evacuation and facility location. 

Other objectives are tested by Bish et al. (2014) in the evacuation model. Minimizing the ATT 

and the average evacuation time (AET) of evacuees results in different optimal solutions. 

Minimizing the ATT is ideal in normal traffic congestion control while minimizing the AET is 

suitable for emergency evacuation.  

2.2.3 Evacuation Modeling Approaches 

Most evacuation models using mathematical programming are based on static or dynamic traffic 

assignment. See Jahn et al. (2005),  Janson (1991), Jayakrishnan (1995), Kachroo and Sastry 

(2016) Kaufman et al. (1998), and Wie et al. (1990) for static and dynamic traffic assignment 

examples. In this section, static and dynamic modeling approaches are discussed.  

2.2.3.1 Static Evacuation models 

Nemours algorithms have been proposed to solve the UE static traffic assignment problem. One 

of the most widely accepted algorithms is Frank-Wolfe (FW). This algorithm finds a UE 

approximation by solving a set of convex linear programming problems iteratively as an 

approximation method. See LeBlanc (1975) for more details. Modified versions of the FW 

method were proposed to improve the efficiency of the FW method such as the conjugate Frank-

Wolfe (CFW), and bi-conjugate Frank-Wolfe (BFW). Mitradjieva Lindberg (2013) perform a 

comparison between these algorithms and show that CFW and BFW outperform the FW method. 

Path based algorithms such as gradient projection (GP) method developed by Rosen (1960) is 
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widely used in communication networks. Forian et al. (2009) introduce an algorithm that 

decomposes the O-D pairs into subproblem, and each subproblem is solved based on the GP 

method to find the equilibrium traffic assignment. Some network design models and algorithms 

are biologically inspired and used for traffic assignment such as genetic algorithm (GA), ant 

colony routing (ACR) algorithm, and Physarum algorithm. Ceylan and Bell (2005) applied the 

GA to solve a signalized road network under congestion as the upper level and applied stochastic 

user equilibrium traffic assignment as the lower level. Cong et al. (2013) implemented an online 

ACR optimization heuristic to update the traffic distribution on routes by determining the 

splitting rates on each node. Xu et al. (2018) propose a modified version of the Physarum 

algorithm to solve the user equilibrium traffic assignment model based on the origin nodes. Most 

models and algorithms assume a static traffic assignment. However, static traffic assignment 

models have a limitation in capturing the traffic evolution and congestion propagation effect 

which could lead to erroneous solutions. Another limitation is in capturing the traffic interaction 

in adjacent links. For example, static traffic assignment model solution may result in expanding 

two parallel links leading to creating a bottleneck since most of these models' objective is based 

on the sum of the travel times on all links. Hence, dynamic evacuation models are closer to 

traffic evolution reality than the static traffic assignment models. 

2.2.3.2 Dynamic Evacuation Models 

Pioneering work in the DTA simulation modeling is developed by Yagar (1971). The travel time 

between two nodes in the transportation network is dependent on the flow volume in DTA 

models. Hence, the travel time is a nonlinear convex function of the flow. The drawback of this 

modeling approach is that the travel time is overestimated as the travel time function is convex as 
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observed by Nie and Zhang (2005). As a result, the optimization community shifted to other 

evacuation modeling approaches. See Mahmassani (2001) for a survey on simulation models. 

Among the first attempts to model the DTA as a discrete-time SO mathematical program was by 

Merchant and Nemhauser (1978a, 1987b). The M-N model captures the traffic propagation due 

to congestion through a link exit function, and the travel time is represented through the link 

performance function of the traffic volume. The model has been extended and investigated with 

different exit flow functions, link travel time models, and first-in-first-out (FIFO) property by 

Carey (1986), Wie et al. (1995) and Carey and McCartney (2002). In general networks, 

additional constraints of non-convex structure are imposed to maintain the FIFO requirement that 

can lead to greater computational complexity as discussed by Carey (1992). Another issue that is 

common to occur in discrete SO-DTA is the traffic holding-back, where the traffic on one route 

is delayed for unreasonable time in favor of other traffic since there is no restriction on how long 

a group of evacuees can be delayed. Both FIFO and traffic holding-back are discussed by Carey 

and Subrahmanian (2000). Another modeling approach of the DTA is the point queue (PQ) 

model. The assumption in this model is that the time spent in the network is the travel time in 

free-flow speed plus the waiting time in queue. The vehicle waits on an exit queue on the link 

until it is possible to move forward to the next link based on the capacity and the cost of the link. 

See Drissi-Kaïtouni and Hameda-Benchekroun (1992) and Li et al. (2000) for more illustration 

on PQ models. 

The relationships among the traffic flow characteristics such as flow, volume, speed on long 

crowded roads were explored in an early theoretical study by Lighthill and Whitham (1955a) 

(1955b). The shock waves were introduced to the macroscopic traffic flow model a year later by 

Richards (1956) to be known as the LWR hydrodynamic model. Based on the LWR 
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hydrodynamic model, the CTM was developed by Daganzo (1993) and (1995). The network is 

preprocessed by dividing the roads into homogenous sections or cells. With the tick of a clock, 

the evacuees or part of the evacuees advance to the next cell once the capacity allows them to 

move forward. Otherwise, they wait in the cell until the capacity allows them to move forward. 

To model the congestion effect, the capacity of the cells changes with time based on the number 

of vehicles in the preceding cell, the capacity flow into the cell, and the empty space in the next 

cell. Ziliaskopoulos (2000) modified the CTM and formulate it as an LP with a single destination 

and SO objective or NCT defined as the time from the beginning of the evacuation process until 

the last group of evacuees reaches the safe destination. Ukkusuri and Waller (2008) implemented 

the UE objective as a DTA using the CTM and compare the results with the SO output. See 

Bayram (2016) for a literature survey on optimization models for large scale evacuation. 

2.2.3.2.1 The Cell Transmission Model 

A network (N, A) is given with a set of nodes N and a set of arcs A. The set of nodes is 

categorized into three sets; the set of source nodes 𝑁7, the set of road segment nodes 𝑁4, and the 

set of sink or terminal nodes 𝑁). It requires a one-time interval 𝜌 to travel a road segment, and 

the time horizon for evacuation planning is composed of total time intervals 𝑇.  

Sets and Parameters 

K set of communities based on the sink capacity 

𝐷!. number of evacuees of community k at source node i 

𝐷 total number of evacuees  

𝐶(. capacity of sink j for evacuees from community k 

𝑄! maximum number of vehicles that can enter of leave a road segment i in one time interval 
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𝐽! maximum number of vehicles that road segment i can hold 

𝛿! free-flow speed to the shockwave speed ratio 𝑤/𝑣 for road segment i to propagate the 

congestion effect to the upstream road segments, where w is the speed when the traffic is 

congested, or backward wave speed, v is the free-flow speed, and 0 ≤ 𝛿! ≤ 1. See 

Daganzo (1995) for more illustration. 

Variables 

𝑥!8. the number of evacuees of community k at node i at the beginning of the time interval t 

𝑦!(8. the number of evacuees of community k traveling on arc (i, j) at time interval t 

𝐸8 binary variable equals 1 if the evacuation is still in process during time interval t, and equals 

0 otherwise 

𝑛 number of time intervals required for all evacuees to reach destination  

The objective in CTM is to minimize the NCT which is the sum of the indicator variables 𝐸8 as 

shown in the objective function (2-32) and constraint (2-33). The problem that CTM solves is as 

follows: 

𝑀𝑖𝑛	𝑁𝐶𝑇 = 𝑛 (2-32) 

subject to   

𝑛 =C𝐸8
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� ∀𝑗 ∈ 𝑁4 , 𝑡 = 1,… , 𝑇 (2-41) 

 
C C 𝑦!(8.

!|(!,()∈=

≤ 𝐶(.

)

8"#

 ∀𝑗 ∈ 𝑁) , 𝑘 ∈ 𝐾 (2-42) 

 
𝑥!8. ≥ 0 

∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 

𝑡 = 1,… , 𝑇 
(2-43) 

 
𝑦!(8. ≥ 0 

∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 

𝑡 = 1,… , 𝑇 
(2-44) 

 𝐸8 ∈ {0,1} 𝑡 = 1,… , 𝑇 (2-45) 

The variable 𝐸8 becomes 0 once all evacuees reach their destination as shown in constraint 

(2-34). The demand starts from the source nodes in constraint (2-35) making sure that the 

network is empty at the beginning of the evacuation process as shown in constraint (2-36). The 

flow conservation constraint (2-37) transfers evacuees from a cell to the next cell when possible, 

and the number of evacuees traversing the link cannot exceed the number of evacuees within the 

node as seen in constraint (2-38). Constraints (2-39) and (2-40) regulate the number of vehicles 
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that can enter or leave the road segment respectively. Constraint (2-41) regulates the entrance to 

a road segment based on the shockwave speed to simulate the congestion propagation effect. The 

capacity of the road segment is set in constraint (2-42), and the non-negativity constraints are 

(2-43), (2-44), and (2-45). 

However, the M-N model and the CTM are based on a similar concept of traffic movement and 

delay propagation. Nie (2011) shows that incorporating additional constraints to the linearized 

M-N model results in relaxed CTM and proposes an algorithm to solve the issue of flow holding 

back. Therefore, both models are generally similar in the basic concept since CTM can be 

derived from the original M-N model. Essential information lacking in these models is the total 

time each group of evacuees spends in the network until they reach their destination. 

2.2.3.2.2 The Cell Transmission Model Weakness Points 

Similar to any evacuation modeling approach, the cell transmission model has several weakness 

points. These weak points are listed as follows: 

1- In the CTM model, the ratio of the free-flow speed to the shockwave speed parameter 𝛿! 

for road segment i is set and updated manually. The parameter 𝛿! regulates the entry of 

evacuees to the next cell by simulating the congestion. Thus, the congestion of any road 

segment must be known prior to the evacuation to set the value of 𝛿!, which may not be 

accurate, given the dynamic nature of the process. 

2- The CTM model is insensitive to the length of the road. The CTM leans more towards the 

simulation of tolls, not congestion simulation. Hence, an evacuee can travel in free-flow 

speed once passes the bottleneck or toll point if not delayed by another one. In reality, the 

transportation network user is delayed based on the volume traffic, even if there is no 

bottleneck. An illustrative example is discussed in section 5.3.1.1. 
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3- The CTM model does not keep track of the time evacuees spend in the network. The 

CTM model sends evacuees then finds the total time evacuees spend from the beginning 

of the evacuation process until the last evacuee reaches the destination. This modeling 

approach is suitable for efficient evacuation. However, some evacuees may spend a very 

long time in the network, while others reach the destination is a short time since the 

individual evacuation time for each evacuee is not an objective in the CTM model. 

2.2.4 Uncertainty in Evacuation 

In emergencies, the congestion takes place in parts of the road network due to the surge in 

demand and need to evacuate. Most evacuation models are modeled as nominal by assuming 

deterministic input data. Recently, incorporating uncertainty in evacuation models has been 

gaining a great interest with the objective of more robust models that can control uncertainty. 

Uncertainty is generally modeled as stochastic programming or robust optimization.  

2.2.4.1 Stochastic Programming 

Stochastic programming models require a known probability distribution of the uncertain 

parameters. If the probability distribution is known, scenario based through Monte Carlo 

simulation or chance constraint programming can be implemented. Kimms and Maiwald (2018) 

use a scenario based approach to address the uncertainty in the road capacities using bi-objective 

optimization. Wang et al. (2016) focus on the evacuation plans by implementing a scenario based 

approach assuming that the travel times and road capacities are uncertain. Waller and 

Ziliaskopoulos (2006) implement a chance constrained modeling approach assuming uncertain 

demands with a known probability distribution. Yazici and Ozbay (2010) incorporated the 

uncertainty in both the demand and the road capacity in the model using individual and joint 

chance constraint stochastic programming. Ukkusuri and Waller (2008) developed a linear model 
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to help decision makers allocate budget on capacity improvement based on uncertain demand 

using chance constraint and two stage resource model stochastic programming. Then they 

compare the output of the model with the output of the nominal model for user and system 

optimum. However, collecting data is challenging in evacuation processes. Robust optimization 

is used if the probability distribution of the uncertain parameter is unknown. In robust 

optimization, the feasible set is controlled to maintain the model feasibility in the worst case 

scenarios. 

2.2.4.2 Robust Optimization 

Robust optimization is the proper approach when the probability distribution of the data is 

unknown. Feasibility is the most concern in robust optimization since the infeasible model is 

useless. Robust solutions are tolerant, to some extent, to the variability of the parameters to 

maintain feasibility. Soyster (1973) introduced the concept of inexact linear programming. The 

feasible region is defined as set containment instead of convex inequalities known as box 

uncertainty set. Box uncertainty is simple to implement but it is too conservative as it 

compromises a considerable portion of the feasible space since all parameters are set to their 

worst value. Ben-Tal and Nemirovski (1998) introduce the ellipsoidal uncertainty set to control 

the level of conservatism. The drawback of the ellipsoidal uncertainty approach is that it can 

become computationally intractable since it is solved using conic quadratic models. Later, the 

polyhedral uncertainty set was introduced by Bertsimas and Sim (2004). The polyhedral 

approach is linear, computationally tractable, and easy to implement. The level of conservatism 

can be controlled by the parameter Γ! of the 𝑖8> constraint. This approach is a generalization to 

the box uncertainty as the model becomes nominal if Γ! = 0, and the model becomes Soyter's if 

the parameter Γ! = |𝐽!| given that 𝐽! is the set of uncertain coefficients. Hence, the level is 
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conservatism is controlled by adjusting the parameter Γ! within the interval Γ! ∈ [0, |𝐽!|]. The 

drawback of this approach is that the interpretation of the parameter Γ! is ambiguous. See 

Bertsimas and Sim (2004) for more illustration. Do Chung et al. (2011) implement robust 

optimization using the box uncertainty approach in the evacuation process to improve the road 

capacities with limited budget given uncertain demand. Ren et al. (2013) develop an integrated 

model to assign evacuees to routes and optimize traffic signals with uncertain demand using the 

ellipsoidal uncertainty set. Yao et al. (2009) develop a linear programming model based on a 

robust optimization approach to reduce the infeasibility cost due to the uncertainty in demand. 

Ben-Tal et al. (2011) use the polyhedral uncertainty set for the uncertain demand in evacuation 

and humanitarian relief supply chain model. Reliability-based optimization is another approach 

used disregarding the probability distribution of the uncertain parameters. Ng and Waller (2010) 

present a reliability based approach by providing a probabilistic guarantee on the resulting 

evacuation plan, i.e. infeasibility is allowed with a prespecified tolerance, given that the 

uncertainty is in demand and road capacity with the unknown underlying distribution. Lim et al. 

(2015) present a reliability based evacuation route planning model to find the relationship 

between the clearance time, the number of evacuation routes, and the congestion probability 

assuming that the capacity of the road links is uncertain, and its probability distribution is 

known. 

 In some cases, the probability distribution of one of the model parameters can be partially 

known.  Lim et al. (2019) propose a distributionally robust chance constrained model assuming 

that the demand underlying distribution is partially known. Do Chung et al. (2012) proposed an 

approximate joint-chance constrained Cell Transmission model assuming that the underlying 

probability distribution of the demand is partially known.   
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Chapter 3: Approximation to Max-Min Fairness in Multi 

Commodity Networks 

3.1 Introduction 

The most common approach to find MMF resource allocation, as illustrated in detail by Nace 

and Pi (2008), in a problem is to start with the lowest capacity objects of a system to fill with the 

available resource to its maximum capacity. Then fill the second-lowest object continuing with 

the next lowest object until the available resource is consumed or maximum capacity is reached. 

MMF ensures the resource is fairly distributed among the available objects while utilizing the 

available resources. This algorithm is called PFA introduced by Bertsekas and Gallager (1987). 

MMF is widely applied in traffic engineering and load-balancing problems. IP is an extensively 

studied application using MMF, where the goal is to maximize the throughput subject to a fair 

distribution of resources. A different approach is presented in this chapter to help find MMF flow 

in large scale multicommodity network topologies and provide a better insight into the network 

structure. The two objectives of MMF are transformed into a bi-objective mathematical 

optimization model to help the decision-maker to select the level of throughput and utilization. 

Firstly, we will start by exploring related work to MMF. Specifically, in section 3.2, we will 

provide the definition to MMF, discuss the common approach to solve MMF problems in 

multicommodity flow networks, and discuss some challenges related to this approach. In section 

3.3, a new approach combining MMF knowledge with multicriteria optimization is introduced 

including a small illustrative example. In section 3.4, experiments are applied to real and random 

network topologies to give a better understanding of the new approach. In section 3.5, the output 

of the progressive-filling algorithm and the multicriteria model are compared.  
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3.2 The Progressive-Filling Algorithm 

In this section, the MMF definition is provided, the PFA algorithm is studied including the LP 

model, and the challenges in using this algorithm are discussed. 

3.2.1 MMF Definition 

We first define the MMF vector. A vector 𝛾 ∈ Γ is said to be max-min fair that has the property 

that if there exist a 𝛾?@ > 𝛾?	for 𝑠 ∈ 	 {1, … , 𝑛}, then 𝛾8@ < 𝛾8 ≤ 𝛾? for 𝑡 ∈ 	 {1, … , 𝑛}. Let us assume 

that the vector 𝛾 is MMF on the set Γ. A component 𝛾? in the vector 𝛾 cannot be increased 

without worsening another component 𝛾8 that is less than or equal to 𝛾? on the same set. The 

same definition is valid for the MMF flow in networks. A multicommodity network is MMF if a 

commodity flow cannot be increased without worsening another commodity flow that is less 

than or equal to it in the same network since commodity flows share the same network capacity. 

3.2.2 The MMF LP Model 

3.2.2.1 Sets and Parameters: 

N Set of vertices, indexed by 𝑖 ∈ 𝑁 

A Set of arcs, indexed by (𝑖, 𝑗) ∈ 𝐴 

C Set of capacities for each arc, indexed by (𝑖, 𝑗) ∈ 𝐴 

K Set of commodities, indexed by 𝑘 ∈ 	𝐾 

𝐾' Set of commodities saturated simultaneously at iteration n 

𝐵' Set of demands saturated during the first n iterations 

𝑃' The LP model of iteration n 

3.2.2.2 Decision Variables: 

f The maximum flow at any iteration 
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𝛾. The maximum flow of commodity 𝑘 ∈ 	𝐾 

𝑥!(.  The flow on arc (𝑖, 𝑗) ∈ 𝐴 of commodity 𝑘 ∈ 	𝐾 

The LP model 𝑃' objective (3-1) is to maximize the flow of all commodities. Each link has a 

capacity for all commodities, as seen in constraint (3-2). The flow conservation constraints for 

transshipment nodes is illustrated in (3-3), the flow conservation at the source and terminal for 

the blocking flows is illustrated in constraint (3-4), and the flow conservation to maximize the 

flow at the source and terminal nodes are illustrated in constraint (3-5) and (3-6). Finally, 

constraints (3-7) is the non-negativity constraints. The dual variable can be seen for each 

constraint to be used to identify the blocking commodities.  

 𝑀𝑎𝑥	𝐶𝐹 = 𝑓  (3-1) 

 subject to   

�𝛿!,(� C𝑥!(.

.∈3

≤ 𝐶!( ∀(𝑖, 𝑗) ∈ 𝐴 
(3-2) 

�𝜆!,.� C 𝑥!(.

(:(!,()∈=

− C 𝑥(!.

(:((,!)∈=

= 0 ∀𝑘 ∈ 𝐾, 𝑖 ∉ {𝑠. , 𝑡.} 
(3-3) 

�𝜆!,.� C 𝑥!(.

(:(!,()∈=

− C 𝑥(!.

(:((,!)∈=

= T 𝛾. , 𝑖 = 𝑠.

−𝛾. , 𝑖 = 𝑡.
 ∀𝑘 ∈ 𝐵'0#, ∀𝑖 ∈ 𝑁 

(3-4) 

�𝜆?",.� C 𝑥(!.

(:((,!)∈=

− C 𝑥!(.

(:(!,()∈=

+ 𝑓 ≤ 0 ∀𝑘 ∈ 𝐾\𝐵'0#, 𝑖 = 𝑠. 
(3-5) 

�𝜆8",.� C 𝑥!(.

(:(!,()∈=

− C 𝑥(!.

(:((,!)∈=

+ 𝑓 ≤ 0 ∀𝑘 ∈ 𝐾\𝐵'0#, 𝑖 = 𝑡. 
(3-6) 

 𝑥!(. ≥ 0 ∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴 (3-7) 
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The iterative process to solve the MMF problem starts with maximizing the flow in the model 𝑃' 

until the blocking commodity flows are reached.  Then the blocking constraints are identified 

using the strict complementary slackness. The slacks of the blocking constraints become zeros 

resulting in positive corresponding dual variables according to the complementary slackness 

theorem. The next step is to set the identified blocking constraints in (4) equal to 𝛾. where 𝛾. = 

𝑓. Then, the model 𝑃'1# is maximized to find the next set of blocking constraints 𝐾'1# and set 

them to 𝛾.. This process is repeated until all flow constraints become blocking constraints. This 

algorithm ensures that by increasing the flow of a subset of commodities, the lower flow 

commodities set to constant flow do not decrease or worsen. 

Table 3-1: The progressive-filling algorithm 
Algorithm: Find the MMF multicommodity flow and the associated flow vector 

Step 1 Set n = 0 and 𝐵/ = ∅ 

Step 2 If 𝐵' = 𝐾, stop. Otherwise set n = n+1, then find the minimum f by 

solving the problem 𝑃' 

Step 3 Identify the set 𝐾' of blocking commodities at iteration n, set 𝛾. =

𝑓	∀𝑘 ∈ 𝐾' and 𝐵' = 𝐵'0# ∪ 𝐾'. 

