134 research outputs found

    An Adaptive Scheme for Admission Control in ATM Networks

    Get PDF
    This paper presents a real time front-end admission control scheme for ATM networks. A call management scheme which uses the burstiness associated with traffic sources in a heterogeneous ATM environment to effect dynamic assignment of bandwidth is presented. In the proposed scheme, call acceptance is based on an on-line evaluation of the upper bound on cell loss probability which is derived from the estimated distribution of the number of calls arriving. Using this scheme, the negotiated quality of service will be assured when there is no estimation error. The control mechanism is effective when the number of calls is large, and tolerates loose bandwidth enforcement and loose policing control. The proposed approach is very effective in the connection oriented transport of ATM networks where the decision to admit new traffic is based on thea priori knowledge of the state of the route taken by the traffic

    Some aspects of traffic control and performance evaluation of ATM networks

    Get PDF
    The emerging high-speed Asynchronous Transfer Mode (ATM) networks are expected to integrate through statistical multiplexing large numbers of traffic sources having a broad range of statistical characteristics and different Quality of Service (QOS) requirements. To achieve high utilisation of network resources while maintaining the QOS, efficient traffic management strategies have to be developed. This thesis considers the problem of traffic control for ATM networks. The thesis studies the application of neural networks to various ATM traffic control issues such as feedback congestion control, traffic characterization, bandwidth estimation, and Call Admission Control (CAC). A novel adaptive congestion control approach based on a neural network that uses reinforcement learning is developed. It is shown that the neural controller is very effective in providing general QOS control. A Finite Impulse Response (FIR) neural network is proposed to adaptively predict the traffic arrival process by learning the relationship between the past and future traffic variations. On the basis of this prediction, a feedback flow control scheme at input access nodes of the network is presented. Simulation results demonstrate significant performance improvement over conventional control mechanisms. In addition, an accurate yet computationally efficient approach to effective bandwidth estimation for multiplexed connections is investigated. In this method, a feed forward neural network is employed to model the nonlinear relationship between the effective bandwidth and the traffic situations and a QOS measure. Applications of this approach to admission control, bandwidth allocation and dynamic routing are also discussed. A detailed investigation has indicated that CAC schemes based on effective bandwidth approximation can be very conservative and prevent optimal use of network resources. A modified effective bandwidth CAC approach is therefore proposed to overcome the drawback of conventional methods. Considering statistical multiplexing between traffic sources, we directly calculate the effective bandwidth of the aggregate traffic which is modelled by a two-state Markov modulated Poisson process via matching four important statistics. We use the theory of large deviations to provide a unified description of effective bandwidths for various traffic sources and the associated ATM multiplexer queueing performance approximations, illustrating their strengths and limitations. In addition, a more accurate estimation method for ATM QOS parameters based on the Bahadur-Rao theorem is proposed, which is a refinement of the original effective bandwidth approximation and can lead to higher link utilisation

    FAST Copper for Broadband Access

    Get PDF
    FAST Copper is a multi-year, U.S. NSF funded project that started in 2004, and is jointly pursued by the research groups of Mung Chiang at Princeton University, John Cioffi at Stanford University, and Alexander Fraser at Fraser Research Lab, and in collaboration with several industrial partners including AT&T. The goal of the FAST Copper Project is to provide ubiquitous, 100 Mbps, fiber/DSL broadband access to everyone in the US with a phone line. This goal will be achieved through two threads of research: dynamic and joint optimization of resources in Frequency, Amplitude, Space, and Time (thus the name 'FAST') to overcome the attenuation and crosstalk bottlenecks, and the integration of communication, networking, computation, modeling, and distributed information management and control for the multi-user twisted pair network

    Stochastic Dynamic Programming and Stochastic Fluid-Flow Models in the Design and Analysis of Web-Server Farms

