1,822 research outputs found

    The relevance of outsourcing and leagile strategies in performance optimization of an integrated process planning and scheduling

    Get PDF
    Over the past few years growing global competition has forced the manufacturing industries to upgrade their old production strategies with the modern day approaches. As a result, recent interest has been developed towards finding an appropriate policy that could enable them to compete with others, and facilitate them to emerge as a market winner. Keeping in mind the abovementioned facts, in this paper the authors have proposed an integrated process planning and scheduling model inheriting the salient features of outsourcing, and leagile principles to compete in the existing market scenario. The paper also proposes a model based on leagile principles, where the integrated planning management has been practiced. In the present work a scheduling problem has been considered and overall minimization of makespan has been aimed. The paper shows the relevance of both the strategies in performance enhancement of the industries, in terms of their reduced makespan. The authors have also proposed a new hybrid Enhanced Swift Converging Simulated Annealing (ESCSA) algorithm, to solve the complex real-time scheduling problems. The proposed algorithm inherits the prominent features of the Genetic Algorithm (GA), Simulated Annealing (SA), and the Fuzzy Logic Controller (FLC). The ESCSA algorithm reduces the makespan significantly in less computational time and number of iterations. The efficacy of the proposed algorithm has been shown by comparing the results with GA, SA, Tabu, and hybrid Tabu-SA optimization methods

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    Sensor networks security based on sensitive robots agents. A conceptual model

    Full text link
    Multi-agent systems are currently applied to solve complex problems. The security of networks is an eloquent example of a complex and difficult problem. A new model-concept Hybrid Sensitive Robot Metaheuristic for Intrusion Detection is introduced in the current paper. The proposed technique could be used with machine learning based intrusion detection techniques. The new model uses the reaction of virtual sensitive robots to different stigmergic variables in order to keep the tracks of the intruders when securing a sensor network.Comment: 5 page

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Adaptive fuzzy particle swarm optimization for flow-shop scheduling problem

    Get PDF
    Ovaj rad razmatra novi pristup problemu raspoređivanja u protočnoj proizvodnji koriĆĄtenjem kombinacije neizrazite logike i optimizacije rojevima čestica u cilju postizanja sub-optimalnog rjeĆĄenja. PredlaĆŸe se upotreba Tip-1 i Tip-2 modela neizrazite logike u kombinaciji s adaptivnim modelom rojeva čestica. Razvijeni model je uspoređen na standardiziranim testnim funkcijama za stohastičke algoritme (prvo jednokriterijske, a zatim viĆĄekriterijske postavljene funkcije cilja) kako bi se utvrdila njegova upotrebljivost na opće postavljenim problemima. Zatim je testiran na standardiziranim testnim zadacima za probleme protočne proizvodnje te konačno na dva praktična problema protočne proizvodnje (linije montaĆŸe i linije pakiranja). Rezultati ostvareni novim modelom su uspoređeni s konvencionalnim pravilima prioriteta te je pokazan kvantitativan i kvalitativan napredak primjenom hibrida neizrazite logike i rojeva čestica.This paper describes the application of a hybrid of fuzzy logic and swarm intelligence in order to achieve sub-optimal solutions for flow-shop scheduling problem. A novel adaptive approach with fuzzy particle swarm optimization is proposed. The developed model is tested with the standardized test functions and compared with selected stochastic algorithms (first with one objective functions and later with multi objective functions) to determine its applicability to general problems. Benchmark examples were utilized to evaluate the approach and determine the optimal number of the algorithm evaluations. Finally, the proposed model is applied on two practical problems of flow production problems (assembly lines and packaging lines). The results achieved were compared with the conventional priority rules and the effectiveness of the application of hybrid fuzzy logic and adaptive particle swarm optimization algorithm was demonstrated
    • 

    corecore