Step 6 Go to step 2 

3.2.3 Challenges with the PFA Algorithm 

The iterative approach to find an MMF flow in networks is very common, but there are some 

challenges related to it. This first challenge with this approach is solving the LP model a number 

of times that can be computationally demanding, depending on the size of the network.  Another 

challenge is in identifying the blocking constraints. In the MMF algorithm, the method to 

identify the blocking constraints is to identify the binding constraints through the dual variables. 
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The corresponding dual variables to the binding constraints are positive according to the 

complementary slackness theorem, but the complementary slackness condition is unnecessary. 

As a result, only a subset of the blocking constraints is identified in each iteration leading to 

degeneracy since 𝑓' = 𝑓'1# = 𝑓'1% = ⋯, which could lead to higher computational time, but 

convergence is guaranteed. Danna et al. (2012) developed a new method called binary search, 

which is used to identify the blocking constraints to overcome this challenge. Still, a limitation of 

access rates is a condition for the algorithm to work. Furthermore, if changes occur to the 

network, the model requires to be solved with the new network since it does not have the 

capability to reroute the flow through the remaining links.  

3.3 MMF and Multicriteria Optimization 

In this section, we present an approximation approach to find MMF flow in multicommodity 

networks that have not been explored based on our knowledge. In addition, we discuss a small 

illustrative example. 

3.3.1 Model Definition  

We assume a network N is given, described through the graph G = (N, A) with the set of nodes N 

and a set of directed arcs A. Each arc 𝑎	 ∈ 	𝐴 where 𝑎	 = 	 (𝑖, 𝑗) and 𝑖, 𝑗 ∈ 𝑁. 𝑠, 𝑡	 ∈ 	𝑁 where 𝑠 is 

a supply node, and t is a terminal node. S is the set of supply nodes, and T is the set of terminal 

nodes where 𝑠 ∈ 	𝑁7 and 𝑡 ∈ 𝑁). The model is composed of hard and soft constraints since a 

goal programming approach is used.  

3.3.1.1 Parameters and Sets 

𝐶!( The capacity of the arc (𝑖, 𝑗) ∈ 𝐴 
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𝛽 The minimum flow for all commodities 

3.3.1.2 Set of Variables 

𝑥!(.  The flow of commodity k on arc (𝑖, 𝑗) ∈ 𝐴 

𝑓!. The incoming/outgoing flow of commodity 𝑘 at node 𝑖 ∈ 𝑁 

𝑑.B The positive difference in flow between the commodities 𝑘 and 𝑙 

3.3.2 Constraints 

3.3.2.1 Flow Conservation Constraints 

The set of constraints (3-8) are the flow conservation constraints where 𝑥!(.  is the flow of 

commodity k from node i to node j. If the incoming flow is greater than the outgoing flow at 

node i, then node i is a sink node. The node i is a source node if the outgoing flow is greater than 

the incoming flow at node i. If the incoming and outgoing flows are equal at node i, the node i is 

a transshipment node. 

C𝑥!(.

(∈;

− 𝑥(!. = �
					𝑓!. ,				𝑖𝑓	𝑖 = 𝑠. 	
		−𝑓!. ,				𝑖𝑓	𝑖 = 𝑡. 		

0,						𝑒𝑙𝑠𝑒
 ∀ i ∈ N, k	∈ 	K!  (3-8) 

3.3.2.2 Capacity Constraints 

With the additional index k, each commodity flows in a distinct network. However, the set of 

capacity constraints (3-9) links all the commodity flows to one network to share the same 

capacity resource. It ensures that all the commodity flows pass through the arc 𝑎	 = 	 (𝑖, 𝑗) in both 

directions but do not exceed the capacity of it given that 𝐶!( = 𝐶(!.  

C𝑥!(. + 𝑥(!.

.∈3

≤	𝐶!( ∀	(𝑖, 𝑗) 	 ∈ 	𝐴, 𝑖	 > 	𝑗 
(3-9) 
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3.3.2.3 Fairness Constraints 

The set of soft constraints (3-10) provides a way to reduce the difference among the commodity 

flows, resulting in a fair allocation of commodity flows. The variable 𝑑.B is the deviation 

variable of commodity flow k compared with commodity flow l. These deviation variables make 

up the difference between two commodity flows. 

𝑓!. − 𝑓(B + 𝑑.B − 𝑑B. = 0 ∀	𝑘, 𝑙 ∈ 𝐾, ∀	(𝑖, 𝑗) ∈ 𝑁 (3-10) 

A lower bound to the flow of each commodity is set in the set of constraints (3-11) to guarantee 

that all commodities receive at least the minimum flow. 

𝑓!. 	≥ 𝛽 ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (3-11) 

3.3.2.4 Non-Negativity Constrains 

If the deviation variables are minimized to 0, all the commodity flows are equal and said to be 

fairly distributed. The set of constraints (3-12) are the non-negativity constraints. 

𝑥!(. , 𝑓!. , 𝑑.B 	≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴	, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (3-12) 

3.3.3 Objective Functions 

The first objective (3-13) is to maximize the overall flow to utilize the available capacity 

resources. Maximizing the first objective does not lead to a fair distribution of flow. However, 

maximizing the flow as a first step is useful to adjust the value of ϵ. When the first objective is 

set as a constraint using the 𝜖-constraint method by Vira and Haimes (1983), the sum of 

deviation is minimized in the second objective (3-14).  
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𝑀𝑎𝑥	𝐶𝐹 = C 𝑓!.

!∈;,.∈3

 (3-13) 

𝑀𝑖𝑛	𝑆𝐴𝐷 = 	 C 𝑑.B
.,B∈3

 (3-14) 

There is a number of approaches to measure fairness or equity. See Leclerc et al. (2012) for more 

illustration. In this model, the sum of absolute deviations (3-15) is used to measure the equity 

between commodities since it is efficient and linear. The function (3-15) is converted to the set 

of constraints (3-10). 

𝑆𝐴𝐷 =CC|𝑓! − 𝑓(|
!C((

 
(3-15) 

The difference between the second objective function (14) and the Gini coefficient (15) is that 

the objective function is not divided by the total flow of commodities. The absolute difference 

between commodity flow is divided by the total flow after running the model to preserve the 

linearity of the model.  

The decision-maker then decides what level of fairness is desired, considering the tradeoff 

between fairness and maximum flow. Maximizing the throughput in a network comes from the 

desire to utilize the network capacity. Hence, the utilization (3-16) of the network is considered 

as a performance measure helping the set the desired level of throughput.  

𝑈 =
∑ ∑ 𝑥!(.(!,()∈=.∈3

0.5∑ 𝐶!((!,()∈=
 (3-16) 
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3.4 Illustration and Experimentation 

In this section, a trivial example is used to illustrate the approximation model. In addition, 

experimentations are implemented on the benchmark and randomly generated networks with 

different sizes. 

3.4.1 Illustrative Example 

Let us consider the simple example of a network (N1) used by Nace and Pi (2008) where we 

have three routers A, B, and C and three links AB, BC, and AC with capacities 2 MB/sec, 3 

MB/sec, and 1 MB/sec respectively. If the flow is maximized, the resulting flow is illustrated in 

Figure 3-1 (a). The total throughput is 6.  

The value of the maximum flow is determined. The next step is to set the first objective (3-13) as 

a constraint using the 𝜖-constraint method (Vira and Haimes, 1983).  

𝑀𝑖𝑛	𝑆𝐴𝐷 = 	 C 𝑑.B
.,BD3

 (3-17) 

subject to  

C 𝑓!.

!∈;,.∈3

≥ 	𝜖 (3-18) 

∑ 𝑥!(.(:(!,()∈= − 𝑥(!. = �
					𝑓!. ,				𝑖𝑓	𝑖 = 𝑠. 	
		−𝑓!. ,				𝑖𝑓	𝑖 = 𝑡. 		

0,						𝑒𝑙𝑠𝑒
  ∀	𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (3-19) 

C𝑥!(.

.∈3

≤	𝐶!( ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (3-20) 

C𝑓!.

!∈7

−C𝑓(B

(∈7

+ 𝑑.B − 𝑑B. = 0 ∀	𝑘	 ∈ 	𝐾    (3-21) 
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𝑈 =
∑ ∑ 𝑥(!.(!,()∈=.∈3

∑ 𝐶!((!,()∈=
 

 (3-22) 

𝑓!. 	≥ 𝛽	 ∀	𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (3-23) 

𝑥!(. , 𝑓!. , 𝑑.B 	≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾	 (3-24) 

When the ϵ	value is set to 6, the maximum flow, in this case, the minimum sum of the deviation 

obtained is 4. If 𝜖 is reduced to 5.5, the resulting minimum sum of deviations is 2 as shown in 

Figure 3-1 (b). 

 
Figure 3-1: The result when maximizing the overall throughput. 

However, the minimum sum of deviations becomes 1 if we set ϵ to 5, but the set of capacity 

constraints (20) are no longer binding, which indicates that the capacity resource is not fully 

utilized. Table 3-2 summarizes the results of the tested example. The deviation can be minimized 

to zero if the ϵ value is set to 4.5, resulting in equal flows for all commodities with some non-

binding capacity constraints as seen in Figure 3-1 (c), and (d). 

Table 3-2: Summary of example 1 results using different values of 𝜖 
𝜖 (Total flow) 6 5.5 5 4.5 
Commodity Path Flow Path Flow Path Flow Path Flow 

A         B A-B 2 A-B 1.5 A-B 1.5 A-B 1.5 
A         C A-C 1 A-B-C+A-C 1.5 A-B-C+A-C 1.5 A-B-C+A-C 1.5 
B         C B-C 3 B-C 2.5 B-C 2 B-C 1.5 

Min deviation 4 2 1 0 
Utilization 1 1 0.9166 0.8333 
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We can observe the results in Table 3-2, where the sum of deviational variables decreases as the 

𝜖 value decreases. Reducing the flow reduces the congestion resulted from the competing 

commodities trying reach to their destinations resulting in giving some space for sharing, as seen 

in the example above. 

 
Figure 3-2: Pareto front and utilization of different 𝜖 values in Table 3-2 

In Figure 3-2, there are infinite non-dominated solutions forming a Pareto front. Additionally, 

this proposed approach requires less computational time and provides high flexibility in terms of 

decision-making. It can be noticed that the slope is different in the intervals [4.5, 5.5) and (5.5, 

6]. Rationally, if the ϵ value is decreased below the value 5.5, the gain in fairness is not 

substantial compared to the gain acquired by creating space for sharing. The most attractive 

value of ϵ is 5.5, which is the value we would obtain if the MMF algorithm was implemented. 

The reason that 5.5 is the most attractive value is that it gains most of the two competing 

objectives. The value of fairness equals 1 when the flow is maximum and 0 when all commodity 

flows are equal. It can be noticed that the network utilization is 1 for all ϵ ≥ 5.5 giving another 

measure to help to decide the choice of the desired ϵ value. 
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3.4.2 Experimentation 

The model is tested on several networks that have been studied in the literature, including 

randomly generated networks. The network topologies obtained from the SND library by 

Orlowski (2010) are Abilene, Atlanta, France, Nobel-US, and Brain. In addition, two random 

networks are used for comparison purposes. All the network capacities are set to 1000. In Table 

3-3, the information of the networks is seen in the first column. p is the percentage of flows 

given that 1 is the maximum flow of the network. The total flow column provides the values of 𝜖 

used in the model to compute the non-dominated solutions forming the Pareto front, which will 

be discussed later. Every run time (seconds) is shown in the time column for every 𝜖 value, and 

the total run time (seconds) is shown in the total time column. The outputs of the models are 

illustrated in the sum absolute deviation and utilization columns.  

3.4.3 The Selection of 𝛜 Value 

The two objectives of MMF are utilizing the network and minimizing the difference in flow 

between commodities. In Table 3-3, it can be seen that when reducing the total flow of 

commodities ϵ, the deviation and the utilization decrease in a behavior that is highly dependent 

on the network topology. The utilization of the network is added to help to select the value of ϵ 

value.  
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Table 3-3: experimentation results for every percentage of the flow p of the benchmark networks 
with CPU time in seconds 

Network p Total Flow (𝝐) SAD Utilization CPU Time Total Time 

Abilene 
 

|N|= 12 
|A|= 15 

  |K|= 132 

0 0 0.00 0.00 0.91 

6.57 

0.2 3000 0.00 0.50 1.03 
0.4 6000 202842.11 0.82 1.12 
0.6 9000 563373.74 1 1.22 
0.8 12000 1039777.78 1 1.15 
1 15000 1530000.00 1 1.09 

Atlanta 
 

|N|= 15 
|A|= 22 

  |K|= 210 

0 0 0.00 0.00 2.25 

19.28 

0.2 4400 0.00 0.50 2.35 
0.4 8800 487582.88 0.87 2.86 
0.6 13200 1373887.01 1 3.72 
0.8 17600 2506465.28 1 4.10 
1 22000 3652000.00 1 3.93 

France 
 

|N|= 25 
|A|= 45 

  |K|= 300 

0 0 0.00 0.00 5.28 

49.68 

0.2 4400 0.00 0.26 6.30 
0.4 8800 0.00 0.52 7.28 
0.6 13200 757301.54 0.72 7.69 
0.8 17600 1917968.86 0.84 10.04 
1 22000 3160421.89 0.92 13.02 

Nobel-US 
 

|N|= 14 
|A|= 21 
|K|= 91 

0 0 0.00 0.00 2.30 

20.18 

0.2 4200 0.00 0.43 2.76 
0.4 8400 50000.00 0.86 4.58 
0.6 12600 419003.64 1 3.93 
0.8 16800 942334.62 1 3.85 
1 21000 1470000.00 1 2.73 

Brain 
 

|N|= 161 
|A|= 332 

   |K|=14311 

0 8250 10563853.1 0.49993330 1546.654 

15739 

0.2 9900 14980895.1 0.49993124 1562.262 
0.4 11550 19416687 0.49993305 1863.42 
0.6 13200 23911321.8 0.49993486 2742.34 
0.8 14850 28417386.1 0.50064574 3717.558 
1 16500 33165672.8 0.50812858 4305.429 

For example, the ϵ of the Abilene network can be reduced to 0.6 of the total flow utilizing 100% 

of the network capacity and reducing the sum of absolute deviations to 0.37 of its maximum. For 

Atlanta, the ϵ value suggested is 0.6 of the maximum total flow, similar to the network Abilene. 
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The deviation can be brought down to 0.38 of its maximum, utilizing 100% of the network 

capacity, as shown in Figure 3-3. Reducing the flow in France network improves the sum 

absolute deviation value but decreases the utilization. As a result, the maximum flow is 

suggested to be the optimal solution since it utilizes the network capacity. Nobel-US behaves 

similarly to the networks Abilene and Atlanta when reducing the flow to 0.6 of its maximum 

resulting in 0.29 of the maximum deviation. The values of	𝜖 can be adjusted more accurately. 

However, in this experimentation, the intervals between 𝜖 values selected to be 0.2 ranging from 

the maximum flow to the minimum flow. 

Table 3-4: experimentation results of every flow percentage p of the randomly generated 
networks with CPU time in seconds 

Network p Total Flow (𝝐) SAD Utilization CPU Time Total Time 

Net70 
 

|N|= 70 
  |A|= 518 
  |K|= 679 

0 0 0.00 0.00 67.87 

683.21 

0.2 29033.4 0.00 0.26 82.31 
0.4 58066.8 0.00 0.51 81.96 
0.6 87100.2 449408.80 0.77 89.90 
0.8 116133.6 6512444.67 1 180.15 
1 145167 60883964.44 1 180.96 

Net26 
 

|V|= 26 
|E|= 84 

  |D|= 109 

0 0 0.00 0.00 0.75 

7.78 

0.2 8200 0.00 0.27 0.91 
0.4 16400 0.00 0.54 1.12 
0.6 24600 51350.59 0.84 1.32 
0.8 32800 717096.56 0.99 1.85 
1 41000 2003000.00 0.98 1.78 

The random network topology Net70 𝜖 gives the MMF flow of 0.8, resulting in 100% utilization 

and less than 0.11 of the maximum deviation. The random network topology Net26 MMF flow 

can be obtained by setting 𝜖 to 0.8, reducing the sum absolute deviation to 0.35 of its maximum. 

The range of the value of 𝜖 can be decreased for more accuracy when the initial value of 𝜖 is 
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acquired. The results of the benchmark networks in Table 3-3 are plotted in Figure 3-3 to help 

visualize the Pareto front and select the critical 𝜖 value for the MMF resource allocation solution.  

  

  

 
Figure 3-3: The Pareto front of the two objectives the SAD and the flow f in addition to the 

utilization U for the benchmark networks 

The results of the random networks in Table 3-4 are plotted in Figure 3-4. Note that a slight 

reduction in the flow results in a significant improvement in fairness while maintaining full 

utilization of the network capacity. 
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Figure 3-4: The Pareto front of the two objectives the SAD and the flow f in addition to the 

utilization U for the randomly generated networks 

3.5 Comparison Between the Multi-Objective Model and the Progressive-

Filling Algorithm 

The networks tested in section 3.4 were tested using the PFA algorithm. The number of iterations 

𝑛 is not controlled in the PFA algorithm. However, the number of Pareto solutions 𝑛¢ between the 

two objectives in the bi-objective model is controlled. The number of solutions 𝑛¢  is 5 and can be 

higher for more accurate approximation. 

Table 3-5: The computational time of the PFA compared with the bi-objective model for the 
tested networks 

Network PFA time (s) 𝒏 Bi-objective time (s) 𝒏¤ 
Abilene 4.4 11 1.22 5 
Atlanta 13.59 13 2.73 5 
France 54 23 5.06 5 

Nobel - US 3.4 9 0.65 5 
Net26 14.29 20 4.6 5 
Net70 4623 5 365.28 5 
Brain 65842.15 22 14191.19 5 

The quality of the output compared with the exact solution is highly dependent on the structure 

of the network. The mean absolute error (MAE) of the bi-objective solution compared with the 

PFA MMF solution for the tested networks is illustrated in Table 3-6. The highest error is 
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observed as 0.2190 in the network France while the lowest error of 0.0009 is the result in the 

random network Net70. The Average MAE of the tested networks is 0.1102.  

Table 3-6: The MAE and computational time reduction of the bi-objective model compared with 
the PFA 

Network MAE CPU Time Reduction (%) 
Abilene 0.1189 72.27 
Atlanta 0.1791 79.91 
France 0.2190 90.63 

Nobel - US 0.1491 80.88 
Net26 0.0937 67.81 
Net70 0.0009 92.09 
Brain 0.0110 78.44 

Average 0.1102 80.29 

The number of commodities in each bandwidth interval for the networks France and Net70 (the 

networks with highest and lowest MAE respectively) is illustrated in Figure 3-5. Note that the 

allocation of the bi-objective model yields very similar results compared with the PFA output. 

  

  
Figure 3-5: The histogram of the bandwidths allocated for the set of demands of the PFA and bi-

objective model solutions 
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3.6 Computational Complexity 

The proposed approach requires less computational, achieves an excellent approximation to the 

MMF resource allocation, and provides high flexibility in terms of decision making. The 

problem is solved in polynomial time, as illustrated by Cohen and Megiddo (1991). An 

approximation to the MMF resource allocation is achieved using a bi-objective model where the 

flow is maximized in one objective, and the differences in resources between commodities are 

minimized for a fairer solution. The bi-objective model is implemented on seven networks. Then 

the results are compared with the output of the PFA. The MAE is found by comparing each 

commodity with its correspondent, and the total computational time is compared for both 

models. The average MAE is around 0.1, and it can be as low as 0.001. On the other hand, the 

computational time is reduced to around 80%, and it can be as high as 92%. 
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Chapter 4: Modeling Latency-Based Evacuation Process: Routing 

and Scheduling 

4.1 Introduction 

In this chapter, we propose a novel approach to model the evacuation process in order to help 

decision-makers allocate demands on the available capacity resources to reduce the congestion 

effect and find the optimal network clearance time. Specifically, an MILP model is developed as 

a DTA model that we call LBM. To the best of our knowledge, there is no mathematical 

programming modeling approach that computes the estimated time each group of evacuees 

spends on each route. Most of the mathematical programming DTA models find the NCT, and 

some models compute the estimated ATT and AET of the evacuees.  

The motivation of the research in this chapter is that the current evacuation models do not 

provide enough information about the evacuees. The time for the evacuees, for example, to reach 

the destination is unknown in CTM, which can lead to unfair distribution of evacuees and selfish 

reactions by the evacuees. In addition, other objectives are incorporated to compare them with 

the network clearance time. Moreover, the congestion modeling approach may not reflect the 

reality in other evacuation optimization models. Hence, a new approach is introduced to express 

the congestion in a more obvious and realistic way. 

This chapter is organized as follows. In the next section, a new modeling approach is introduced 

and discussed. In section 4.3, a toy example is used to illustrate the model in addition to 

experimentation and computational results reporting. The computational complexity is discussed 

in 4.4. 
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4.2 Evacuation Model 

In this section, a novel evacuation modeling approach is introduced. Before running the model, 

the network is preprocessed by identifying all the hub nodes in the network and adding artificial 

hub nodes if necessary. Then the shortest routes from source nodes to terminal nodes are 

identified. The hub nodes are identified or added so that the travel time in free-flow speed 

between each consecutive pair of hub nodes is constant. Once a group of evacuees passes 

through a hub node on a certain route, this group enters a new road segment with time 

increments of one time unit. The time unit is decided by the traveling time between two 

consecutive hub nodes in free-flow speed. However, the evacuees may be delayed by more than 

one time unit to travel between two hub nodes due to congestion.  

Since the travel time is load dependent, the travel time function (4-1) is incorporated into the 

model. The travel time function, also known as Bureau Public Roads (BPR) function, describes 

the relationship between the volume of the traffic and the travel time used by the U.S. 