    Get PDF
    A Web-server farm is a specialized facility designed specifically for housing Web servers catering to one or more Internet facing Web sites. In this dissertation, stochastic dynamic programming technique is used to obtain the optimal admission control policy with different classes of customers, and stochastic uid- ow models are used to compute the performance measures in the network. The two types of network traffic considered in this research are streaming (guaranteed bandwidth per connection) and elastic (shares available bandwidth equally among connections). We first obtain the optimal admission control policy using stochastic dynamic programming, in which, based on the number of requests of each type being served, a decision is made whether to allow or deny service to an incoming request. In this subproblem, we consider a xed bandwidth capacity server, which allocates the requested bandwidth to the streaming requests and divides all of the remaining bandwidth equally among all of the elastic requests. The performance metric of interest in this case will be the blocking probability of streaming traffic, which will be computed in order to be able to provide Quality of Service (QoS) guarantees. Next, we obtain bounds on the expected waiting time in the system for elastic requests that enter the system. This will be done at the server level in such a way that the total available bandwidth for the requests is constant. Trace data will be converted to an ON-OFF source and fluid- flow models will be used for this analysis. The results are compared with both the mean waiting time obtained by simulating real data, and the expected waiting time obtained using traditional queueing models. Finally, we consider the network of servers and routers within the Web farm where data from servers flows and merges before getting transmitted to the requesting users via the Internet. We compute the waiting time of the elastic requests at intermediate and edge nodes by obtaining the distribution of the out ow of the upstream node. This out ow distribution is obtained by using a methodology based on minimizing the deviations from the constituent in flows. This analysis also helps us to compute waiting times at different bandwidth capacities, and hence obtain a suitable bandwidth to promise or satisfy the QoS guarantees. This research helps in obtaining performance measures for different traffic classes at a Web-server farm so as to be able to promise or provide QoS guarantees; while at the same time helping in utilizing the resources of the server farms efficiently, thereby reducing the operational costs and increasing energy savings

    Optimal Cell Loss Equalization for Video Multiplexers

    Get PDF
    Video traffic multiplexers in high speed ATM networks are prone to fairness problems with respect to the per-connection cell loss ratio experienced by multiplexed video sources. The problem is a result of the random, but fixed over time, relation of the frame transmission epochs that feed a multiplexer. This paper presents a solution to this fairness problem which is based on the enforcement of controlled per--connection delays. The amount of delay imposed on each source is calculated by an optimization process at connection admission and termination instants. Two different optimization objectives, one minimax and one minisum, are considered. Their performance and their relation to buffer space constraints is examined. The loss and delay performance of the scheme is also evaluated through simulations. In particular, very low per--connection delay variance is observed, indicating reduced jitter. Finally, two implementation alternatives of the scheme on an ATM network are presented: (a) as a protocol between multiplexer and sources and (b) as a non--work conserving service discipline for multiplexers. The engineering aspects and, in particular, the buffer demands of the two alternative implementations are discussed in detail

    From burstiness characterisation to traffic control strategy : a unified approach to integrated broadbank networks

    Full text link
    The major challenge in the design of an integrated network is the integration and support of a wide variety of applications. To provide the requested performance guarantees, a traffic control strategy has to allocate network resources according to the characteristics of input traffic. Specifically, the definition of traffic characterisation is significant in network conception. In this thesis, a traffic stream is characterised based on a virtual queue principle. This approach provides the necessary link between network resources allocation and traffic control. It is difficult to guarantee performance without prior knowledge of the worst behaviour in statistical multiplexing. Accordingly, we investigate the worst case scenarios in a statistical multiplexer. We evaluate the upper bounds on the probabilities of buffer overflow in a multiplexer, and data loss of an input stream. It is found that in networks without traffic control, simply controlling the utilisation of a multiplexer does not improve the ability to guarantee performance. Instead, the availability of buffer capacity and the degree of correlation among the input traffic dominate the effect on the performance of loss. The leaky bucket mechanism has been proposed to prevent ATM networks from performance degradation due to congestion. We study the leaky bucket mechanism as a regulation element that protects an input stream. We evaluate the optimal parameter settings and analyse the worst case performance. To investigate its effectiveness, we analyse the delay performance of a leaky bucket regulated multiplexer. Numerical results show that the leaky bucket mechanism can provide well-behaved traffic with guaranteed delay bound in the presence of misbehaving traffic. Using the leaky bucket mechanism, a general strategy based on burstiness characterisation, called the LB-Dynamic policy, is developed for packet scheduling. This traffic control strategy is closely related to the allocation of both bandwidth and buffer in each switching node. In addition, the LB-Dynamic policy monitors the allocated network resources and guarantees the network performance of each established connection, irrespective of the traffic intensity and arrival patterns of incoming packets. Simulation studies demonstrate that the LB-Dynamic policy is able to provide the requested service quality for heterogeneous traffic in integrated broadband networks

    Statistical Service Guarantees for Traffic Scheduling in High-Speed Data Networks

    Get PDF
    School of Electrical and Computer Engineerin

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization
    corecore