Department of Commerce Bureau of Public Roads in Bureau (1964). The travel time  𝑇(𝑓)	with 

traffic volume f on a road segment is described as follows: 

𝑇(𝑓) = 𝑇/ }1 + 𝛼 ¥E
F
¦
G
~, (4-1) 

where,  𝑇/ is the travel time on a road segment in free-flow speed in normal road conditions 

given the capacity 𝑐 of the road segment, and 𝛼 and 𝛽 are turning parameters describing road 

characteristics with 𝛼 ≥ 0 and 𝛽 ≥ 0 ; those parameters are set to 0.15 and 4 respectively by the 

U.S. Department of Commerce Bureau of Public Roads. 
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Since this function is non-linear, we approximate it through a linear piecewise approximation 

given that each linear segment is represented by a slope and intercept as shown in Figure 4-1. Note 

that 𝑓 is the flow volume, and 𝑇(𝑓)	is the travel time function (4-1). The accuracy of the output 

increases as the number of the linear segments increase. 

 
Figure 4-1 Linearizing the BPR travel time function using piecewise approximation 

4.2.1 Model Definition 

Given a graph G = (N, A) with a set of nodes N and a set of directed arcs A, each arc 𝑎	𝜖	𝐴 

connects two nodes 𝑖, 𝑗 ∈ 𝑁 where 𝑎 = (𝑖, 𝑗). The nodes of the network are composed of a set of 

source nodes 𝑁7 ⊂ 𝑁, a set of terminal nodes 𝑁) ⊂ 𝑁, and a set of hub nodes 𝑁H ⊂ 𝑁 given that 

𝑁7 ⊂ 𝑁H and 𝑁) ⊂ 𝑁H since the evacuees are allowed to enter or exit through a hub node. Given 

a set of communities K to be evacuated, 𝑅. is the set of routes that community k can use where R 

is the set of routes in the networks from 𝑁7 to 𝑁). 𝑇 = {1,… , 𝑡I} is the set of times when 

evacuees are evacuated given that 𝑡I is the time, where the last group of evacuees are evacuated, 

and 𝐻 = {1,… , ℎI}  is the set of times evacuees are spending in the network given that ℎI is the 

time when the last group of evacuees reached the safe destination. When the time 𝑡 ∈ 𝑇 equals 1, 

the evacuation process starts. The time path forms a network, and each time segment connects 

two hubs ℎ, 𝑔	 ∈ 𝐻 where (ℎ, 𝑔) ∈ 𝐻*. The set 𝑉 is the traffic volume set, and each element of 
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this set is decided based on the number of vehicles passing per time unit. The link (𝑖, 𝑗) on a 

route is linked to the time of evacuation t from hub h to hub g through the tuple 𝑆 given that 

(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆. More illustration of time path constraints will be given in the example in 

section 4.3.1. 

4.2.1.1 Parameters and Sets: 

K The set of communities 

R The set of shortest routes from the source nodes to the terminal nodes 

V The set of traffic volumes 

𝑈J The set of upper bounds based on road capacity where 𝑢K is the upper bound of the traffic 

volume 𝑣 ∈ 𝑉 

𝐿J The set of lower bounds based on road capacity where 𝑙K is the lower bound of traffic 

volume 𝑣 ∈ 𝑉 

𝐷 The set of linear segments of the piecewise approximation to the BPR function 

𝑚L The slope of the linear segment 𝑑 ∈ 𝐷 of the piecewise approximation  

𝑏L The intercept of the linear segment 𝑑 ∈ 𝐷 of the piecewise approximation 

𝜇 The minimum number of evacuees to be evacuated in any group 

𝜌 The time in minutes to travel from one hub to the next hub and the system clock 

𝑐!( The time to travel from node i to node j on the link (𝑖, 𝑗) ∈ 𝐴 in free-flow speed  

𝐶M The time to travel on route r from source to destination in free-flow speed  

𝑄. The population of community k 

4.2.1.2 Set of Variables: 

𝑥!(>N.8MK  The number of evacuees from community k evacuated at time t on route r with traffic 

volume v on arc (i, j) on time path segment (h, g). 
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𝑥′!(> The number of evacuees on arc (i, j) at hub h  

𝑓M.8 The number of evacuees of community k on route r evacuated at time t  

𝑦!(>K  Binary variable equals 1 if the evacuees on arc (i, j) at hub h is within traffic volume v 

𝑧!(>N.8MK Binary variable equals 1 if the evacuees in community 𝑘 evacuated at time 𝑡 are allowed 

to pass on arc (𝑖, 𝑗) on route 𝑟 at time path segment (ℎ, 𝑔) within traffic volume 𝑣 and 0 

otherwise 

𝜏!(> The latency on arc (𝑖, 𝑗) at hub h transferred to the group of evacuees that follows 

𝜏̂!(> The slack latency on arc (𝑖, 𝑗) at hub ℎ not transferred to the group of evacuees that 

follows 

𝜏′!(>.8M The latency of the group evacuated from community 𝑘 on route 𝑟 at time t on arc (𝑖, 𝑗) at 

hub ℎ 

𝑠!(>.8M The slack variable to complement the latency of the group evacuated from community 𝑘 

on route 𝑟 at time 𝑡 on arc (𝑖, 𝑗) at hub ℎ 

𝑙M.8 The latency on a full route 𝑟 of a community 𝑘 evacuated at time 𝑡 

𝑒M.8 The travel time of community 𝑘 on route 𝑟 evacuated at time 𝑡 

𝑒′M.8 The evacuation time of community 𝑘 on route 𝑟 evacuated at time 𝑡 

𝐸 Network clearance time   

4.2.2 Constraints 

4.2.2.1 Flow Conservation Constraints 

In the flow conservation constraints (4-2), evacuees' hub 𝑔¢ is greater than h since the evacuees 

pass through a hub node. The hub 𝑔¢ equals ℎ if the evacuees pass through a non-hub node in the 

flow conservation constraint (4-3). Hence, exiting evacuees from node i follow one time path. 

Every community to be evacuated has a population size 𝑜𝑓	𝑄. as seen in constraint (4-4). 
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C 𝑥!Ô>NQ
.8MK

NQ|(>,N)∈H#

−	 C 𝑥(!N>.8MK

N|(N,>)∈H#

=	�
𝑓M.8	𝑖𝑓	𝑖	 ∈ 𝑁7
−𝑓M.8	𝑖𝑓	𝑖 ∈ 𝑁)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
∀		𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉	𝑟 ∈ 𝑅, 

(𝑗, 𝑖), (𝑖, 𝚥̂) ∈ 𝑟, 𝚥̂ ∈ 𝑁H 

𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆 

(4-2) 

𝑥!Ô>NQ
.8MK −	 C 𝑥(!N>.8MK

N|(N,>)∈H#

= 0 ∀		𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉	𝑟 ∈ 𝑅, 

(𝑗, 𝑖), (𝑖, 𝚥̂) ∈ 𝑟, 𝚥̂ ∉ 𝑁H 

𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆 

(4-3) 

CC𝑓M.8
M∈48∈)

= 𝑄. ∀	𝑘	 ∈ 𝐾 (4-4) 

4.2.2.2  Networks Link Constraints 

Since all the evacuees share the same road network, constraint (4-5) sums all evacuees from all 

communities k evacuated at different times t with all traffic volumes 𝑣 using all the routes r 

passing through the arc (𝑖, 𝑗) at hub h to the variable 𝑥′!(>. 

𝑥′!(> =	CCC C 𝑥!(>N.8MK

8|(!,(,8,>,N)∈7K∈R.∈3M∈4

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆 (4-5) 

4.2.2.3 Flow Volume Constraints 

The amount of the flow passing through arc (𝑖, 𝑗) is decided by the traffic volume variable 𝑦!(>K . 

If the flow 𝑥′!(> falls between the upper bound 𝑢M and the lower bound 𝑙K of traffic volume v, 

then 𝑦!(>K  equals 1 as shown in constraints (4-6) and (4-7) given that M is a significantly large 

number. The evacuees passing on arc (𝑖, 𝑗) at hub h are allowed to pass through one traffic 

volume as seen in constraint (4-8). 

𝑥′!(> ≥	C𝑙K𝑦!(>K

K∈R

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (4-6) 
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𝑥′!(> ≤	C𝑢K𝑦!(>K +𝑀(1 − 𝑦!(>K )
K∈R

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (4-7) 

C𝑦!(>K

K∈R

≤ 	1 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (4-8) 

4.2.2.4 Path Latency Constraints  

To find the latency 𝜏!(> on arc (i, j) at hub h, the inventory constraint (4-9) is used. The latency 

of an arc (i, j) at hub h equals the required time for evacuees to travel on the arc based on their 

volume adding the latency of the evacuees on the same arc at time ℎ − 1 and subtracting the time 

they would spend in a free-flow speed. It can be noticed that 𝜏̂!(> in (4-10) is bounded by the 

time evacuees spend on the arc in free-flow speed, but it can be less in case no evacuees are 

passing on the arc to maintain the constraint feasibility. The initial latency of the arc (i, j) equals 

0 in constraint (4-11).  

Note that constraint (4-9) transfers the effect of congestion to the following group of evacuees. 

As the link becomes more congested, the latency increases then added to the total latency of the 

following group of evacuees. Although the evacuees are not delayed by the earlier groups on the 

upstream links of the congested link, the delay is added once they pass on the congested road 

segment. Constraint (4-9) creates the propagation effect of congestion on the evacuees passing 

on upstream links. 

𝜏!(> =	𝑐!(𝑡!(> + 𝜏!(>0# − 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (4-9) 

𝜏̂!(> ≤	𝑐!( ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (4-10) 

𝜏!(> = 0 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ = 0 (4-11) 
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To find the travel time on a road segment based on the traffic volume, the piecewise 

approximation to the BPR convex function is used. Since the function is convex, the travel time 

𝑡!(> on arc (𝑖, 𝑗) at hub h can be found as seen in constraint (4-12).  

𝑡!(> ≥ 𝑚L𝑥@!(> + 𝑏L ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑑 ∈ 𝐷 (4-12) 

4.2.2.5 Time Path Constraints 

In constraint (4-13), all evacuees of community k on arc (i, j) at time h evacuated at time t on 

route r can pass through one time path as shown in constraint (4-14) given that M is a sufficiently 

large number; meaning that no part of the group is delayed or outrun the rest of the group. In 

constraint (4-15), each group of evacuees is bounded by a minimum number 𝜇 decided by the 

decision maker. In constraint (4-16), the evacuees follow one time path based on the traffic 

volume decided by the set of constraints (4-6) and (4-7).  

𝑥!(>N.8MK ≤ 𝑀𝑧!(>N.8MK ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 

	ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 
(4-13) 

𝑥!(M>N.8MK ≥ 𝜇	𝑧!(>N.8MK ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅	𝑡 ∈ 𝑇, 

	ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 
(4-14) 

C𝑧!(>N.8MK

K∈R

≤ 1 ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 

	𝑘 ∈ 𝐾 
(4-15) 

𝑥(!>N.8MK ≤ 𝑀𝑦!(>K  ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅	𝑡 ∈ 𝑇, 

	(ℎ, 𝑔) ∈ 𝐻* , 𝑘 ∈ 𝐾, 𝑣 ∈ 𝑉 
(4-16) 

4.2.2.6 Evacuees Latency Constraints 

The latency on a route r of a community k evacuated at time t in constraint (4-17) is the sum of 

the latencies (transferred and non-transferred) of the evacuees on that route in the network. Since 
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all communities evacuated in various times using different routes share the same network, the 

latency of a community k on route r is a subset of the latencies of the network. To extract the 

latencies of a specific group of evacuees, the variable 𝑧!(>N.8MK is used to identify the time path that 

the evacuees followed as shown in constraints (4-18)-(4-20) 

𝑙M.8 = C C𝜏′!(>.8M

>∈H(!,()∈M

 ∀	𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅. , 𝑘 ∈ 𝐾 (4-17) 

𝜏!(> + 𝜏̂!(> = 𝜏′!(>.8M +	𝑠!(>.8M ∀	(𝑖, 𝑗), 𝑟 ∈ 𝑅, ∈ 𝐴, 𝑡 ∈ 𝑇,	 

ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 
(4-18) 

𝜏′!(>.8M ≤ 𝑀𝑧!(>N.8MK ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑝 ∈ 𝑃, 𝑡 ∈ 𝑇,	 

ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 
(4-19) 

𝑠!(>.8M ≤ 𝑀(1 − 𝑧!(>N.8MK) ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅	𝑡 ∈ 𝑇, 

	ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 
(4-20) 

4.2.2.7 Evacuation Constraints 

The time required to travel for each group of evacuees evacuated from community k on route r at 

time t to reach their destination is the travel time on route r in free-flow speed in addition to the 

latency as shown in constraint (4-21). The evacuation time for each group of evacuees evacuated 

from community k on route 𝑟 at time t to reach their destination is the waiting time since the start 

of evacuation process, the travel time on route r in free-flow speed, and the latencies on the route 

as seen in constraint (4-22). To minimize the network clearance time, the maximum evacuation 

time is minimized as shown in constraint (4-23). 

𝑒M.8 = 𝐶M𝑧!(>N.8MK + 𝑙M.8 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, (	𝑖, 𝑗) ∈ 𝑟, 𝑖 ∈ 𝑁7, 

	𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆 
(4-21) 
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𝑒′M.8 = 𝜌(𝑡 − 1)𝑧!(>N.8MK + 𝐶M𝑧!(>N.8MK + 𝑙M.8 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, (	𝑖, 𝑗) ∈ 𝑟, 𝑖 ∈ 𝑁7, 

	𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆 
(4-22) 

𝑒′M.8 ≤ 𝐸 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (4-23) 

The set of constraints (4-24) prevents later evacuees from preceding earlier evacuees on the same 

route stating that the volume of the later evacuees is greater than or equal to the previous 

evacuees or no evacuees follow them. 

𝑦!(>K ≤	 C 𝑦!((>1#)
S

S∈R|SCK

+ 𝑦!((>1#)/  ∀(𝑖, 𝑗) ∈ 𝐴, ℎ = 1, . . , 𝑡I − 1, 
𝑣 ∈ 𝑉 

(4-24) 

Lastly, the following are non-negativity constraints (4-25) and binary variables constraints 

(4-26). 

 

𝑥!(>N.8MK , 𝑥@!(> , 𝑓M.8 , 𝜏!(> , 𝜏̂!(> , 𝜏@!(>
.8M ,	 

𝑠!(>.8M , 𝑙M.8 , 𝑒M.8 , 𝑒′M.8 , 𝐸 ≥ 0 

∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 

𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆	 
(4-25) 

𝑦!(>K , 𝑧!(>N.8MK 	 ∈ {0,1} ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝐴, 𝑣 ∈ 𝑉, 

𝑡, ℎ, 𝑔|(𝑖, 𝑗, 𝑡, ℎ, 𝑔) ∈ 𝑆	 
(4-26) 

Before building the MILP model, all the possibilities of all groups of evacuees passing through 

road and time networks are enumerated and stored into sets. When building the model, the 

constraints refer to these sets. The advantage of this procedure is that the problem size can be 

reduced by limiting the feasible space as will be seen in the next section. 
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4.2.3 Objective Functions 

The objective of the model is to minimize the NCT E, where E is the total travel time of the last 

group arriving to the safe destination since the beginning of the evacuation process as see in the 

objective function (4-27). 

𝑀𝑖𝑛	𝑁𝐶𝑇 = 	𝐸 (4-27) 

However, different objectives are experimented. The ATT and the AET for each group of 

evacuees are incorporated in the model as seen in the objectives (4-28) and (4-29) respectively 

given that the sum of 𝑧!(>N.8MK for all 𝑖 ∈ 𝑁7  is the number of groups to be evacuated given that the 

minimum number of groups to be evacuated is one group. 

𝑀𝑖𝑛	𝐴𝑇𝑇 =
∑ ∑ ∑ 𝑒M.88∈)M∈4.∈3

∑ ∑ ∑ ∑ 𝑧!(>N.8MK
8,>,N|(!,(,8,>,N)∈7(!,()∈M|!∈;$M∈4.∈3

 (4-28) 

𝑀𝑖𝑛	𝐴𝐸𝑇 =
∑ ∑ ∑ 𝑒′M.88∈)M∈4.∈3

∑ ∑ ∑ ∑ 𝑧!(>N.8MK
8,>,N|(!,(,8,>,N)∈7(!,()∈M|!∈;$M∈4.∈3

 (4-29) 

4.3 Illustration and Experimentation  

In this section, a trivial network is used to illustrate the model. In addition, a real world small 

network is used for illustration and experimentation. 

4.3.1 Illustrative Example 

Consider a network with 5 nodes and 4 arcs as shown in Figure 4-2. Suppose that the population 

in the source node n1 is evacuated to the shelter in the terminal node n5. Node n1 is a source 

node, node n5 is a terminal node, and n1, n2, n4, n5 are hub nodes. The time to travel from n1 to 

n2 in free-flow speed is 60 minutes, and the time to travel from n2 to n4 is 60 minutes 
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disregarding the time to travel to and from node n3 since it is not a hub node. The total travel 

time from n1 to n5 is 180 minutes. 

The travel time of each linear segment is shown in Table 4-1 given the lower and upper bounds 

of flows for each segment 𝑑.  

Table 4-1: Travel time between each pair of hub nodes based on the flow volume 
𝒅 L U Travel time (m)*60 
1 1 3200 60 
2 3201 3600 75 
3 3601 3900 100 
4 3901 4100 120 
5 4101 4200 160 

 

 
Figure 4-2: A small network example with 5 nodes and 4 arcs 

The model is tested on three different population sizes in three scenarios A, B, and C assuming 

that in each scenario the population is divided into two groups. The first group is evacuated at t1 

and the second group is evacuated at t2. As shown in scenario A in Table 4-2, the population of 

8500 is divided into two groups of 4350 and 4150 evacuees with the same traffic volume. The 
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latency of the first group is 180 minutes resulted from a delay of 60 minutes between every two 

consecutive hub nodes. The second group latency is 163.54 minutes resulted from the delay by 

their own congestion. The delay of the first group is not transferred to the second group since 

that the latency of the first group is less than or equal the travel time in free-flow speed, as seen 

in constraint (4-10). In scenario B, the population is 9500, and the first group of evacuee’s traffic 

volume is 2 resulting in a delay of 254.7 minutes. The second group of evacuees falls in the 

traffic volume 3 with a latency of 385.5 minutes delayed partially by the first group of evacuees 

since there is a gap of time between them. The first group in scenario C is delayed in 180 

minutes between every pair of consecutive hub nodes with a total of 540 minutes. The second 

group is delayed by 540 minutes in addition to the transferred delay from the first group of 360 

minutes. The travel time is the latency in addition to the travel time in free-flow speed, the 

evacuation time is the travel time in addition to the waiting time of 60 minutes, and the NCT is 

the maximum evacuation time.  

Table 4-2: Results of the example network of the 3 scenarios 

Scenario Population 
Size time Number of 

Evacuees Latency Travel 
Time 

Evacuation 
Time NCT 

A 8500 
1 4350 180.00 360.00 360.00 

403.54 
2 4150 163.54 343.54 403.54 

B 9500 
1 4599 254.70 434.70 434.70 

625.50 
2 4901 385.50 565.50 625.50 

C 10400 
1 5200 540.00 720.00 720.00 

1140.00 
2 5200 900.00 1080.00 1140.00 

Figure 4-3 illustrates the time path of the groups of evacuees in all three scenarios. In the 

experimentation section, other objectives are tested resulting in different distribution of evacuees 

with the same network clearance time. 
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Figure 4-3: Results of the example network of the 3 scenarios 

4.3.2 Experimentation 

The network experimented in this section is the Tampa City, Florida and is obtained from 

Google Maps (2014). Suppose nodes 1 and 2 populations are evacuated to the uncapacitated safe 

zone in nodes 21 - 25 as shown in Figure 4-4. First, the nodes are identified as hub or non-hub 

nodes. The non-hub nodes set is 𝑁\𝑁H = {4, 6, 7, 8, 14, 17}, and the remainder of the nodes are 

hub nodes 𝑁H. Note that nodes 11 and 15 are examples of artificial nodes that have been added 

to the network as hubs to give a time increment by one unit of time to the evacuees passing 

through them, and the unit of time selected is 30 minutes based on the size of the network. The 

number of all possible simple routes, eliminating loops, from the source node 0 to the terminal 

node 26 is 17. All routes can be used, but in an evacuation process, the set of routes used is the 

set of shortest routes to minimize the travel time reach to a safe destination. After identifying the 

hub nodes and shortest routes, the model builds the time path for each route. The selected set of 

shortest routes are shown in Table 4-3. 
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Figure 4-4: Tampa City network with 27 nodes and 43 bidirected arcs 
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Table 4-3: The set of shortest routes in Tampa City network from the source node 0 to 
destination node 26 

r Route Length (minutes) 
0 0 – 1 – 3 – 11 – 16 – 21 – 26  120 
1 0 – 2 – 12 – 17 – 16 – 21 – 26  90 
2 0 – 2 – 12 – 17 – 18 – 22 – 26  90 
3 0 – 2 – 6 – 9 – 18 – 22 – 26  90 
4 0 – 2 – 6 – 8 – 13 – 19 – 23 – 26  90 
5 0 – 2 – 4 – 10 – 14 – 20 – 24 – 26  90 
6 0 – 2 – 4 – 5 – 7 – 15 – 25 – 26  90 

The number of evacuees in the two communities in nodes 1 and 2 is 20,000 evacuees. When 

minimizing the network clearance time E, the model requires 3-time units, which is equivalent to 

1.5 hours to evacuate all the evacuees from the endangered area. In addition, the minimum 

network clearance time is 240 minutes, 4 hours until the last group of evacuees reaches the 

destination as shown in Table 4-4.  

To find the optimal ATT and AET, the 𝜖 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 method is used since the range of the 

number of groups is known. In Tampa City network, the evacuation time is 3-time units when 

the NCT is minimized. The maximum number of groups to be evacuated is 21 when fixing the 

evacuation time to 3 units given that the number of routes is 7. The following model is solved to 

find the optimal solution of ATT: 

𝑀𝑖𝑛	𝑇𝑇𝑇 = CCC 𝑒M.8
8∈)%M∈4.∈3

 (4-30) 

subject to  

CCCC C 𝑧!(M>.8

(!,()∈M>∈H8∈)M∈4.∈3

= 	𝜖 (4-31) 

Constraints (4-2) - (4-26)  
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Since the range of 𝜖 is known, the total travel time (TTT) in the objective function (4-30) is 

minimized while changing the total number of groups in constraint (4-31). The result is 

illustrated in Figure 4-5.  

 
Figure 4-5: Solving the model with different number of groups to find the minimum ATT and 

AET 

The minimum average travel time is 94.29 minutes when evacuees are grouped into 21 groups, 

while the minimum average evacuation time is 132.5 minutes when evacuees are grouped into 12 

groups. The model is solved again minimizing the total evacuation time (TET) in the objective 

function (4-32). Table 4-4 summarizes the results for the 3 objectives.  

𝑀𝑖𝑛	𝑇𝐸𝑇 = CC C 𝑒′M.8
8∈)%M∈4.∈3

 (4-32) 

subject to  

Constraints (4-2) - (4-26), (4-31)  

Table 4-4: Summary of results of different objectives in Tampa City network 
Objective 

(Minimize) NCT ATT AET Groups CPU time (s) 

NCT 240 122.50 182.50 12 27.50 
ATT 240 94.29 154.29 21 38.72 
AET 240 97.50 132.50 12 525.69 
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The number of evacuees in is random when minimizing the NCT as the objective is to evacuate 

the endangered zone in the shortest possible time as seen in Figure 4-6. When minimizing the 

ATT, the evacuees are distributed on the routes in all evacuation times to avoid congestion. 

Minimizing the AET pushes the evacuees towards the early evacuating times so the average 

evacuation time is minimized.  

 
Figure 4-6: Number of evacuees for each group evacuated from community k at time t on route r 

in Tampa City network 

Note that the travel time for each group of evacuees is illustrated in Figure 4-7 given that r is the 

route used and t is the evacuation time. Note that route 0 has a higher travel time since it is the 

only route that requires 120 minutes to travel, and it is most congested as it exceeds the value of 

120 minutes for different groups of evacuees. Otherwise, the travel time of most of the groups of 

evacuees is around 90 minutes indicating that there is no congestion in most parts of the network. 

Note that the evacuation time for each group of evacuees in Figure 4-8 increases as the evacuees 

are evacuated later in time (the delay until departure time is considered). 

Minimizing the ATT distributes all the evacuees on all routes in all evacuating times to minimize 

the overall congestion, but the AET will increase to 154.29 since the last groups evacuated will 

arrive late. However, minimizing the AET groups evacuees into 12 groups. Most groups are 



77 

evacuated in earlier evacuation times, and these groups will encounter congestion while the 

remaining groups are evacuated in later evacuation times and encounter less congestion. 

Minimizing ATT is excellent for non-emergency traffic assignment and minimizing AET is ideal 

for emergency evacuation. 

 
Figure 4-7: Travel time for each group of evacuees evacuated from community k at time t on 

route r in Tampa City network 

 
Figure 4-8: Evacuation time for each group of evacuees evacuated from community k at time t on 

route r in Tampa City network 

4.4 Computational Complexity 

The model is tested on the Tampa City problem using Gurobi Optimizer (2015), and the 

experiment was conducted on a PC with Intel quad-core 3.4 GH CPU and 32 GB memory. The 

model can solve small size problems with a limited number of routes. However, the 
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computational time can increase exponentially with the size of the problem. Note that 𝑧!(>N.8MK is the 

binary variable that indicates the time path of the evacuees. The number of variables 𝑧!(>N.8MK used 

in the model is decided by the number of hubs in a route 𝛾, excluding the terminal hub, and the 

number of routes |𝑅| used in the network. The number of variables 𝑧!(T>.8  in route r is 𝛾% at the 

evacuation time 𝑡 = 1. For 𝑡 > 1, the number of variables is 𝛾% + (𝑡 − 1)𝛾, and this conclusion 

leads us to the computational complexity of the model for multiple routes. The computational 

complexity of the model is 𝑂(2|4|(UV&1(80#)UV)) given that |𝑅| is the number of routes, 𝛾̅ is the 

average number of hubs in all routes excluding the terminal hub, and 𝑡 ∈ 𝑇 is the times of 

evacuation. The two main factors in computational complexity are the number of routes and the 

average length of these routes. 
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Chapter 5: Reduced Complexity Latency-Based Evacuation Model 

5.1 Introduction 

In this chapter, we propose a reduced complexity version of the LBM in order to help decision-

makers allocate demands on the available capacity resources for large-scale problems. 

Specifically, an LP model is developed as a DTA model. The results of the original model and 

the less complex version of the model are compared. The computational time for both models is 

included in the comparison. In addition, the results of the model are compared with the known 

CTM model. 

The motivation of this research is to develop a model that captures the desirable properties of 

both static and dynamic traffic assignment models. The static traffic assignment models use the 

load-dependent nonlinear function but do not reflect the reality of the traffic congestion 

propagation effect. The DTA models consider the propagation by controlling the movement of 

the traffic but do not provide enough information about the evacuees. The estimated time for the 

evacuees, for example, to reach the destination is unknown in the CTM which, can result in very 

long evacuation time for some evacuees and lead to selfish behavior. 

This chapter is organized as follows. In section 2, a new modeling approach is introduced and 

discussed. In section 5.3, toy examples are used to illustrate the model and compared with the 

CTM in addition to experimentation on real world network. In section 5.4, the reduced 

complexity LBM introduced in this chapter is compared with the original LBM presented in 

Chapter 4:. Next, the reduced LBM is compared with the common dynamic evacuation model 

the CTM is section 5.5. Finally, the computational complexity is discussed in section 5.6. 
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5.2 Evacuation Model 

A novel approach to model the evacuation process is presented in this section. To the best of our 

knowledge, no similar attempts are found in the literature. Before running the model, the 

network is preprocessed by identifying all the hub nodes in the network and adding artificial hub 

nodes if necessary. Then the set of shortest routes from source nodes to terminal nodes is 

identified since it is unrealistic to send evacuees on the longest routes in emergencies. The hub 

nodes are identified or added so that the travel time in free-flow speed between each consecutive 

pair of hub nodes is constant. Once a group of evacuees passes through a hub node on a specific 

route, this group enters a new road segment with a hub increment. The system time unit is 

decided by the traveling time between two consecutive hub nodes in free-flow speed. However, 

the evacuees may be delayed by more than one time unit to travel between two hub nodes due to 

congestion.  

Since the travel time is load dependent, the travel time function (4-1) is incorporated into the 

model. The travel time function, also known as BPR function, describes the relationship between 

the volume of traffic and the travel time used by the U.S. Department of Commerce Bureau of 

Public Roads (1964). The travel time 𝑇(𝑓)	with traffic volume f on a road segment is described 

in function (4-1) where  𝑇/ is the travel time on a road segment in free-flow speed in normal 

road conditions given that c is the capacity of the road segment, and 𝛼 and 𝛽 are turning 

parameters describing road characteristics with 𝛼 ≥ 0 and 𝛽 ≥ 0. Those parameters are set to 

0.15 and 4, respectively, by the U.S. Department of Commerce Bureau of Public Roads (1964). 

Since 𝛼 and 𝛽 parameters were derived based on data that may not reflect the current road 

conditions, they are set to 0.2745 and 5.98, respectively, based on the recent study conducted by 

Mtoi and Moses (2014). 
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Since this function is non-linear, we approximate it through a linear piecewise approximation, 

and each linear segment is represented by a slope and an intercept as shown in Figure 4-1. Note 

that 𝑓 is the flow volume, and 𝑇(𝑓)	is the travel time function (4-1). The accuracy of the output 

increases as the number of the linear segments increases. 

The model complexity is significantly reduced when the evacuees follow one time path as 

illustrated in Figure 5-1. In section 5.4, the full model developed in chapter 4 is compared with 

the reduced model developed in this chapter. 

 
Figure 5-1 The time paths of the full model and the reduced model 

5.2.1 Model Definition 

Given a graph G = (N, A) with a set of nodes N and a set of directed arcs A, each arc 𝑎	𝜖	𝐴 

connects two nodes 𝑖, 𝑗 ∈ 𝑁, where 𝑎 = (𝑖, 𝑗). The nodes of the network are composed of a set of 

source nodes 𝑁7 ⊂ 𝑁, a set of terminal nodes 𝑁) ⊂ 𝑁, and a set of hub nodes 𝑁H ⊂ 𝑁 given that 

𝑁7 ⊂ 𝑁H and 𝑁) ⊂ 𝑁H since the evacuees are allowed to enter or exit through a hub node. Given 

a set of communities K to be evacuated, 𝑃. is the set of the shortest routes that community k can 

use where P is the set of the shortest routes in the network from 𝑁7 to 𝑁). The evacuees can enter 
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and exit any route through any hub node. 𝑇 = {1,… , 𝑡I} is the set of time periods when evacuees 

are evacuated, given that 𝑡I is the time where the last groups are evacuated. When the time t in 𝑇 

equals 1, the evacuation process starts. 𝐻 = {1,… , ℎI}  is the set of hubs evacuees that are 

passing through the network, given that ℎI is the hub where the last group of evacuees reached 

when they reach their destination. The link (i, j) on a route is linked to the time of evacuation t 

and hub h through the tuple 𝑆 given that (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆. 

5.2.1.1 Parameters and Sets: 

K The set of communities 

R The set of shortest routes from the source nodes to the terminal nodes 

D The set of linear segments of the piecewise approximation to the BPR function 

𝑚L The slope of the linear segment 𝑑 ∈ 𝐷 of the piecewise approximation  

𝑏L The intercept of the linear segment 𝑑 ∈ 𝐷 of the piecewise approximation 

𝑢 The maximum number of evacuees on any arc  

𝜇 The minimum number of evacuees to be evacuated in any group 

𝜌 The time in minutes to travel from one hub to the next hub node in free-flow speed and 

the system clock 

𝑐!( The time to travel from node i to node j on the link (𝑖, 𝑗) ∈ 𝐴  

𝐶M The time to travel on route r from source to destination in free-flow speed  

𝑄. The population of community k 

5.2.1.2 Set of Variables: 

𝑥!(M>.8   The number of evacuees on arc (i, j) on route r at hub h of community k evacuated at time 

t 

𝑥′!(> The number of evacuees on arc (i, j) at hub h  
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𝑓M.8 The number of evacuees of community k on route r evacuated at time t  

𝑧!(M>.8  Binary variable equals 1 if community k evacuated at time t is allowed to pass on arc (i, j) 

on route 𝑟 at hub h, and it equals 0 otherwise 

𝑡!(> The travel time on arc (i, j) at time h based on the piecewise approximated travel time 

function 

𝜏!(> The latency on arc (i, j) at hub h transferred to the group of evacuees that follows 

𝜏̂!(> The slack latency on arc (i, j) at hub h not transferred to the group of evacuees that 

follows 

𝜏′!(>.8M The latency of the group evacuated from community k at time t on route r on arc (i, j) at 

hub h  

𝑠!(>.8M Slack variable to remove the effect of latency of the group of evacuees from community k 

if they do not pass through the arc (i, j) on rote 𝑟 at hub h 

𝑙M.8 The latency of the group of evacuees on route r of a community k evacuated at time t 

𝑒M.8 The travel time of community k on route r evacuated at time t 

𝑒′M.8 The evacuation time of community k on route r evacuated at time t 

𝐸 Network clearance time 

5.2.2 Constraints 

5.2.2.1 Flow Conservation Constraints 

The hub h becomes h+1 if the evacuees pass through a hub node in the flow conservation 

constraint (5-1). In the flow conservation constraints (5-2), evacuees hub h on arc (i, j) does not 

change if evacuees do not pass through a hub node. Every community to be evacuated has a 

population size 𝑜𝑓	𝑄., as seen in constraint (5-3). 
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𝑥!(M(>1#).8 −	𝑥(!M>.8 =	�
𝑓M.8	𝑖𝑓	𝑖	 ∈ 𝑁7
−𝑓M.8	𝑖𝑓	𝑖 ∈ 𝑁)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  , 𝑖𝑓	𝑖	 ∈ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-1) 

𝑥!(M>.8 −	𝑥(!M>.8 = 	0, 𝑖𝑓	𝑖	 ∉ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾, 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-2) 

CC𝑓M.8
M∈48∈)

= 𝑄. ∀	𝑘	 ∈ 𝐾 (5-3) 

5.2.2.2 Networks Link Constraints 

Since all evacuees share the same road network, constraint (5-4) sums all evacuees from all 

communities k started at time t using all the routes r passing through the arc (i, j) at hub h to the 

variable 𝑥′!(>. 

𝑥′!(> =	CC C 𝑥!(M>.8

8|(!,(,8,>)∈7.∈3M∈4

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (5-4) 

5.2.2.3 Latency Constraints  

Constraint (5-5) is used to find the latency 𝜏!(> on arc (i, j) at hub h transferred to the group that 

follows. The latency of an arc (i, j) at hub h equals the required time for evacuees to travel on the 

arc based on their volume subtracting the time they would spend in a free-flow speed. It can be 

noticed that 𝜏̂!(> in (5-6) is bounded by the time evacuees spend on the arc in free-flow speed, 

but it can be less in the case that the delay is less than the travel time in free-flow speed, or no 

evacuees are passing on the arc to maintain the constraint feasibility. The initial latency of the 

arc (i, j) equals 0 in constraint (5-7).  

𝜏!(> =	𝑐!(𝑡!(> − 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (5-5) 
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𝜏̂!(> ≤	𝑐!( ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (5-6) 

𝜏!(> = 0 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ = 0 (5-7) 

To find the travel time on a road segment based on the flow volume, the piecewise 

approximation to the BPR convex function is used. Since the function is convex, the travel time 

𝑡!(> on arc (i, j) at hub h can be found as seen in constraint (5-8).  

𝑡!(> ≥ 𝑚L𝑥@!(> + 𝑏L ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑑 ∈ 𝐷 (5-8) 

5.2.2.4 Delay Propagation Constraints 

Constraint (5-9) transfers the effect of congestion to the group of evacuees that follow. As the 

link becomes more congested, the latency increases by adding the latency of the group of 

evacuees that follows through the preceding link. However, the congestion effect is not fully 

transferred if there is a gap of time between the leading group and the group that follows. As the 

gap between the two groups increases, the transferred congestion effect decreases as seen in 

constraint (5-9). 

𝜏!(> ≥ 𝜏(BK − 𝜌(1 + ℎ − 𝑣)(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗), (𝑗, 𝑙) ∈ 𝐴, 𝑘 ∈ 𝐾, 

	ℎ, 𝑣 ∈ 𝐻|ℎ ≥ 𝑣, 𝑟 ∈ 𝑅,	 

𝑡 ∈ 𝑇, (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(5-9) 

5.2.2.5 Allowing to Evacuate Constraints 

In constraint (5-10), all evacuees of community k at hub h evacuated at time t on route r can pass 

through the arc (i, j), meaning that no part of the group is delayed or outrun the rest of the group. 

In constraint (5-11), each group of evacuees is bounded by a minimum number 𝜇 decided by the 

decision-maker. If the variable 𝑧!(M>.8  equals zero, no evacuees from community k on route r at 

hub h can pass through the arc (i, j).  
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𝑥!(T>.8 ≤ 𝑢	𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 

	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 
(5-10) 

𝑥!(T>.8 ≥ 𝜇	𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 

	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 
(5-11) 

5.2.2.6 Evacuees Latency Constraints 

The latency on route r of a community k evacuated at time t in constraint (5-12) is the sum of the 

latencies on the specific route in addition to the slack latencies that are not transferred to the 

groups that follow. Since all communities evacuated in various times using different routes share 

the same network, the latency of a community k on route r is a subset of the latencies of the 

network. To prevent the latency effect to add to the latencies of non-evacuated groups due to 

overlapped routes, the sum of latencies is added if evacuees are using the route as seen in 

constraints (5-13)-(5-15). Hence, the latency of the non-evacuated group is zero. 

𝑙M.8 = C C𝜏′!(>
>∈H(!,()∈M

 ∀	𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅. (5-12) 

𝜏′!(>.8M + 𝑠!(>.8M = 𝜏!(> + 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 (5-13) 

𝜏′!(>.8M ≤ 𝑀𝑧!(M>.8  ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(5-14) 

𝑠!(> ≤ 𝑀(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(5-15) 

5.2.2.7 Evacuation Constraints 

The time required to travel for each group of evacuees evacuated at time t from community k on 

route r to reach their destination is the travel time on route r in free-flow speed in addition to the 

latency as shown in constraint (5-16). The evacuation time for each group of evacuees from 
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community k on route r at time t to reach their destination is the sum of the waiting times since 

the evacuation time, the travel time on route r in free-flow speed, and the latency on the route as 

seen in constraint (5-17). To minimize the network clearance time, the maximum evacuation 

time is minimized, as shown in constraint (5-18). 

𝑒M.8 = 𝐶M𝑧!(M>.8 + 𝑙M.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-16) 

𝑒′M.8 = 𝜌(𝑡 − 1)𝑧!(M>.8 + 𝐶M𝑧!(M>.8 + 𝑙M.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-17) 

𝑒′M.8 ≤ 𝐸 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (5-18) 

5.2.2.8 Non-negativity Constraints 

In addition, the following non-negativity constraints (5-19) and binary variables constraints 

(5-20) are added. 

𝑥!(M>.8 , 𝑥′!(> , 𝑓M.8 , 𝜏!(> , 𝜏̂!(> , 𝜏′!(> , 𝑠!(> , 𝑙M.8 , 𝑒M.8 , 𝑒′M.8 , 𝐸 ≥ 0 ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡 ∈ 𝑇, ℎ ∈ 𝐻, (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-19) 

	𝑧!(>.8 	 ∈ {0,1} ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(5-20) 

5.2.3 Objective Functions 

The objective of the model is to minimize NCT that is equal to the variable E, where E is the 

total travel time of the last group arriving at the safe destination in addition to the waiting time 

since the beginning of the evacuation process, as seen in the objective function (5-21). 
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𝑀𝑖𝑛	𝑁𝐶𝑇 = 	𝐸 (5-21) 

In addition, different objectives are experimented. The ATT and the AET for each group of 

evacuees are incorporated in the model in the objectives (5-22) and (5-23), respectively. The sum 

of 𝑧!(M>.8  at the source node 𝑖 ∈ 𝑁7 is the number of groups to be evacuated, given that the 

minimum number of groups to be evacuated is one. 

𝑀𝑖𝑛	𝐴𝑇𝑇 =
∑ ∑ ∑ 𝑒M.88∈)M∈4.∈3

∑ ∑ ∑ ∑ 𝑧!(M>.8
8,>|(!,(,8,>)∈7(!,()∈MM∈4.∈3

 (5-22) 

𝑀𝑖𝑛	𝐴𝐸𝑇 =
∑ ∑ ∑ 𝑒′M.88∈)M∈4.∈3

∑ ∑ ∑ ∑ 𝑧!(M>.8
8,>|(!,(,8,>)∈7(!,()∈MM∈4.∈3

 (5-23) 

5.3 Illustration and Experimentation  

In this section, a trivial network is used to illustrate the model. A small real-world network is 

also used for illustration and experimentation. 

5.3.1 Illustrative Examples 

5.3.1.1 Example 1 

Consider the two simple networks as road segments illustrated in Figure 5-2. Assume that each 

road segment is composed of two lanes with a capacity of 1750 vehicles/lane/hour. The travel 

time in free-flow speed from one node to the next node is 60 minutes, and the travel time 

increases due to congestion, as illustrated in Table 5-1. The latency based on the number of 

vehicles is shown in Table 5-1. This information is used to approximate the nonlinear BPR flow-

travel time function using a piecewise linear approximation. The lane capacity is set to 1750 

vehicles/lane/hr., and each link in the network is assumed to consist of two lanes. To find the 



89 

latency on a road segment, the latency in Table 5-1 is multiplied in the travel time on the road 

segment in free-flow speed.   

 
Figure 5-2: Road segment with 60 minutes travel time between each consecutive pair of nodes in 

free-flow speed 

The number of evacuees is 4900 traveling through the three-node network in Figure 5-2 from the 

source node S0 to the terminal node T2 with a total travel time of 120 minutes in normal 

conditions. When using the CTM model we set the link capacity to 5200 vehicles, and the 

shockwave speed ratio is set to 0.33 as seen in Table 5-1, the NCT is 300 minutes while the 

LBM NCT is 360 minutes. Now we assume that the distance is doubled in the network with five 

nodes to become 240 minutes in normal conditions, as illustrated in Figure 5-2. Evacuating 4900 

evacuees requires 420 minutes when using the CTM, and it requires 720 minutes when using the 

LBM. Notice that the NCT of the LBM is doubled when the distance is doubled. However, the 

NCT in the CTM is increased by 120 minutes, which is the distance of the added road segment. 

We conclude that the CTM does not capture the congestion on the added road segment. It 

regulates the entry of vehicles at the beginning of the road segment. Then the vehicles travel the 

rest of the road segment in free-flow speed, which does not reflect the reality of the real world 

congestion. 

 

 



90 

 

Table 5-1: Travel time based on the number of vehicles, using modified BPR,  
and the shockwave speed to the free-flow speed ratio 

Number of Vehicles f Latency (m)*60 Speed Ratio 𝜹 
0 0 1 

2200 1 0.99 
4350 60 0.5 
4650 90 0.4 
4900 120 0.33 
5200 180 0.25 

5.3.1.2 Example 2 

Consider the network with seven nodes and seven arcs shown in Figure 5-3. The population in 

the node S0 is evacuated to the shelter in the node T6. Node S0 is a source node, node T6 is a 

terminal node, and all nodes are set as hub nodes. The time to travel from one node to the 

consecutive node is 60 minutes in free-flow speed. The predefined routes are S0-1-3-5-T6 and 

S0-2-4-5-T6. The total travel time from the source to the terminal on either route in normal 

conditions is 240 minutes, and the number of vehicles to be evacuated is assumed to be 15,000. 

 
Figure 5-3: a small network for illustration. The network consists of seven nodes, and seven 

directed arcs. 

The optimal NCT is 667.9 minutes assuming that there is no congestion at the beginning of the 

evacuation process, as seen in Table 5-2. Note that the first group of evacuees evacuated on both 

routes does not cause any congestion, which is referred to as latency 𝜏, until they reach the 

bottleneck arc (5,6), but they cause delay to themselves of 1 minute on the non-bottleneck links 

 

1 
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5
 

  S0 T6 
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on route 1 and 14.72 minutes on the non-bottleneck links on route 2 which is the slack latency 𝜏̂. 

Although the delay is 120 minutes as the total number of evacuees is 4900, the delay they 

transfer to the succeeding group is 60 minutes since the latter are evacuated 60 minutes later. The 

second group of evacuees is 60 minutes delayed on arcs (3, 5) and (4, 5) by the first group, then 

they cause a delay of 120 minutes on the bottleneck arc (5, 6). The third group of evacuees is 

delayed by the first and second groups. There is 60 minutes delay on arcs (1,3) and (2,4) due to 

the propagated delay from the first group, and delay 120 minutes on arcs (3, 5) and (4,5) by the 

second group that causes a delay of 60 minutes on the bottleneck arc.  

Table 5-2: The results of the example 2 network 
 Number of 

Evacuees (𝒇) 
Latency (𝝉) Obj.  

NCT (m) Slack Latency (𝜏̂) 
Time Route1 Route2 (0, 1) (0, 2) (1, 3) (2,4) (3,5) (4,5) (5,6) 

1 2200 2700 0 0      

667.86 

1 14.72 

2 3000 2200 0 0 0 0    
22.9 1 1 14.72 

3 2450 2450 0 0 0 0 0 0  
7.86 7.86 22.95 1 1 14.72 

     60 60 60 60 60 
0 0 0 0 60 

       120 120 120 
0 0 60 

         60 
60 

The summary of the travel time and evacuation time on each route and different evacuation times 

are presented in Table 5-3. Note that the travel time is the latency added to the travel time in 

free-flow speed. The evacuation time is the travel time added to the waiting time since the 

beginning of the evacuation process. The evacuation time for the groups evacuated in the first 

period equals the travel time since they are evacuated at the beginning of the evacuation process, 

while 60 minutes are added for every period the group of evacuees is waiting to be evacuated. 
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Table 5-3: Summary of the results of the second example for each group of  
evacuees on different route and evacuation time 

Time Route Latency Travel 
Time 

Evacuation 
Time 

1 
1 123.00 363.00 363.00 
2 164.16 404.16 404.163 

2 
1 285.91 525.91 585.91 
2 242.00 482.00 542.00 

3 
1 307.86 547.86 667.86 
2 307.86 547.86 667.86 

5.3.2 Experimentation 

The network experimented in this section is Tampa City, Florida, and is obtained from Google 

Maps (2014). Suppose nodes 1 and 2 populations are evacuated to the uncapacitated safe zone in 

nodes 21 – 25, as shown in Figure 4-4. First, the nodes are identified as a hub or non-hub nodes. 

The non-hub nodes set is 𝑁\𝑁H = {4, 6, 7, 8, 14, 17}, and the remainder of the nodes are hub 

nodes 𝑁H. Note that nodes 11 and 15 are examples of artificial nodes that have been added to the 

network as hubs to give a hub increment to the evacuees passing through them, and the unit of 

time 𝜌 is set to 30 minutes based on the size of the network. The number of all possible simple 

routes, eliminating loops, from the source node 0 to the sink node 26 is 17. All routes can be 

used, but in an evacuation process, the set of routes used is the set of shortest routes to minimize 

the travel time to reach a safe destination. The selected set of shortest routes are shown in Table 

4-3. 

The number of evacuees in the community in nodes 2 is assumed to be 25,000 evacuees. When 

minimizing the network clearance time E, the model requires 3-time units, which is equivalent to 

1.5 hours to evacuate all the evacuees from the endangered area. Also, the minimum network 

clearance time is 150 minutes or 2.5 hours until the last group of evacuees reaches the 

destination as shown in Table 5-5. 
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Table 5-4: The set of shortest routes in Tampa City from the source node 0 to the destination 
node 26 

r Route Length (minutes) 
0 0 – 2 – 12 – 17 – 16 – 21 – 26  90 
1 0 – 2 – 12 – 17 – 18 – 22 – 26  90 
2 0 – 2 – 6 – 9 – 18 – 22 – 26  90 
3 0 – 2 – 6 – 8 – 13 – 19 – 23 – 26  90 
4 0 – 2 – 4 – 8 – 13 – 19 – 23 – 26  90 
5 0 – 2 – 4 – 10 – 14 – 20 – 24 – 26  90 
6 0 – 2 – 4 – 5 – 7 – 14 – 20 – 24 – 26  90 
7 0 – 2 – 4 – 5 – 7 – 15 – 25 – 26  90 

To find the optimal ATT and AET, 𝑡ℎ𝑒	𝜖 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 method is used since the range of the 

number of groups is known. In the Tampa City network, the evacuation time is 3-time units 

when the NCT is minimized. The maximum number of groups to be evacuated is 24 when fixing 

the evacuation time to 3 units, given that the number of routes is 8. The following model is 

solved to find the optimal solution of ATT: 

𝑀𝑖𝑛	𝑇𝑇𝑇 = CCC𝑒M.8
8∈)M∈4.∈3

 (5-24) 

subject to  

CCCC C 𝑧!(M>.8

(!,()∈M|!∈;'8∈)>∈HM∈4.∈3

= 𝜖	 (5-25) 

Constraints (5-1) - (5-20)  

Since the range of 𝜖 is known, the TTT in the objective function (5-24) is minimized while 

changing the total number of groups in constraint (5-25). The model is solved again, minimizing 

the TET in the objective function (5-26). The result is illustrated in Figure 5-4. 
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𝑀𝑖𝑛	𝑇𝐸𝑇 = CCC𝑒′M.8
8∈)M∈4.∈3

 (5-26) 

subject to  

Constraints (5-1) - (5-20), (5-25)  

When a few groups are evacuated, the ATT and AET are high since the number of evacuees in 

each group is large, leading to higher congestion rates, as illustrated in Figure 5-4. As the 

number of groups increases, the ATT and AET decrease. Note that the AET decreases to a point, 

then it increases as the congestion effect fades, and the waiting time to evacuate starts delaying 

the evacuees. The optimum number of groups to be evacuated depends on the objective. For the 

NCT and AET, the number of groups is selected to avoid delay coming from congestion and 

waiting time, and the number of groups selected in the ATT is the maximum since the waiting 

time does not affect travel time. 

 
Figure 5-4: The ATT and AET behavior of 25,000 evacuees when changing the number of 

groups of evacuees 

The minimum average travel time is 97.25 when evacuees are grouped into 24 groups, while the 

minimum average evacuation time is 121.13 when evacuees are grouped into 17 groups.  
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Table 5-5: Summary of results in minutes for different objectives 
Objective 

(Minimize) NCT ATT AET Groups CPU time (s) 

NCT 150.02 123.32 147.32 15 5.65 

ATT 182.00 97.25 127.25 24 16.4 

AET 153.00 99.95 121.13 17 6.30 

Assume that the demand to evacuate in the Tampa City network is 45,000 evacuees. Note that 

the ATT is around 350 minutes compared to 120 minutes when 25,000 people are evacuated, and 

the number of groups is set to 9, as seen in Figure 5-5. The ATT and AET for the 45,000 

evacuees are significantly higher than the 25,000 evacuees since the congestion is higher. Also, 

the AET for the 45,000 is not considerably affected by the waiting time when the number of 

groups is set to 24, as shown in Figure 5-5. From this information, we conclude that all routes 

can be used for all evacuating times when the demand to evacuate is high in case of emergencies. 

When all routes are used for all evacuating times, the model becomes LP, and the complexity is 

greatly reduced.  

 
Figure 5-5: The ATT and AET behavior of 45,000 evacuees when ranging the number of groups 

The number of evacuees in each group is illustrated in Figure 5-6. Note that the number of 

evacuees on the routes that cause bottleneck congestion is minimal. The variability in the number 

of evacuees for the objective NCT is high since the objective is to clear the network in the 
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shortest time. Minimizing the ATT distributes all evacuees on all routes with minimum 

congestion since the waiting time to be evacuated does not affect the ATT. Note that the number 

of evacuees does not exceed 2000 vehicles since the delay time for this number of evacuees is 

insignificant, as seen in Table 5-1. After 2000, the function becomes steeper, leading to more 

congestion and delay. Minimizing the AET pushes most evacuees to be evacuated in the early 

periods to avoid waiting time, as seen in Figure 5-6. 

 
Figure 5-6: The number of evacuees in each group from community k, on route r, and evacuated 

at time t 

The travel and evacuation time for each group of evacuees on each route r evacuated at time t for 

the three objectives is illustrated in Figure 5-7. Note that the travel time for groups evacuated 

early is higher due to congestion in the NCT, and the evacuation time is 150 for most groups. 

The early groups are delayed because of the congestion, while the later groups are delayed 

waiting to be evacuated. Hence, the model minimized the congestion for the later groups since 

they are delayed by waiting to evacuate. The variability in the travel time for the ATT is low 

since all evacuees are distributed on all routes and evacuating times, minimizing the overall 

congestion in the network. The overall travel and evacuation times are minimized for most 

groups for the AET objective by minimizing the congestion overall the network but avoiding 

waiting time to evacuate. 
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Figure 5-7: The travel and evacuation time in minutes for each group of evacuees evacuated on 

route 𝑟 at time t 

5.4 Comparing the Original LBM Model with the Reduced Complexity Model 

The original LBM developed in chapter 4 (LBM I) results are compared with the reduced 

complexity version of the LBM developed in chapter 5 (LBM II). The network used is Tampa 

City with the set of routes R = {0, 1, 2, 3, 5, 7}. The NCT for LBM I and LBM II is shown in 

Figure 5-8 when ranging the demand from 10,000 to 40,000 evacuees. 
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Figure 5-8: The NCT for the LBM I and LBM II models for the demand range from 10,000 to 

40,000 evacuees 

Note that the NCT is identical in both models. However, the reduction in computational time is 

significant. The computational time for the LBM I and LBM II is illustrated in Figure 5-9. 

 
Figure 5-9: The computational time for the LBM I and LBM II models in seconds when ranging 

the demand from 10,000 to 40,000 evacuees 

Notice that the computational time of the LBM I increases with the demand to evacuate while the 

computational time for the LBM II is not affected by the demand. The average computational 

time is of the LBM II is 1.25 seconds. We conclude that the computational time can be reduced 

by more than 99% while maintaining an identical output. 
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5.5 Comparing the LBM with the CTM Model 

After comparing the reduced complexity LBM with the original LBM, the LBM is compared 

with the CTM. The network used for comparison is network illustrated in Figure 5-3. Although 

the number of groups to be evacuated cannot be decided in the CTM, we assume that the total 

evacuees are divided into 6 groups evacuated in 3 periods on two routes. From this assumption, 

the shockwave speed ratio can be decided based on the travel time, as seen in Table 5-1. Note 

that the demand is ranging from 500 up to 15500. When the demand is 500, the NCT is 240 for 

both models since there is no congestion, and all evacuees can be evacuated in the first period 

with no delays, as seen in Figure 5-10. As the demand increases, the NCT increases nonlinearly 

following the behavior of the BPR function, given that the shockwave speed parameter 𝛿! is 

updated for every node 𝑖 ∈ 𝑁4 for each demand scenario.  

 
Figure 5-10: The NCT in minutes for the LBM is compared with the CTM output 

5.6 Computational Complexity 

The model is tested on the Tampa city problem using Gurobi Optimizer (2015), and the 

experiment was conducted on a PC with Intel quad-core 3.4 GH CPU and 32 GB memory. The 

model can solve small to medium size problems with a limited number of routes. However, the 
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computational time can increase exponentially with the size of the problem. Note that 𝑧!(M>.8  is the 

binary variable that indicates whether the evacuees of community k are evacuated at time t . The 

number of variables 𝑧!(M>.8  used in the model is decided by the number of routes |𝑅| used in the 

network and the number of evacuating times |𝑇|. The number of hubs does not contribute to the 

size of the network. The number of variables 𝑧!(M>.8  in the model is the number of routes r and the 

number of evacuating times |𝑇|. The computational complexity of the model is reduced from 

𝑂�2|4|WUV&1(80#)UVX� to 𝑂(2|4|·|)|))  given that |𝑅| is the number of routes, 𝛾̅ is the average number 

of hubs in all paths excluding the terminal hub. The two main factors in computational 

complexity are the number of routes and evacuating times. 
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Chapter 6: Min-Max Fairness in the Non-Convex Latency-Based 

Evacuation Model 

6.1 Introduction 

The motivation of the work in this chapter is to find the optimal MMF evacuation time using the 

LBM model. The proposed algorithm in this chapter follows a similar approach to the water-

filling algorithm. However, the proposed algorithm does not rely on the complementary 

slackness condition to identify the groups whose evacuation time cannot be improved any 

further. Hence, the algorithm is capable of finding the MMF resources allocation for nonconvex 

problem structures. On the other hand, the LBM model captures the desirable properties of the 

static and the dynamic models and fills the gap between them. The static models use the load-

dependent functions but do not consider the congestion propagation. The dynamic models 

propagate the congestion effect by regulating the entry of traffic to a road segment but do not 

compute the estimated time each group of evacuees spends in the network. The output of the 

algorithm is compared with other objectives to show the effectiveness of the developed 

approach. The two measures used to compare the outputs from different objectives are efficiency 

and fairness. The AET is considered as a measure of efficiency, and the SAD is used to measure 

fairness.  

The organization of this chapter is as follows. In section 6.2, the fair evacuation model is 

introduced, including the set of variables, constraints, and objective functions. In section 6.3, the 

model is illustrated on a small example and experimented on a real-world network. Fairness is in 

the evacuation is experimented in section 6.4, using 𝜃-progressive-filling algorithm approach. 

The chapter is summed up with computational complexity discussion in sections 6.5. 
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6.2 Evacuation Model 

A novel approach to model the evacuation process is presented in this section. To the best of our 

knowledge, there is no attempt found in the literature to model fairness in evacuation, similar to 

the one proposed in this chapter. The network is preprocessed by identifying all the hub nodes 

and adding artificial hub nodes before running the model if necessary. Then the set of shortest 

routes from the endangered nodes to the safe zone nodes are identified since it is unrealistic to 

send evacuees on longer routes in emergencies. The hub nodes are added, so the travel time in 

free-flow speed between each pair of consecutive nodes is constant. Once a group of evacuees 

pass through a hub node, they enter a new road segment with a hub increment. The constant 

travel time between each pair of consecutive hub nodes is the system time unit. However, the 

evacuees may spend a longer time on a road segment if the network is congested.  

The travel time function (4-1) used in the model, also known by BPR, is used by the U.S. 

Department of Commerce Bureau of Public Roads (1964). This function is incorporated in the 

model to simulate the effect of congestion since the travel time is load-dependent. The travel 

time function describes the non-linear relationship between traffic volume and travel time. 𝑇/ is 

the travel time in free-flow speed on a road segment in normal road conditions given the capacity 

c of the road segment. The tuning parameters 𝛼 and 𝛽 describe the road characteristics with 𝛼 ≥

0 and 𝛽 ≥ 0. Those parameters are set to 0.15 and 4, respectively, by the U.S. Department of 

Commerce Bureau of Public Roads. Since 𝛼 and 𝛽 parameters were derived based on data that 

may not reflect the current road conditions, they are set to 0.2745 and 5.98, respectively, based 

on the recent study conducted by Mtoi and Moses (2014). To avoid non-linear constraints in the 

model, the travel time function is linearized using a piecewise approximation. Every linear 
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segment is represented by a slope and intercept parameters. The accuracy of the output of the 

function increases as the number of the linear segments increase. 

6.2.1 Model Definition 

Given a graph G = (N, A) with a set of nodes N and a set of directed arcs A, each arc 𝑎	𝜖	𝐴 

connects two nodes 𝑖, 𝑗 ∈ 𝑁 where 𝑎 = (𝑖, 𝑗). The nodes of the network are composed of a set of 

source nodes 𝑁7 ⊂ 𝑁, a set of terminal nodes 𝑁) ⊂ 𝑁, and a set of hub nodes 𝑁H ⊂ 𝑁 given that 

𝑁7 ⊂ 𝑁H and 𝑁) ⊂ 𝑁H since the evacuees are allowed to enter or exit through a hub node. Given 

a set of communities K to be evacuated, 𝑃. is the set of the shortest routes that community k can 

use where R is the set of the shortest routes in the networks from 𝑁7 to 𝑁). The evacuees can 

enter and exit any route through any hub node. 𝑇 = {1,… , 𝑡I} is the set of time periods when 

evacuees are evacuated, given that 𝑡I is the time where the last groups are evacuated, and the 

evacuation process starts when the time t in 𝑇 equals 1. The set of hubs nodes 𝐻 = {1,… , ℎI} is 

considered as marking points to identify the evacuees' location in time, given that ℎI is the hub 

where the last group of evacuees reached their destination. The link (i, j) on a route is linked to 

the time t of evacuation and hub h through the tuple 𝑆 given that (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆. 

6.2.1.1 Parameters and Sets: 

K The set of communities 

R The set of shortest routes from the source nodes to the terminal nodes 

𝑄. The population of community k 

D The set of linear segments of the piecewise approximation to the BPR function 

𝑚B The slope of the linear segment 𝑙 ∈ 𝐿 of the piecewise approximation  

𝑏B The intercept of the linear segment 𝑙 ∈ 𝐿 of the piecewise approximation 
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𝑢 The maximum number of evacuees on any arc  

𝜇 The minimum number of evacuees to be evacuated in any group 

𝜌 The time in minutes to travel from one hub to the next hub node in free-flow speed and 

the system clock 

𝑐!( The time to travel from node i to node j on the link (𝑖, 𝑗) ∈ 𝐴  

𝐶M The time to travel on route r from source to destination in free-flow speed  

6.2.1.2 Set of Variables: 

𝑥!(M>.8   The number of evacuees on arc (i, j) on route r at hub h of community k evacuated at time 

t 

𝑥′!(> The number of evacuees on arc (i, j) at hub h  

𝑓M.8 The number of evacuees of community k on route r evacuated at time t  

𝑧!(M>.8  Binary variable equals 1 if community k evacuated at time t is allowed to pass on arc (i, j) 

on route 𝑟 at hub h 

𝑡!(> The travel time on arc (i, j) at time h based on the piecewise approximated travel time 

function 

𝜏!(> The latency on arc (i, j) at hub h transferred to the group of evacuees that follows 

𝜏̂!(> The slack latency on arc (i, j) at hub h not transferred to the group of evacuees that 

follows 

𝜏′!(>.8M The latency on arc (i, j) at hub h equals to the latency added to slack latency if the group 

is evacuated, and zero otherwise 

𝑠!(>.8M Slack variable to remove the effect of latency of the group of evacuees from community k 

if they do not pass through the arc (i, j) at hub h 

𝑙M.8 The latency of the group of evacuees on route r of a community k evacuated at time t 

𝑒M.8 The travel time of community k on route r evacuated at time t 
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𝑒′M.8 The evacuation time of community k on route r evacuated at time t 

𝐸 Network clearance time 

𝑑MS8K  The positive difference of the route r of time t compared with the route q at time v 

6.2.2 The Evacuation Model 

𝑀𝑖𝑛	𝑁𝐶𝑇	 = 	𝐸 (6-1) 

subject to  

𝑥!(M(>1#).8 −	𝑥(!M>.8 =	�
𝑓M.8	𝑖𝑓	𝑖	 ∈ 𝑁7
−𝑓M.8	𝑖𝑓	𝑖 ∈ 𝑁)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  , 𝑖𝑓	𝑖	 ∈ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾	 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 (6-2) 

𝑥!(M>.8 −	𝑥(!M>.8 = 	0, 𝑖𝑓	𝑖	 ∉ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾, 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(6-3) 

CC𝑓M.8
M∈48∈)

= 𝑄. ∀	𝑘	 ∈ 𝐾 (6-4) 

𝑥′!(> =	CC C 𝑥!(M>.8

8|(!,(,8,>)∈7.∈3M∈4

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (6-5) 

𝜏!(> =	𝑐!(𝑡!(> − 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (6-6) 

𝜏̂!(> ≤	𝑐!( ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (6-7) 

𝜏!(> = 0 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ = 0 (6-8) 

𝑡!(> ≥ 𝑚L𝑥@!(> + 𝑏L ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑑 ∈ 𝐷 (6-9) 

𝜏!(> ≥ 𝜏(BK − 𝜌(1 + ℎ − 𝑣)(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗), (𝑗, 𝑙) ∈ 𝐴, 𝑘 ∈ 𝐾, 

	ℎ, 𝑣 ∈ 𝐻|ℎ ≥ 𝑣, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(6-10) 

𝑥!(T>.8 ≤ 𝑢	𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 
	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 

(6-11) 

𝑥!(T>.8 ≥ 𝜇	𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 
	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 (6-12) 
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𝑙M.8 = C C𝜏′!(>
>∈H(!,()∈M

 ∀	𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅. (6-13) 

𝜏′!(>.8M + 𝑠!(>.8M = 𝜏!(> + 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 (6-14) 

𝜏′!(> ≤ 𝑀𝑧!(M>.8  ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(6-15) 

𝑠!(> ≤ 𝑀(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(6-16) 

𝑒T.8 = 𝐶T𝑧!(T>.8 + 𝑙T.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟,	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(6-17) 

𝑒′M.8 = 𝜌(𝑡 − 1)𝑧!(M>.8 + 𝐶M𝑧!(M>.8 + 𝑙M.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟,	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(6-18) 

𝑒′M.8 ≤ 𝐸 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (6-19) 

𝑥!(M>.8 , 𝑥′!(> , 𝑓M.8 , 𝜏!(> , 𝜏̂!(> , 𝜏′!(> , 𝑠!(> , 𝑙M.8 , 𝑒M.8 , 𝑒′M.8 , 𝐸 ≥ 0 ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡 ∈ 𝑇, ℎ ∈ 𝐻, (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(6-20) 

	𝑧!(>.8 	 ∈ {0,1} ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(6-21) 

Note that the flow conservation constraints (6-2) and (6-3) are slightly modified compared to the 

original flow conservation constraints. These constraints allow evacuees to follow one time path 

along the predefined route. Constraint (6-4) sums all evacuees evacuated at all times on all routes 

to equal the community population. Evacuees from different communities evacuated at different 

times from different routes meet on a road segment (𝑖, 𝑗) at hub ℎ in constraint (6-5). The latency 

𝜏!(> is the travel time based on the volume of the evacuees subtracting their travel time in free-

flow speed as seen in constraint (6-6). Note that 𝜏̂!(> can be less than the free-flow speed in case 

that no evacuees pass to maintain the constraint feasibility as shown in constraint (6-7) given that 

the initial latency is 0, as seen in constraint (6-8). The travel time based on the volume is 

illustrated in constraint (6-9) since the travel time is a convex function. Constraint (6-10) 
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transfers the delay to the group of evacuees that follow to propagate the congestion to the 

upstream road segments. Constraints (6-11) and (6-12) use the binary variable 𝑧!(M>.8  to whether it 

allows the evacuees from community k evacuated at time t to pass through the arc (i, j) on route 𝑟 

at hub h given that u is the capacity of the road segment and 𝜇 is the minimum number of 

evacuees in a group. The latency of group from community k evacuated at time t on route r is the 

sum of latencies along that route as seen in constraint (6-13). Since the routes overlap, 

Constraints (6-14), (6-15), (6-16) extracts the latencies from the network with the help of the 

indicator variable 𝑧!(M>.8 . The travel time of a group is the travel time in free-flow speed in 

addition to the latency as seen in constraint (6-17), and the evacuation time is the waiting time 

since the beginning of the evacuation process in addition to the travel time as seen in constraint 

(6-18). The network clearance time E is the maximum evacuation time among all evacuated 

groups as shown in constraint (6-19). Finally, constraints (6-20) and (6-21) are the nonnegativity 

constraints.  

6.2.3 Objective Functions 

The objective of the model is to minimize NCT variable E where E is the total travel time of the 

last group arriving at the safe destination in addition to the waiting time since the beginning of 

the evacuation process, as seen in the objective (6-22). 

𝑀𝑖𝑛	𝑁𝐶𝑇 = 	𝐸 (6-22) 

The other objective used in the MMF allocation algorithm is minimizing the sum of the positive 

deviation (SPD), as seen in the objective (6-23). The objective is to minimize the positive 

difference between the evacuation time 𝑒′M8  of the group evacuated on route r at time t and the 

preset threshold parameter 𝜃 to identify the improvable evacuation times. More details in section 

6.3. 
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𝑀𝑖𝑛	𝑆𝑃𝐷 = 	CC𝜔M.8𝑑.M81

8∈)M∈4

	 (6-23) 

subject to  
 𝑒′M.8 − 𝜃 +	𝑑.M80 − 𝑑.M81 = 0 ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (6-24) 

 𝑒′M.8 ≤ 𝛾M.8 ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (6-25) 

 Constraints (6-2) - (6-21)   

In addition, different objectives are experimented. The AET for each group of evacuees is 

incorporated in the model in the objectives (6-26). The sum of 𝑧!(M>.8  at the source node 𝑖 ∈ 𝑁7 is 

the number of groups to be evacuated given that the minimum number of groups to be evacuated 

is one. 

𝑀𝑖𝑛	𝐴𝐸𝑇 =
∑ ∑ ∑ 𝑒′M.88∈)T∈*.∈3

∑ ∑ ∑ ∑ 𝑧!(M>.8
8,>|(!,(,8,>)∈7(!,()∈MM∈4.∈3

 (6-26) 

6.3 Fairness in Evacuation 

In this section, a new algorithm called 𝜃-progressive-filling algorithm is introduced to find the 

optimal MMF evacuation time for the LBM model. This algorithm guarantees convergence and 

finds the optimal MMF evacuation time. The algorithm starts by setting initial values to the 

parameters 𝜔M.8 , 𝛾M.8, and 𝜃 for the road segment r and time of evacuation t. The parameter 𝜔M.8 

equals 1 if the objective of minimizing the evacuation time considers the group evacuated on 

route 𝑟 at time t in the minimization process, and it equals 0 otherwise. The parameter 𝛾M.8 is the 

upper bound of the evacuation time. The parameter 𝜃 is used as a threshold to identify the 

improvable evacuation times by minimizing the SPD, as illustrated in (6-23). In the first step, the 

evacuation time for all groups is considered by setting the parameter 𝜔M.8 to 1 for the groups 
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evacuated on all routes r and time of evacuation t. The upper bound parameter 𝛾M.8of evacuation 

time is set to M, given that M is a sufficiently large number. The initial value of the threshold 

parameter 𝜃 is set to 0 since it has no effect on the first iteration of the algorithm. In step 2, the 

algorithm stops if all groups evacuation times are excluded from the objective to be minimized. 

Otherwise, the model is solved to minimize the evacuation time of the groups that are considered 

for improvement. In the first iteration, the evacuation time for all groups is considered in the 

objective. In step 3, an upper bound is set for the evacuation times considered in the objective by 

setting the evacuation time upper bound parameter 𝛾M.8 for the group evacuated on route r at time 

t equal to the minimum 𝐸, and setting the threshold parameter 𝜃 equal to 𝐸 − 𝜀 given that 𝜀 is a 

small value. In step 4, the model is solved again with the objective SPD, as seen in (6-23), to 

identify the groups of evacuees whose evacuation time can be improved by 𝜀. If the evacuation 

time 𝑒′M8 , in step 5, for the group evacuated on route r at time t is greater than or equal to the 

minimum E from step 2, it indicates that the evacuation time for that specific group of evacuees 

cannot be improved any further. Hence, its parameter 𝜔M8 is set to 0 to be excluded from the 

minimization objective in step 2. 

Table 6-1: 𝜃-progressive-filling algorithm 
Algorithm: Finds MMF resource allocation for general problems 

Step 1 Set 𝜔M.8 = 1, 𝛾M.8 = 𝑀, and 𝜃 = 0		∀	𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

Step 2 If ∑ ∑ 𝜔M.88∈)M∈4 = 0, stop. Otherwise find the minimum E by solving 
the problem 𝑃;Z)(𝜔, 𝛾, 𝜃) 

Step 3 If 𝜔M.8 = 1, set 𝛾M.8 = 𝐸, and		𝜃 = 𝐸 − 𝜀	∀	𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

Step 4 solve the problem 𝑃[\](𝜔, 𝛾, 𝜃)  

Step 5 if 𝑒′M.8 	≥ 𝐸, set 𝜔M.8 = 0	∀	𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

Step 6 Go to step 2 
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The computational time of the 𝜃-progressive-filling algorithm is very similar to the water filling 

algorithm, if not faster. The water filling algorithm may encounter degeneracy since not all 

binding constraints are identified due to the unnecessary condition of the complementary 

slackness. Since this algorithm does not rely on complementary slackness in identifying the 

blocking constraints, it is capable of finding the optimal MMF resource allocation in convex or 

nonconvex structure problems, and it may require fewer iterations to reach the optimal MMF 

solution.  

Fairness is measured using the SAD, as seen in the equation (6-27), to achieve an approximation 

to the MMF solution, as illustrated by Bin Obaid and Trafalis (2018).  

𝑆𝐴𝐷 = C C C F𝑒′M.8 − 𝑒′SBKF
.,B∈38,K∈)|	8CKM,S∈4|M_S

 
(6-27) 

Assuming that all evacuees are evacuated from one community, 𝑑MS8K  is the positive difference in 

evacuation time between every pair of groups evacuated on different routes at various times. The 

SAD function (6-27) is converted to the linear constraints shown in (6-28) and (6-29). 

𝑆𝐴𝐷 = C C 𝑑MS8K + 𝑑SMK8
8,K∈)|8CKM,S∈4|M_S

 
(6-28) 

𝑒′M8 − 𝑒′SK +	𝑑MS8K − 𝑑SMK8 = 0 ∀𝑟, 𝑞 ∈ 𝑅, 𝑡, 𝑣 ∈ 𝑇, 

𝑟 > 𝑞, 𝑡 ≥ 𝑣 
(6-29) 

6.4 Illustration and Experimentation 

In this section, an example network is used to illustrate the model. In addition, a small real-world 

network is used for illustration and experimentation. 
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6.4.1 Illustrative Example 

Consider the network used in chapter 5 with seven nodes and seven arcs as seen in Figure 6-1. 

Suppose that the population in the endangered zone in node S0 is to be evacuated to the safe 

zone in node T6 given that S0 is the source node and node T6 is the terminal node. All nodes are 

considered as hub nodes, and the travel time in free-flow speed from each pair of consecutive 

hub nodes is 60 minutes. The total travel time from node S0 to node T6 in free-flow speed is 240 

minutes on either route. Due to the limited capacity of roads, evacuees spend more time in the 

network as a result of congestion.  

 
Figure 6-1 Small network with 7 nodes and 7 arcs 

As shown in Table 6-2, the travel time is based on the traffic volume on any road segment. If the 

traffic volume is 0, the latency is 0 indicating that no evacuees are evacuated. This information is 

used to find the slope and intercept of each linear segment of the piecewise linear approximation 

of the BPR function. The lane capacity is set to 1750 vehicles/lane/hr., and each road segment in 

the network is assumed to consist of two lanes in each direction.  

Table 6-2: Latency based on the traffic volume 
Number of Vehicles Latency (m)*60 

0 0 
2200 1 
4350 60 
4650 90 
4900 120 
5200 180 

 

1 

2 4 

3 

5
 

  S0 T6 
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The MMF algorithm is tested on the example network in Figure 6-1 to find the MMF evacuation 

time. The output of the algorithm is illustrated in Table 6-3. Note that the groups of evacuees 

evacuated at the first time period are delayed by 11.97 minutes on either route, but not causing 

any delay to the groups following them until they reach the bottleneck road segment (5, 6). At 

the bottleneck, they are delayed by 180 minutes, transferring 120 minutes delay to the groups 

that follow. The groups evacuated at time 2 are delayed by 7.86 minutes until they are delayed 

by 120 minutes on the road segments (3, 5) and (4, 5) caused by the groups evacuated at time t 

additional to the 120 minutes delay on the bottleneck. The group of evacuees evacuated at time 3 

are delayed by 7.86 minutes on (0, 1) and (0, 2) road segments, 120 minutes caused by the 

groups evacuated at time 1, and 60 minutes caused by the groups evacuated at time 2 in addition 

to the 120 minutes delay at the bottleneck.  

Table 6-3: The results of the illustrative example network 
 Number of 

Evacuees (𝒇) 
Latency (𝝉) Obj.  

NCT 
(m) 

Slack Latency (𝜏̂) 
Time Route1 Route2 (0, 1) (0, 2) (1, 3) (2,4) (3,5) (4,5) (5,6) 

1 2600 2600 0 0      

667.86 

11.97 11.97 

2 2450 2450 0 0 0 0    
7.86 7.86 11.97 11.97 

3 2450 2450 0 0 0 0 0 0  
7.86 7.86 7.86 7.86 11.97 11.97 

     120 120 120 120 120 
0 0 0 0 60 

       60 60 60 
0 0 60 

         60 
60 

The network in Figure 6-1 is tested using other objectives, as illustrated in Table 6-4. Note that 

the objective of minimizing the NCT achieves the minimum NCT of 667.86 minutes, but it 

distributes the evacuees randomly, resulting in a relatively high AET and SAD. The objective of 

minimizing the AET results in a higher NCT of 671.98 minutes and minimum AET of 517.09 
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minutes among all the tested objectives. Fixing the minimum NCT to its minimum, then 

minimizing the AET in the AET̀ ab results in the worst SAD of 769.51 minutes among the tested 

objectives. Note that the evacuation time of the groups evacuated at time 1 in the MMF is higher 

compared with the 𝐴𝐸𝑇;Z) objective. The reason for increasing the evacuation time of the 

groups evacuated at time 1 in MMF compared with AET̀ ab is to decrease the evacuation time of 

the groups evacuated at time 2 from 563.95 to 555.72 minutes. In objective AETc], the AET is 

minimized with an equal number of evacuees in each group to compare with the other objectives.  

Table 6-4: The evacuation time for each group of evacuees of different objectives tested on the 
network of example 1 is illustrated in addition to the AET, SAD, and NCT for each 

objective 
 Time Route NCT 𝐀𝐄𝐓 𝐀𝐄𝐓𝐍𝐂𝐓 MMF 𝐀𝐄𝐓𝐄𝐃 

Ev
ac

ua
tio

n 
Ti

m
e 1 

1 363.00 404.16 404.16 455.93 407.69 
2 404.16 363.00 363.00 455.93 407.69 

2 
1 585.91 509.44 563.95 555.72 538.46 
2 542.00 482.00 563.95 555.72 538.46 

3 
1 667.86 671.98 667.87 667.86 669.23 
2 667.86 671.98 667.87 667.86 669.23 

AET 538.47 517.09 538.47 559.84 538.47 
SAD 793.09 699.42 769.51 523.81 653.84 
NCT 667.86 671.98 667.86 667.86 669.23 

6.4.2 Experimentation 

The model is tested on the Fort Worth Dallas network studied in the literature by Sbayti and 

Mahmassani (2006) and Murray-Tuite (2007). The network is composed of 179 nodes and 459 

arcs. Some of the existing nodes are set as hub nodes, and artificial nodes are added as hub 

nodes, as seen in Figure 6-2. After adding the artificial nodes, the network consists of 195 nodes 

and 475 arcs. The population of the community is to be evacuated from the set of source nodes 

𝑁7 = {108, 155, 178, 194} to the set of terminal nodes 𝑁) = {116, 117} assuming the terminal 
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nodes do not have capacities. It is assumed that the population to be evacuated consists of 2,000 

vehicles. The population is pushed to evacuate in 3 time units to simulate the high demand to 

evacuate, leading to higher congestion. 

Table 6-5: Set of routes of the Fort Worth experiment network 
r Route Travel Time (minutes) 
0 108-107-106-105-104-103-102-101-100-190-116 6 
1 108-107-106-105-104-103-98-116 4 
2 155-99-176-96-151-97-89-4-22-2-116 4 
3 155-99-152-146-145-140-91-90-6-26-25-21-116 4 
4 155-153-147-141-92-8-7-85-84-83-82-81-116 6 
5 178-177-93-10-9-86-72-71-70-69-68-67-130-81-116 7 
6 178-177-93-10-9-86-72-73-74-75-76-77-78-79-117 8 
7 178-177-93-10-9-40-11-43-46-13-50-15-56-57-17-61-117 7 
8 194-154-95-149-94-12-11-43-44-45-49-180-55-58-62-117 5 
9 110-195-111-112-192-113-114-173-115-117 5 

The summary of the results and the computational time of different objectives are listed in Table 

6-6. When minimizing the NCT, the resulting objective is 62.38 minutes. Minimizing the AET 

results in the minimum AET among all tested objectives, but it results in significantly higher 

NCT and SAD. Minimizing the AET subject to minimum NCT results in a similar output to the 

MMF. However, MMF results in the lowest fairness measure SAD of 3329.25 minutes among 

the tested objectives.  

Table 6-6: Summary of the results when testing different objectives 
Objective 

(Minimize) NCT AET SAD CPU time (s) 

NCT 62.38 49.51 3475.41 0.47 
AET 96.78 46.65 5577.94 1.55 
AET̀ ab 62.38 49.34 3389.22 1.37 
MMF 62.38 49.33 3329.25 14.71 
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Figure 6-2: Fort Worth Experiment Network. The affected area is highlighted in grey. 

Impacted zone to 
be evacuated 
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The algorithm is tested on convex and non-convex structure problems for comparison purposes. 

For the convex problem, the number of groups of evacuees is fixed, assuming that the evacuees 

use all routes and all times of evacuation. The problem becomes LP as the binary variables are 

fixed to equal one. Hence, the computational complexity is reduced significantly. For the 

nonconvex problem, the problem is MILP, as there is no restriction on the binary variable. In this 

section, the difference between these problems is illustrated. The NCT behavior for the convex 

and nonconvex case when ranging the number of evacuees from 200 to 2,000 is illustrated in 

Figure 6-3. Note that the NCT is identical when the number of evacuees is greater than 1,000. 

The evacuation time is higher when the number of evacuees is less than 1,000 since that the 

evacuees are forced to evacuate later in time while they have enough space to evacuate earlier, or 

they are forced to travel on longer routes while the shorter routes are not congested.   

 
Figure 6-3: The NCT in minutes in Fort Worth for the range of number of evacuees from 200 to 

2,000 for the LP and MILP 

The AET behavior for the convex and nonconvex problems when ranging the number of 

evacuees from 200 to 2,000 is illustrated in Figure 6-4. Note that the AET of the convex case is 

almost identical to the nonconvex one as the number of evacuees increases. It indicates that the 
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evacuees are evacuated on all routes and all times of evacuation is ideal for higher demands to 

evacuate in emergency evacuations. 

 
Figure 6-4: The AET in minutes in Fort Worth for the range of number of evacuees from 200 to 

2,000 for the LP and MILP 

The evacuation time for the convex and nonconvex structure problems for each group of 

evacuees is illustrated in Figure 6-5. The evacuation time is illustrated in Figure 6-5 is for the 

number of evacuees ranging from 200 to 2,000 evacuees. Darker lines indicate higher demand. 

Note that the evacuation time decreases as the number of evacuees decreases. In the convex 

problem, all routes are used in all times of evacuation. However, in the nonconvex problem, the 

number of routes decrease as the number of evacuees decreases. The number of groups is 30 

when the number of evacuees is 2,000 while the number of groups is 7 when the number of 

evacuees is 200. 
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Figure 6-5: The evacuation time for the convex and nonconvex problems for each group of 

evacuees. Darker lines indicate higher demands 

6.5 Computational Complexity 

The model is tested on the Tampa City problem used for experimentation in chapter 5 using 

Gurobi Optimizer (2015), and the experiment was conducted on a PC with Intel quad-core 3.4 

GH CPU and 32 GB memory. The model can solve small to medium size problems with a 

limited number of routes. However, the computational time can increase exponentially with the 

number of routes and evacuating times. Note that 𝑧!(M>.8  is the binary variable indicates that 

community k evacuated at time t is allowed to pass on arc (i, j) on route r at hub h. The number 

of the binary variables 𝑧!(M>.8  used in the model is decided by the number of routes |𝑅| used in the 

network and the planning time horizon. The number of the binary variables 𝑧!(M>.8  is not affected 

by the number of hubs on the route r because when the group of evacuees is not allowed to enter 

the first hub, they will not be able to pass through the rest of the hubs along that route, and the 
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opposite is true. This conclusion leads us to the computational complexity of the model for 

multiple routes. The computational complexity of the model is 𝑂(2|4|∙|)|)) multiplied by the 

number of iterations in the 𝜃-progressive-filling algorithm, given that |𝑅| is the number of routes 

of all communities, and |𝑇| is the number of evacuating times. The upper bound of the number of 

iterations in the 𝜃-progressive-filling algorithm is the number of groups evacuated. The number 

of groups is |𝑇| ∙ |𝑅|, given that |𝑇| is the times of evacuation, and |𝑅| is the number of routes 

for all communities. 

 However, the computational complexity can be reduced from exponential to polynomial by 

assuming that all routes are used in all times of evacuations, as illustrated in section 5.3.2. This 

assumption is valid in the case of emergencies to utilize all routes since the high demand needs 

to be evacuated in a short time period. 
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Chapter 7: Robust Fair Latency-Based Evacuation Model Under 

Demand Uncertainty 

7.1 Introduction 

Evacuation modeling has been receiving tremendous attention due to the increasing number of 

natural and manmade disasters that require evacuation. Various modeling approaches and 

algorithms have been proposed over the past few decades to help allocate resources efficiently in 

the evacuation process and alleviate the impact of these disasters by reducing the risk of loss in 

lives and properties. Among the critical decisions is the routing of evacuees to reduce the 

congestion effect given the limited roads' capacity. However, the limited availability of data can 

lead to unreliable estimates of the number of evacuees and their demand rates. Using 

deterministic information, such as the expected demand, may not reflect the actual problem and 

produce invalid nominal solutions, or even infeasible solutions, as uncertainty is inherent in such 

problems. For example, the expected number of evacuees to evacuate Galveston and Harris 

counties in Hurricane Rita was 686,000, while an estimated 1.8 million evacuated (Lindell and 

Prater (2007)). Hence, there is a need to develop robust optimization models to consider the 

uncertainty in the evacuation problem. 

This chapter presents a robust optimization approach using the LBM to help the decision-makers 

improve the evacuation process, given the uncertain nature of the evacuation problem. The tested 

model is the latency-based dynamic traffic assignment model (LB DTA), which is developed as 

an MILP model. In addition, the iterative 𝜃-progressive-filling algorithm is tested to achieve a 

robust fair and efficient distribution of evacuees by finding the MMF evacuation times on the 

given set of used routes. The other objective tested is the average evacuation time (AET), which 
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finds the most efficient evacuation plan. The travel time on any road segment is a function of the 

number of evacuees. The function used is a modified version of the BPR function proposed in a 

recent study by Mtoi and Moses (2014), and the delay that takes place downstream the network 

is propagated to the road segments upstream the network.  

This chapter is organized as follows. In the next section, the evacuation model is presented. The 

robust modeling approach is introduced in section 7.3. The experimentation is implemented in 

section 7.4, including the discussion. In section 7.5, the computational complexity is discussed.  

7.2 Evacuation Model 

In this section, the evacuation model is defined, including its parameters, in addition to the 

constraints and objective functions. 

7.2.1 Model Definition 

Given a graph G = (N, A) with a set of nodes N and a set of directed arcs A, where each arc 

𝑎	𝜖	𝐴 represents a road segment that connects two nodes 𝑖, 𝑗 ∈ 𝑁 with a number of lanes 𝑙 ∈ 𝐿 

where 𝑎 = (𝑖, 𝑗, 𝑙). The nodes of the network are composed of a set of source nodes 𝑁7 ⊂ 𝑁, and 

a set of terminal nodes 𝑁) ⊂ 𝑁.  The network is preprocessed by identifying a set of hub nodes 

𝑁H ⊂ 𝑁 given that 𝑁7 ⊂ 𝑁H and 𝑁) ⊂ 𝑁H, and the travel time in free-flow speed between each 

pair of consecutive hub nodes is constant and equal to the system clock. R is the set of routes in 

the networks from 𝑁7 to 𝑁), and 𝑅. is the set of routes that community k can use where K is the 

set of communities in the network.	𝑇 = {1,… , 𝑡I} is the set of clock times when evacuees are 

evacuated, given that 𝑡I is the time where the last group of evacuees is evacuated, and 𝐻 =

{1,… , ℎI}  is the set of clock times of evacuees while traveling in the network given that 𝑡> is the 

time when the last group of evacuees reached the safe destination. The evacuation process starts 
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when the time t in 𝑇 equals 1 given that evacuees can enter and exit any route through any hub 

node. The link (i, j) on a route is linked to the time t of evacuation and hub h through the tuple 

(𝑖, 𝑗, 𝑡, ℎ) that belong to 𝑆. 

7.2.1.1 Parameters and Sets: 

K The set of communities 

𝑅 The set of shortest routes from the source nodes to the terminal nodes 

𝐿 The set of number of lanes 

D The set of linear segments of the piecewise approximation to the BPR function 

𝑚LB The slope of the linear segment d with number of lanes l 

𝑏LB The intercept of the linear segment d with number of lanes l 

𝑢B The maximum capacity of a road segment (vehicle/time unit) with number of lanes l 

𝜇 The minimum number of evacuees to be evacuated in a group 

𝜌 The time in minutes to travel from one hub to the next hub node in free-flow speed and 

the system clock 

𝑐!( The percentage of time to reach the next hub node from node i to node j on the link 

(𝑖, 𝑗) ∈ 𝐴  

𝐶M The time to travel on route r from source to destination in free-flow speed  

𝑄. The population of community k 

7.2.1.2 Set of Variables: 

𝑥!(M>.8   The number of evacuees on arc (i, j) on route r at time h of community k evacuated at 

time t.  

𝑥′!(> The number of evacuees on arc (i, j) at time h  

𝑓M.8 The number of evacuees of community k on route r evacuated at time t arriving at time h 
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𝑧!(M>.8  Binary variable equals 1 if community k evacuated at time t is allowed to pass on arc (i, j) 

on route 𝑟 at time h 

𝑡!(> The travel time on arc (i, j) at time h based on the piecewise approximated travel time 

function 

𝜏!(> The latency on arc (i, j) at time h 

𝜏̂!(> The residual latency of the preceding group to remove the effect of latency on the 

following group 

𝜏′!(>.8M The latency of the group evacuated from community k at time t on route r on arc (i, j) at 

hub h 

𝑠!(>.8M A slack variable to complement the latency of the group evacuated from community k at 

time t on route r on arc (i, j) at time h 

𝑙M.8 The latency of a full route r of a community k evacuated at time t 

𝑒M.8 The travel time of community k on route r evacuated at time t 

𝑒′M.8 The evacuation time of community k on route r evacuated at time t 

𝐸 Network clearance time   

7.2.2 The Evacuation Model 

𝑀𝑖𝑛	𝑁𝐶𝑇	 = 	𝐸 (7-1) 

subject to  

𝑥!(M(>1#).8 −	𝑥(!M>.8 =	�
𝑓M.8	𝑖𝑓	𝑖	 ∈ 𝑁7
−𝑓M.8	𝑖𝑓	𝑖 ∈ 𝑁)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  , 𝑖𝑓	𝑖	 ∈ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾	 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 (7-2) 

𝑥!(M>.8 −	𝑥(!M>.8 = 	0, 𝑖𝑓	𝑖	 ∉ 𝑁H ∀	𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟, 𝑘 ∈ 𝐾, 
𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(7-3) 

CC𝑓M.8
M∈48∈)

= 𝑄. ∀	𝑘	 ∈ 𝐾 (7-4) 
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𝑥′!(> =	CC C 𝑥!(M>.8

8|(!,(,8,>)∈7.∈3M∈4

 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (7-5) 

𝜏!(> =	𝑐!(𝑡!(> − 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (7-6) 

𝜏̂!(> ≤	𝑐!( ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻 (7-7) 

𝜏!(> = 0 ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ = 0 (7-8) 

𝑡!(> ≥ 𝑚LB𝑥!(>@ + 𝑏LB ∀	(𝑖, 𝑗, 𝑙) ∈ 𝐴, ℎ ∈ 𝐻, 𝑑 ∈ 𝐷 (7-9) 

𝜏!(> ≥ 𝜏(BK − 𝜌(1 + ℎ − 𝑣)(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗), (𝑗, 𝑙) ∈ 𝐴, 𝑘 ∈ 𝐾, 

	ℎ, 𝑣 ∈ 𝐻|ℎ ≥ 𝑣, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 

(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 

(7-10) 

𝑥!(M>.8 ≤ 𝑢B𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 
	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 

(7-11) 

𝑥!(T>.8 ≥ 𝜇	𝑧!(M>.8  ∀	𝑖 ∈ 𝑁7, (𝑖, 𝑗) ∈ 𝐴, 𝑟 ∈ 𝑅,	 
	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆, 𝑘 ∈ 𝐾 

(7-12) 

𝑙M.8 = C C𝜏′!(>
>∈H(!,()∈M

 ∀	𝑡 ∈ 𝑇, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅. (7-13) 

𝜏′!(>.8M + 𝑠!(>.8M = 𝜏!(> + 𝜏̂!(> ∀	(𝑖, 𝑗) ∈ 𝐴, ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 (7-14) 

𝜏′!(> ≤ 𝑀𝑧!(M>.8  ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-15) 

𝑠!(> ≤ 𝑀(1 − 𝑧!(M>.8 ) ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-16) 

𝑒T.8 = 𝐶T𝑧!(T>.8 + 𝑙T.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟,	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-17) 

𝑒′M.8 = 𝜌(𝑡 − 1)𝑧!(M>.8 + 𝐶M𝑧!(M>.8 + 𝑙M.8 ∀𝑖 ∈ 𝑁7, 𝑟 ∈ 𝑅, (𝑖, 𝑗) ∈ 𝑟,	 

𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-18) 

𝑒′M.8 ≤ 𝐸 ∀	𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7-19) 

𝑥!(M>.8 , 𝑥′!(> , 𝑓M.8 , 𝜏!(> , 𝜏̂!(> , 𝜏′!(> , 𝑠!(> , 𝑙M.8 , 𝑒M.8 , 𝑒′M.8 , 𝐸 ≥ 0 ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡 ∈ 𝑇, ℎ ∈ 𝐻, (𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-20) 
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	𝑧!(>.8 	 ∈ {0,1} ∀	(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 

	𝑡, ℎ|(𝑖, 𝑗, 𝑡, ℎ) ∈ 𝑆 
(7-21) 

The constraints (7-2) and (7-3) are the flow conservation constraints for i as a hub or non-hub 

node, respectively. These constraints allow evacuees to follow one time path along the 

predefined route. All evacuees evacuated at all times on all routes are summed to equal the 

community population in constraint (7-4). As seen in constraint (7-5), evacuees from different 

communities evacuated at different times from different routes meet on a road segment (𝑖, 𝑗) at 

hub ℎ. In constraint (7-6), the latency 𝜏!(> is the travel time based on the volume of the evacuees 

subtracting their travel time in free-flow speed. Note that, in constraint (7-7), 𝜏̂!(> can be less 

than the free-flow speed in case that no evacuees pass to maintain the constraint feasibility, and 

the initial latency is 0, as shown in constraint (7-8). Since the travel time is a convex function, 

the travel time based on the volume and the number of lanes l is illustrated in the inequality 

constraint (7-9). The delay is transferred, in constraint (7-10), to the group of evacuees that 

follow to propagate the congestion to the upstream road segments. The binary variable 𝑧!(M>.8  is 

used in Constraints (7-11) and (7-12) to either allow the evacuees from community k evacuated 

at time t to pass through the arc (i, j) on route 𝑟 at hub h given that u is the capacity of the road 

segment and 𝜇 is the minimum number of evacuees in a group. In constraint (7-13), the latency 

of group from community k evacuated at time t on route r is the sum of latencies along that route. 

Since the routes overlap, the latencies are extracted from the network with the help of the 

indicator variable 𝑧!(M>.8  in the set of constraints (7-14), (7-15), and (7-16). The travel time of a 

group is the travel time in free-flow speed in addition to the latency as seen in constraint (7-17), 

and the evacuation time is the waiting time since the beginning of the evacuation process in 

addition to the travel time as seen in constraint (7-18). The network clearance time E is the 
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maximum evacuation time among all evacuated groups as shown in constraint (7-19). Finally, 

constraints (7-20) and (7-21) are the nonnegativity constraints.  

7.2.3 Objective Functions 

The other objective experimented is the AET as shown in (7-22) where the number of evacuated 

groups is the sum of 𝑧!(T>.8  given that the minimum number of evacuated groups is one. 

𝑀𝑖𝑛	𝐴𝐸𝑇 =
∑ ∑ ∑ 𝑒′M.88∈)M∈4.∈3

∑ ∑ ∑ ∑ 𝑧!(M>.8
8,>|(!,(,8,>)∈7(!,()∈MM∈4.∈3

 (7-22) 

Min-max fairness is achieved through the 𝜃-progressive-filling algorithm illustrated in (6-1). The 

algorithm follows a similar approach to the progressive-filling algorithm. However, the 𝜃-

progressive-filling algorithm does not rely on the complementary slackness condition. Thus, it 

uses a threshold 𝜃 to identify the blocking evacuation times through the SPD as illustrated in the 

following model:  

𝑀𝑖𝑛	𝑆𝑃𝐷 = 	CC𝜔M.8𝑑M81
8∈)M∈4

	 (7-23) 

subject to  
 𝑒′M8 − 𝜃 +	𝑑M80 − 𝑑M81 = 0 ∀𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7-24) 

 𝑒′M.8 ≤ 𝛾M.8 ∀𝑘 ∈ 𝐾, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇 (7-25) 

 Constraints (7-2) - (7-21)   

7.3 The Robust Counterpart of the Latency-Based Evacuation Model 

The demand in most evacuation models is assumed to be deterministic. However, the demand in 

real case scenarios is uncertain, which can lead to an invalid evacuation plan. In this section, the 

model robustness is tested using a box uncertainty set. The assumption is that the demand is 
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higher than the anticipated demand to test the model adaptation to higher demands as seen in 

(7-26). 

CC𝑓M.8
M∈48∈)

≥ 𝑄. 	 ∀	𝑘	 ∈ 𝐾 (7-26) 

In box uncertainty set, the demand belongs to uncertain set with upper and lower bounds as 

shown in (7-27) and (7-28). 

𝑈j" = Ä𝑄Å.(1 − 𝜃.), 𝑄Å.(1 + 𝜃.)Æ, ∀	𝑘	 ∈ 𝐾 (7-27) 

CC𝑓T.8
M∈48∈)

≥ 𝑄. ,				𝑄. ∈ 𝑈j" 	, ∀	𝑘	 ∈ 𝐾 (7-28) 

where 𝑄Å. is the expected nominal value of 𝑄.. For a robust model, the demand is maximized to 

the point that the constraint is not violated, and the model is feasible as seen in (7-29). 

CC𝑓M.8
M∈48∈)

≥ max
j"∈k("

	𝑄. 		 ∀	𝑘	 ∈ 𝐾 (7-29) 

7.4 Experimentation and Discussion 

The robustness of the model is tested in this section using a network similar to the Nguyen and 

Dupuis (1984) test network as shown in Figure 7-1. The network is composed of 13 nodes and 

20 arcs. The evacuees are evacuated from the source nodes 𝑁? = {1, 4} to the terminal node 

𝑁) = {2}, and the total number of routes they can use is 24. The road capacity is 1800 

vehicle/lane/hr. and 30 mile/hr. speed limit.  
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Figure 7-1: Nguyen and Dupuis experiment network 

The network is preprocessed by adding hub nodes. After adding the hub nodes, the network 

consists of 55 nodes and 62 links, as illustrated in Figure 7-2. The source nodes in areas to be 

evacuated are 𝑁? = {1, 12}, and the set of terminal nodes in the safe area is 𝑁) = {11}. The 

system clock and the travel time in free-flow speed between each consecutive pair of hub nodes 

is 10 seconds.  

 
Figure 7-2: Nguyen and Dupuis experiment network after adding the hub nodes 
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The set of shortest routes that evacuees can use are illustrated in Table 7-1. Since the demand is 

assumed to be uncertain, the demand used in this model is within the set (7-27), and 𝜃. ranges 

between 0 and 0.3. The number of generated demands within the defined set is 100 using beta 

distribution 𝐵(𝛼¢, 𝛽Ç) with its parameters 𝛼¢ and 𝛽Ç  set to 3 and 1, respectively. The beta 

distribution is the most suitable since it is a bounded distribution. One of the objectives of robust 

optimization is to maintain model feasibility. The model is guaranteed to be feasible when 𝜃. is 

less than or equal to 0.3.  

Table 7-1: Set of routes of the Nguyen and Dupuis experiment network 
r Route Travel Time (seconds) 
0 1-2-3-4-5-6-7-8-9-10-11 120 
1 1-2-3-4-45-46-27-28-29-30-31-32-8-9-10-11 170 
2 1-2-3-4-45-46-27-28-29-30-49-50-38-39-40-11 170 
3 1-2-3-4-45-46-27-47-48-35-36-37-38-39-40-11 170 
4 1-41-42-24-25-26-27-28-29-30-31-32-8-9-10-11 170 
5 1-41-42-24-25-26-27-28-29-30-49-50-38-39-40-11 170 
6 1-41-42-24-25-26-27-47-48-35-36-37-38-39-40-11 170 
7 1-41-42-24-43-44-15-33-34-35-36-37-38-39-40-11 170 
8 1-41-42-24-43-44-15-16-17-18-19-20-21-53-54-55-11 180 
9 12-22-23-24-25-26-27-28-29-30-31-32-8-9-10-11 170 
10 12-22-23-24-25-26-27-28-29-30-49-50-38-39-40-11 170 
11 12-22-23-24-25-26-27-47-48-35-36-37-38-39-40-11 170 
12 12-22-23-24-43-44-15-33-34-35-36-37-38-39-40-11 170 
13 12-13-14-15-33-34-35-36-37-38-39-40-11 140 
14 12-13-14-15-33-34-35-36-37-38-51-52-21-53-54-55-11 180 
15 12-13-14-15-16-17-18-19-20-21-53-54-55-11 150 

In addition, the networks Tampa and Fort Worth networks are used to test the robustness model. 

The information of the networks tested is listed in Table 7-2, including the system unit in 

minutes, a number of scenarios for each uncertainty level, and the expected demand. The model 

is solved with two main objectives. The first objective is to find an efficient solution by 

minimizing the AET, and the other objective is to find the fair-efficient solution by finding the 
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MMF solution using the algorithm. It is important to mention that the system time unit of the 

Nguyen and Dupuis network is in seconds while the system time unit of the Tampa City and Fort 

Worth networks is in minutes. 

Table 7-2: Network information and computational time in seconds 

Network Nodes Links Routes System unit (m) Scenarios demand 

Nguyen and Dupuis 55 62 16 1/6 100 127 

Tampa City 26 33 9 30 1000 37000 

Fort Worth 195 475 10 1 500 1540 

7.4.1 Worst Case Analysis 

The relative improvement of the robust model output from their corresponding deterministic 

model output under the worst-case scenario is investigated for the tested networks. The relative 

improvement is defined in equation (7-30), where the 𝐸lm is the NCT of the deterministic model 

of MMF objective, and 𝐸4m is the NCT of the robust model of the MMF objective.  

𝑅𝐼(𝜃) = 	
(𝐸lm − 𝐸4m)

𝐸lm
				 (7-30) 

The average relative improvement of the robust model output over the nominal model output is 

calculated against the 𝜃 ranging between 0 to 0.3 in intervals of 0.02 as seen in Table 7-3.  
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Table 7-3: The improvement of robust NCT relative to the nominal NCT 
 Relative Improvement (%) 
𝜽 Nguyen and Dupuis Tampa City Fort Worth 
0 0 0 0 

0.02 0.83 0.6 2.69 
0.04 1.43 1.23 7.74 
0.06 2.4 2.02 13.97 
0.08 3.16 2.82 15.52 
0.1 4.34 3.67 16.49 
0.12 5.2 4.49 18.73 
0.14 6.4 5.46 21.22 
0.16 7.64 6.45 22.96 
0.18 10.36 7.37 25.61 
0.2 14.45 8.79 26.22 
0.22 22.26 10.1 29.46 
0.24 26.93 11.86 30.7 
0.26 32.79 13.55 33.24 
0.28 42.83 15.85 35.05 
0.3 50.18 19.81 38.67 

The relative improvement is plotted against the given uncertainty levels. Note that the robust 

model output outperforms the deterministic model for all networks. The improvement in the 

Nguyen and Dupuis network is significant when the uncertainty level is higher than 0.2, as seen 

in Figure 7-3. The average relative improvement for Nguyen and Dupuis network is 15.4%, with 

a maximum improvement of 50.18% on the maximum given uncertainty level. 

 
Figure 7-3: The relative improvement of the robust model output of Nguyen and Dupuis network 
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The relative improvement of the Tampa City network is plotted in Figure 7-4. The average 

improvement of the robust model output over its corresponding deterministic model is 7.6%, and 

the maximum improvement is 19.81% for the maximum given uncertainty set.  

 
Figure 7-4: The relative improvement of the robust model output of Tampa City network 

The relative improvement of the Fort Worth network is plotted against the given uncertainty set 

in Figure 7-5. The average relative improvement over the given uncertainty set is 22.55 %, while 

the maximum improvement is 38.67%. In all tested networks, the robust solution significantly 

improves the deterministic solution as the uncertainty level increases. Note that the relative 

improvement is non-monotone, similar to the observation by Yao et al. (2009). However, the 

robust model outperforms the deterministic model under the worst-case scenario.  

 
Figure 7-5: The relative improvement of the robust model output of Fort Worth network 
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7.4.2 Robustness of the MMF model 

The robustness of the LBM model with MMF objective is tested and compared with the AET 

objective that finds the most efficient solution. The mean, standard deviation, and maximum 

NCT of the three networks found for the robust efficient evacuation (REE) model and the robust 

fair-efficient evacuation (RFEE) model is reported in Table 7-4. Notice that the mean NCT of 

RFEE is lower than the mean NCT of the REE in all networks and uncertainty levels. The 

standard deviation in RFEE is lower, and the maximum NCT in RFEE is lower in all given 

networks and uncertainty levels. We conclude that the NCT of the MMF model is more robust 

against uncertainties than the efficient model with the AET objective.  

Table 7-4: The NCT mean, standard deviation, and maximum NCT for the three networks with 
different values of 𝜃 

   NCT  

Network 𝜃 
Mean Standard deviation Maximum 

REE RFEE REE RFEE REE RFEE 

Nguyen and 
Dupuis 

0.1 261.66 231.28 14.38 7.94 275.35 242.09 

0.2 269.69 243.87 26.70 20.35 366.11 290.08 

0.3 370.95 314.93 126.50 94.79 753.80 588.86 

Tampa City 

0.1 357.82 259.29 11.39 7.4 381.9 296.8 

0.2 388.59 273.28 35.65 17.95 419.64 303.34 

0.3 395.02 296.24 40.11 38.18 419.88 379.91 

Fort Worth 

0.1 41.77 20.55 11.29 3.26 49.78 25.13 

0.2 51.20 26.57 16.94 7.51 72.55 38.83 

0.3 63.43 35.31 24.31 14.03 96.78 62.37 

The next step is to find the mean, standard deviation, and maximum AET and SAD of the REE 

and RFEE, as illustrated in Table 7-5. The AET is located at the top of each cell while the SAD 

is located at the bottom of the cell. Note that the AET is slightly compromised to reduce the SAD 
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significantly. Up to 10 percent increase in the AET can result in up to 95 percent decrease in the 

SAD, leading to a fair-efficient solution with a slight compromise in the AET. 

Table 7-5: The mean, standard deviation, and maximum AET and SAD for robust efficient 
evacuation and robust fair-efficient evacuation in all networks 

    AET   SAD 

Network 𝜃 Mean  Standard deviation  Maximum 
REE RFEE  REE RFEE  REE RFEE 

Nguyen 
and Dupuis 

0.1 
212.88 217.13  7.21 6.80  222.52 226.02 

14224.5 9830.72  1692.81 720.34  16183.5 10965.00 

0.2 
222.54 226.46  16.44 15.89  250.63 254.34 

14264.8 11904.20  2550.92 2732.22  22952.6 19050.00 

0.3 
249.69 254.81  34.91 36.03  327.18 333.96 

26303.10 23988.20  15011.60 16072.90  96852.30 70013.30 

Tampa 
City 

0.1 
243.58 250.34  6.38 5.29  252.09 257.29 

4243.02 1189.64  117.52 242.41  4512.68 1568.94 

0.2 
252.56 258.42  12.96 11.44  270.93 275.49 

4258.08 1713.06  230.76 659.36  4615.46 2865.3 

0.3 
262.9 268.35  21.72 19.85  296.42 298.89 

4531.82 2675.46  611.31 1549.56  6068.45 5836.76 

Fort Worth 

0.1 
17.16 18.54  2.26 2.63  20.42 22.20 

1880.60 731.27  593.33 183.22  2640.37 1001.22 

0.2 
21.31 23.27  5.28 5.99  30.03 32.97 

2367.84 112.17  768.28 443.07  3320.64 1851.52 

0.3 
27.64 30.09  10.12 10.99  46.65 49.33 

3200.05 1637.42  1394.37 846.44  5639.03 3342.32 

The evacuation time and the number of evacuees in each group are plotted for all networks for 

different uncertainty levels. The number of evacuees for different uncertainty levels is plotted to 

help the decision-maker visualize the distribution of evacuees on different routes and times of 

evacuation.  
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Figure 7-6: The evacuation time of the groups evacuated from community k at time t on route r 

of all networks for the robust efficient evacuation and robust fair-efficient evacuation 
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The evacuation time for each group of evacuees for Nguyen and Dupuis network when 𝜃 = 0.2 

is illustrated in Figure 7-6. Note that darker color indicates higher demand. The evacuation time 

of the group evacuated on route 14 at time 3 can be more than 350 minutes when the demand is 

high while other groups evacuation time is around 250 minutes in the REE. In the RFEE, the 

evacuation time is less than 300 minutes for all evacuees when the demand is high, and the 

uncertainty level is 0.2 

The evacuation time for each group of evacuees for the Tampa City network when 𝜃 = 0.2. The 

evacuation time for all groups is uniform for evacuees of RFEE, given that when the line is a 

perfect circle, the evacuation time for all groups of evacuees is equal. Note that in RFEE, the 

evacuation time for all groups of evacuees in different times of evacuation is equal when the 

demand is low, as illustrated in Figure 7-6. 

The evacuation time of most groups in Fort Worth network for the REE is below 20 minutes at 

the cost of increasing the evacuation time of groups 8 and 9, which experience an evacuation 

time more than 40 minutes. On the other hand, the evacuation time for the evacuees on routes 2 

and 3 in RFEE is minimized without affecting the rest of the groups' evacuation time, which is 

below 27 minutes. 

The distribution of evacuees evacuated from community k at time t on route r is illustrated in 

Figure 7-7. Note that not all routes are fully utilized in Nguyen and Dupuis network, and the 

minimum is sent given than the darker color indicates higher demand. In the Tampa City 

network, the maximum number of evacuees in the REE is 4000 vehicles, while the maximum 

number of evacuees in RFEE is 3500 vehicles. 
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Figure 7-7: The number of evacuees f in the groups evacuated from community k at time t on 

route r of all networks for robust efficient evacuation and robust fair-efficient evacuation 
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7.4.3 Route Selection 

The routes used for the Nguyen and Dupuis network is not fully utilized. The θ-progressive-

filling algorithm can be used for route selection to identify the set of the optimal routes that can 

be used in the network. The set of optimal routes selected by the θ-progressive-filling algorithm 

is 𝑅∗ = {0, 1, 6, 7, 8, 10, 12, 14}. The mean, standard deviation, and maximum of the NCT, AET, 

and SAD are reported in Table 7-6. Note that the NCT and AET have been significantly reduced 

when compared with Nguyen and Dupuis network with all routes.  

Table 7-6: The mean, standard deviation, and maximum NCT,  AET, and SAD for robust 
efficient evacuation and robust fair-efficient evacuation of Nguyen and Dupuis with 

optimal routes 

Network 𝜽 Mean Standard deviation Maximum 

REE RFEE REE RFEE REE RFEE 

NCT 

0.1 225.58 215.93 4.12 6.49 229.83 224.74 

0.2 245.38 226.40 26.53 16.28 315.42 266.99 

0.3 333.98 295.34 112.24 92.71 584.69 560.29 

AET 

0.1 202.03 207.10 6.18 5.20 210.20 213.52 

0.2 210.18 214.38 14.13 12.59 236.71 239.36 

0.3 237.42 241.29 34.35 33.68 311.97 317.61 

SAD 

0.1 3397.53 1508.21 324.87 237.54 4005.11 1902.35 

0.2 3512.20 2077.00 430.68 719.86 5042.92 4109.36 

0.3 6499.84 5253.02 3721.40 4095.86 16612.2 16111.40 

The evacuation time for each group evacuated from community k at time t on route r in Nguyen 

and Dupuis network with optimal routes is illustrated in Figure 7-8. Note that the evacuation 

time under the highest demand of the uncertainty level is more than 300 in REE and less than 

270 in RFEE. 
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Figure 7-8: The evacuation time of all groups of evacuees evacuated on route r at time t of 

Nguyen and Dupuis network with optimal routes for REE and RFEE  

The number of evacuees in each group evacuated from community k at time t on route r is 

illustrated in Figure 7-9 for Nguyen and Dupuis network with all routes. When compared with 

the original network, note that the routes are more utilized.  

N
gu

ye
n 

an
d 

D
up

ui
s  n

et
w

or
k  

 

 
Figure 7-9: The number of evacuees evacuated at all time periods on all routes of Nguyen and 

Dupuis network for REE and RFEE 

7.4.4 Uncontrolled Traffic Flow 

The demand in the LBM is controlled by assigning evacuees on predefined routes and time of 

evacuation, as seen in constraint (4-4). This might not be the case. The evacuees, in reality, make 

their own decision on the departure time in the evacuation process. Hence, the model's only 

decision would be to allocate evacuees on routes. Constraint (4-4) now becomes (7-31). 
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C𝑓M.8
M∈4

= 𝑄.8 ∀	𝑘	 ∈ 𝐾, 𝑡 ∈ 𝑇 (7-31) 

The mean, standard deviation, and maximum of the NCT when the traffic flow is uncontrolled is 

reported in Table 7-7. Notice that, on average, the NCT is worsened by around 35 – 55% in both 

Nguyen and Dupuis networks when the traffic flow is uncontrolled. The difference in mean NCT 

between the controlled and uncontrolled is around 1 – 3% in the networks Tampa City and Fort 

Worth for REE, and the uncontrolled flow has lower NCT in some cases. The NCT of the 

networks Tampa City and Fort Worth of the uncontrolled flow is higher by around 5 – 30% than 

the controlled flow in the RFEE.  

Table 7-7: The mean, standard deviation, and maximum NCT for REE and RFEE for all 
networks when the traffic flow is uncontrolled 

   NCT  

Network 𝜃 Mean Standard deviation Maximum 

REE RFEE REE RFEE REE RFEE 

Nguyen and 

Dupuis 

0.1 377.82 312.57 48.46 22.31 418.96 351.52 

0.2 411.92 353.60 63.94 51.41 483.62 439.15 

0.3 501.79 425.33 161.32 128.86 754.45 703.98 

Tampa City 

0.1 353.42 273.39 12.51 4.96 359.50 282.28 

0.2 381.84 286.41 33.42 12.12 419.10 315.03 

0.3 399.44 331.63 31.14 38.77 419.83 409.20 

Fort Worth 

0.1 40.57 21.06 7.74 1.84 51.98 24.45 

0.2 50.03 30.33 8.75 5.09 72.32 39.52 

0.3 68.71 45.36 18.69 14.93 96.58 92.49 

Nguyen and 
Dupuis 
(Optimal 
Routes) 

0.1 349.99 289.79 32.67 22.46 378.37 327.95 

0.2 376.63 330.32 50.86 51.62 493.23 424.94 

0.3 459.84 400.96 142.64 124.59 724.61 653.88 
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The mean, standard deviation, and maximum AET and SAD is illustrated in Table 7-8. The AET 

of the uncontrolled flow worsened by around 6 – 10% for both Nguyen and Dupuis networks for 

REE and RFEE. The difference in AET between the controlled and uncontrolled flow for Tampa 

City and Fort Worth networks is around 0 – 3% given that the uncontrolled flow has lower AET 

in some cases. The increase in the mean SAD from the controlled to the uncontrolled flow can 

reach up to 1300% as seen in Fort Worth for RFEE and 0.2 uncertainty level. 
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Table 7-8: The mean, standard deviation, and maximum AET and SAD  for REE and RFEE for 
all networks when the traffic flow is uncontrolled 

   
 AET  

 
SAD 

Network 𝜃 Mean  Standard deviation  Maximum 
REE RFEE  REE RFEE  REE RFEE 

Nguyen 
and Dupuis 

0.1 
224.71 230.39  6.44 7.60  236.97 244.15 

30604.28 27229.05  6310.03 4362.09  38963.53 35127.06 

0.2 
241.36 247.73  15.67 17.21  273.95 280.94 

35937.50 34073.82  8895.88 9750.96  52857.90 52452.43 

0.3 
265.38 271.51  33.97 34.93  343.97 348.79 

46986.16 45892.15  21682.12 22403.97  98718.81 98569.14 

Tampa 
City 

0.1 
244.28 251.10  3.58 3.30  252.12 258.08 

4274.08 2555.20  278.37 293.84  5260.76 3216.93 

0.2 
253.69 259.37  7.47 6.47  270.94 274.50 

4535.94 2682.09  465.93 486.23  5957.74 4100.03 

0.3 
264.70 269.16  12.59 11.35  296.90 298.63 

4936.77 3511.16  630.12 815.57  6427.89 5859.70 

Fort Worth 

0.1 
16.61 17.97  1.19 1.43  19.25 20.97 

1614.74 839.24  335.08 161.03  2462.94 1351.87 

0.2 
21.17 23.27  2.94 3.43  27.55 29.92 

2546.99 1546.19  477.06 434.85  3831.37 2833.18 

0.3 
27.73 30.41  6.14 6.79  43.11 45.55 

3763.05 2619.76  1059.85 1038.15  6576.79 5639.74 

Nguyen 
and Dupuis 

(optimal 
routes) 

0.1 
216.49 220.91  7.38 7.76  230.19 235.20 

7587.50 5966.55  1910.22 1131.11  10906.06 8413.98 

0.2 
233.17 237.87  16.61 16.76  265.86 269.39 

9482.91 7424.27  2571.32 2422.99  13137.40 12746.43 

0.3 
254.96 259.57  32.77 33.68  323.65 330.29 

11571.70 10122.74  4927.09 5098.16  22248.70 21416.76 
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Figure 7-10: The evacuation time of the groups evacuated from community k at time t on route r 

of all networks for REE and RFEE when the traffic is uncontrolled 
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The evacuation time for all groups is in all networks is illustrated in Figure 7-10. Note that the 

evacuation time when the flow is uncontrolled is very similar to the evacuation time of the 

evacuees with controlled flow except for the Nguyen and Dupuis network. Since the travel time 

in free-flow speed in Nguyen and Dupuis network and the system unit is 10 seconds, the travel 

time is very sensitive to the change in the number of evacuees. 
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Figure 7-11: The number of evacuees f in the groups evacuated from community k at time t on 

route r of Nguyen and Dupuis network (regular and optimal routes) for REE and RFEE 
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The number of evacuees for the Nguyen and Dupuis network is illustrated in Figure 7-11, and 

the number of evacuees of the Tampa City and Fort Worth networks is illustrated in Figure 7-12. 

Although there are similarities in the number of evacuees for the controlled and uncontrolled 

flow, the controlled flow yields a more robust distribution of the evacuees on different demand 

levels. 
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Figure 7-12: The number of evacuees f in the groups evacuated from community k at time t on 

route r of Tampa City and Fort Worth networks for REE and RFEE 
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7.5 Computational Complexity 

The model is tested on Nguyen and Dupuis, Tampa City, and Fort Worth networks using Python 

and Gurobi Optimizer (2015). The experiment was conducted on a PC with Intel quad-core 3.4 

GH CPU and 32 GB memory. The model is capable of solving large-size problems since it can 

be reduced to an LP model. Note that 𝑧!(M>.8  is the only binary variable which indicates whether 

the group of evacuees from community k is allowed to evacuate on that specific link (i, j) at time 

t on route r. The number of variables 𝑧!(M>.8  used in the model is decided by the number of routes 

|𝑃| used in the network and the number of evacuating times |𝑇|. The 𝑧!(M>.8  of all links on a 

specific route evacuated from community k at time t are equal because if a group is allowed to 

use one link on the route, they are allowed to use all the links along the route. Hence, the length 

of the route has no effect on the number of 𝑧!(M>.8  variables. The assumption in this model is that 

all routes in all time periods are utilized, so 𝑧!(T>.8  has no effect on the complexity of the model. 

The computational complexity of the model is reduced from exponential to polynomial. 
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Chapter 8: Conclusion 

This chapter sums up the dissertations by discussing the concluding remarks and future research.  

8.1 Concluding Remarks 

In this section, the contributions in this research are presented. 

8.1.1 Approximation to MMF Using Multicriteria Optimization 

A multicriteria optimization approach to find MMF bandwidth allocation approximation using 

goal programming is proposed. The resulting linear model was described as a bi-objective model 

where we maximize the flow as the first objective and minimize the difference among the 

commodities flow as the second objective. A small example from communication networks was 

used to illustrate the approach. The model is applied to real and random network topologies. Two 

approaches to select the ϵ value are proposed since the selection of the ϵ value is critical in 

utilizing the resource capacity of the network while putting fairness into consideration. The first 

approach to select ϵ value is to identify a clear elbow shape in the Pareto front, as illustrated in 

Figure 3-2. The second approach is to add utilization to the Pareto front to help to decide the ϵ 

value. The Pareto front and utilization plot can give a deep insight into the network structure, as 

seen in the experimentation section 3.4.1. France and Nobel-US are ideal examples of network 

topologies that do not have many shared links as opposed to the network topologies Net70 and 

Net26. Although the random networks' sources and terminals are selected in a way that 

commodities share links to reach their destinations, they are excellent examples of networks that 

have many shared links. In addition, the demand can be incorporated in the model, and the flow 

variable becomes a ratio indicating demand satisfaction if the variable is greater than or equal 1. 

Moreover, the model is more general since adjusting the ϵ is more subjective, depending on the 
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decision-maker selection. Finally, adding weight to the deviation decision variable can put more 

emphasis on selected commodity flows. 

8.1.2 Evacuation Modeling 

The LBM reports very detailed information about each group of evacuees, such as their 

departure time, travel time, evacuation time, the route used, latency, and the number of evacuees 

in each group. However, this information comes at a cost. The computational time increases 

exponentially with the size of the problem. The model has the ability to distribute evacuees on 

the available routes when setting different objectives. ATT and AET objectives result in a 

different distribution of evacuees on the available routes and departure times. Minimizing AET is 

ideal for emergency evacuation and ATT for non-emergencies. Minimizing the NCT distributes 

the evacuees on routes randomly as the main objective is to send the evacuees from the 

endangered zone to the safe destination in the shortest possible time. Since the model complexity 

increase with large-size networks, we develop a reduced model with lower complexity and exact 

results. 

The evacuees in the LBM follow predefined routes. However, the time path they follow is based 

on their volume. The problem becomes UFP so the evacuees remain in one group to reflect their 

delay based on the travel time function and their location in time through the time path they 

follow based on their volume. The model complexity is reduced by reducing the time paths to 

one path, as illustrated in Figure 5-1. The model is tested on the Tampa City network and 

reported the exact output of the original LBM model. In addition, the output of the model is 

compared to the CTM output showing similar behavior, although their basic concept of the 

evacuees' movement is very different.  
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8.1.3 Fairness in Evacuation 

The nonlinear BPR function is a travel time convex function of the traffic volume linearized 

through the piecewise approximation. Since the function is convex, the travel time of any traffic 

volume is found through the constraint (4-12). The multicriteria model is not suitable to find the 

approximate MMF travel time of the evacuees because it may overestimate the travel time of 

some groups for fairer evacuation and not reflect the actual travel time for each group. As a 

result, a new algorithm, we called it 𝜃-progressive-filling algorithm, that finds the MMF for 

general problems is developed. The new algorithm does not rely on complementary slackness to 

identify saturated commodities. Hence, it is capable of finding the MMF resource allocation for 

problems with the nonconvex structure. The new algorithm is tested on the LBM model. Then 

the output is compared to other objectives such as NCT and AET. 

8.1.4 Robustness of the LBM model 

The model is tested on a variety of real and random networks with different sizes resulting in 

quality solutions and low computational time. To test the model robustness under demand 

uncertainty, a set-based approach is used, given that the demand belongs to a bounded set. The 

mean, standard deviation, and maximum NCT, AET, and SAD are reported to compare the REE 

and RFEE. Moreover, the evacuation time and the number of evacuees in each group are plotted 

to analyze the behavior of REE and RFEE. In reality, the evacuees select their departure time. 

Hence, the flow over time is not controlled, and the only decision the model makes is distributing 

the flow of evacuees on the predefined routes. We simulate the uncontrolled flow using beta 

distribution since it is suitable as bounded distribution, then compare the output with the 

controlled flow model output. We concluded that the results of the uncontrolled flow are very 

similar to the controlled flow results. 
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8.2 Future Research 

In this section, a few recommendations and possible extensions of the research in this 

dissertation is presented. 

8.2.1 Contraflow 

The capacity of any road network is limited based on the number of lanes and the speed limit. 

One approach to expand the road capacity to accommodate more vehicles and reduce congestion 

is to implement the contraflow strategy. Contraflow lane is a road segment where the traffic 

flows in the opposite direction or a two directions road where all flow travels in one direction. 

This strategy is an effective method to double the road capacity at almost no cost. However, the 

drawback of contraflow is that emergency supplies such as medical and food supplies may not be 

able to reach the disaster location since that contraflow is implemented in the outbound direction. 

To allow supplies to reach the center of the disaster, partial contraflow can be implemented by 

allowing a few lanes to go inbound towards the disaster center.  

8.2.2 Uncertainty in the Road Capacity 

In mass evacuations, road capacities become highly uncertain due to the panic and need to 

evacuate. Accidents such as car crashes, building collapses, or medical conditions can add to the 

delay experienced because of congestion. These uncertainties can be incorporated in the model 

by modifying the deterministic travel time parameters, i.e., slope and intercept, to uncertain 

parameters.   

8.2.3 Capacitated Terminals 

In this dissertation, the assumption is that the terminal nodes are uncapacitated. However, some 

disasters require immediate shelter, such as hurricanes and tornados, which is usually 
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capacitated. If the assumption is that shelter is capacitated, the evacuation plan and the evacuees' 

distribution on routes become different. Also, the evacuees can be labeled based on their 

destination. Some evacuees prefer to seek shelters while others prefer to travel to a different city 

or state, so the latter is assigned to uncapacitated dummy terminals. 

8.2.4 Evacuating Communities Based on the Threat Level 

The threat level might be different from one area to another based on the disaster type. The threat 

level can be included in the fairness process to give the community with higher threat level the 

priority to evacuate. Giving higher priority to the communities with higher threat level can 

increase the number of evacuees who reach shelters safely. In future research, the communities 

will be given different priorities based on the threat level and find the percentage of evacuees 

who arrive at the shelter safely. 

8.2.5 Following the Route Guidance System (RGS) 

The assumption is this research is that all evacuees follow the directions from the RGS. 

However, in reality, evacuees may follow the routes they know and ignore the RGS directions. 

The model can tolerate a percentage of evacuees not following the RGS and still achieve the 

optimal solution. In future research, the model robustness will be tested when a percentage of 

evacuees do not follow the RGS. 
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APPENDIX A: Additional Figures 

A.1 Chapter 3 Additional Figures 

 

 

 
Figure A-0-1: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Abilene network 
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Figure A-0-2: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Atlanta network 
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Figure A-0-3: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for France network 
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Figure A-0-4: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Nobel-US network 
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Figure A-0-5: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Net26 network 
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Figure A-0-6: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Net70 network 
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Figure A-0-7: The number of commodities in each bandwidth period using the progressive-

filling algorithm and the bi-objective model for Brain network 
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A.2 Chapter 7 Additional Figures 

  

  

  
Figure A-0-8: The evacuation time for all groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Nguyen and Dupuis network 
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Figure A-0-9: The number of evacuees in each groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Nguyen and Dupuis network 
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Figure A-0-10: The evacuation time for all groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Nguyen and Dupuis network 
with optimal routes 
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Figure A-0-11: The number of evacuees in each groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Nguyen and Dupuis network 
with optimal routes 
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Figure A-0-12: The evacuation time for all groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Tampa City network 
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Figure A-0-13: The number of evacuees in each groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Tampa City network 
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Figure A-0-14: The evacuation time for all groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Fort Worth network 
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Figure A-0-15: The number of evacuees in each groups evacuated from community k at time t on 

route r given controlled flow under REE and RFEE for the Fort Worth network 
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Figure A-0-16: The evacuation time for all groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Nguyen and Dupuis network 
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Figure A-0-17: The number of evacuees in each groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Nguyen and Dupuis network 
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Figure A-0-18: The evacuation time for all groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Nguyen and Dupuis network 
with optimal routes 
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Figure A-0-19: The number of evacuees in each groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Nguyen and Dupuis network 
with optimal routes 
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Figure A-0-20: The evacuation time for all groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Tampa City network 
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Figure A-0-21: The number of evacuees in each groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Tampa City network 
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Figure A-0-22: The evacuation time for all groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Fort Worth network 
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Figure A-0-23: The number of evacuees in each groups evacuated from community k at time t on 

route r given uncontrolled flow under REE and RFEE for the Fort Worth network 


