4 research outputs found

    A finite element reduced-order model based on adaptive mesh refinement and artificial neural networks

    Get PDF
    This is the accepted version of the following article: [ Baiges, J, Codina, R, Castañar, I, Castillo, E. A finite element reduced‐order model based on adaptive mesh refinement and artificial neural networks. Int J Numer Methods Eng. 2020; 121: 588– 601. https://doi.org/10.1002/nme.6235], which has been published in final form at https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.6235.In this work, a reduced-order model based on adaptive finite element meshes and a correction term obtained by using an artificial neural network (FAN-ROM) is presented. The idea is to run a high-fidelity simulation by using an adaptively refined finite element mesh and compare the results obtained with those of a coarse mesh finite element model. From this comparison, a correction forcing term can be computed for each training configuration. A model for the correction term is built by using an artificial neural network, and the final reduced-order model is obtained by putting together the coarse mesh finite element model, plus the artificial neural network model for the correction forcing term. The methodology is applied to nonlinear solid mechanics problems, transient quasi-incompressible flows, and a fluid-structure interaction problem. The results of the numerical examples show that the FAN-ROM is capable of improving the simulation results obtained in coarse finite element meshes at a reduced computational cost.Peer ReviewedPostprint (author's final draft

    Дослідження впливу геометрії косо затисненого кесона крила планера на міцність та вібростійкість конструкції

    Get PDF
    Дослідження Obliquely Embedded Airframe Wing Boxes (OEAWB) мають актуальність у галузі авіаційної інженерії та розробки літаків. Ця технологія є новий підхід до конструкції крил, який забезпечує більш ефективне використання простору всередині крила, підвищену жорсткість конструкції та зменшену масу. Виходячи з актуальності й ступеня наукової розробки проблеми, метою дослідження встановлено поліпшення міцності та вібростійкості конструкції косо затисненого кесона крила планера на основі варіювання геометрії стержневих та оболонкових елементів його контрукції

    A Framework for Hyper-Heuristic Optimisation of Conceptual Aircraft Structural Designs

    Get PDF
    Conceptual aircraft structural design concerns the generation of an airframe that will provide sufficient strength under the loads encountered during the operation of the aircraft. In providing such strength, the airframe greatly contributes to the mass of the vehicle, where an excessively heavy design can penalise the performance and cost of the aircraft. Structural mass optimisation aims to minimise the airframe weight whilst maintaining adequate resistance to load. The traditional approach to such optimisation applies a single optimisation technique within a static process, which prevents adaptation of the optimisation process to react to changes in the problem. Hyper-heuristic optimisation is an evolving field of research wherein the optimisation process is evaluated and modified in an attempt to improve its performance, and thus the quality of solutions generated. Due to its relative infancy, hyper-heuristics have not been applied to the problem of aircraft structural design optimisation. It is the thesis of this research that hyper-heuristics can be employed within a framework to improve the quality of airframe designs generated without incurring additional computational cost. A framework has been developed to perform hyper-heuristic structural optimisation of a conceptual aircraft design. Four aspects of hyper-heuristics are included within the framework to promote improved process performance and subsequent solution quality. These aspects select multiple optimisation techniques to apply to the problem, analyse the solution space neighbouring good designs and adapt the process based on its performance. The framework has been evaluated through its implementation as a purpose-built computational tool called AStrO. The results of this evaluation have shown that significantly lighter airframe designs can be generated using hyper-heuristics than are obtainable by traditional optimisation approaches. Moreover, this is possible without penalising airframe strength or necessarily increasing computational costs. Furthermore, improvements are possible over the existing aircraft designs currently in production and operation

    Developing Efficient Strategies for Automatic Calibration of Computationally Intensive Environmental Models

    Get PDF
    Environmental simulation models have been playing a key role in civil and environmental engineering decision making processes for decades. The utility of an environmental model depends on how well the model is structured and calibrated. Model calibration is typically in an automated form where the simulation model is linked to a search mechanism (e.g., an optimization algorithm) such that the search mechanism iteratively generates many parameter sets (e.g., thousands of parameter sets) and evaluates them through running the model in an attempt to minimize differences between observed data and corresponding model outputs. The challenge rises when the environmental model is computationally intensive to run (with run-times of minutes to hours, for example) as then any automatic calibration attempt would impose a large computational burden. Such a challenge may make the model users accept sub-optimal solutions and not achieve the best model performance. The objective of this thesis is to develop innovative strategies to circumvent the computational burden associated with automatic calibration of computationally intensive environmental models. The first main contribution of this thesis is developing a strategy called “deterministic model preemption” which opportunistically evades unnecessary model evaluations in the course of a calibration experiment and can save a significant portion of the computational budget (even as much as 90% in some cases). Model preemption monitors the intermediate simulation results while the model is running and terminates (i.e., pre-empts) the simulation early if it recognizes that further running the model would not guide the search mechanism. This strategy is applicable to a range of automatic calibration algorithms (i.e., search mechanisms) and is deterministic in that it leads to exactly the same calibration results as when preemption is not applied. One other main contribution of this thesis is developing and utilizing the concept of “surrogate data” which is basically a reasonably small but representative proportion of a full set of calibration data. This concept is inspired by the existing surrogate modelling strategies where a surrogate model (also called a metamodel) is developed and utilized as a fast-to-run substitute of an original computationally intensive model. A framework is developed to efficiently calibrate hydrologic models to the full set of calibration data while running the original model only on surrogate data for the majority of candidate parameter sets, a strategy which leads to considerable computational saving. To this end, mapping relationships are developed to approximate the model performance on the full data based on the model performance on surrogate data. This framework can be applicable to the calibration of any environmental model where appropriate surrogate data and mapping relationships can be identified. As another main contribution, this thesis critically reviews and evaluates the large body of literature on surrogate modelling strategies from various disciplines as they are the most commonly used methods to relieve the computational burden associated with computationally intensive simulation models. To reliably evaluate these strategies, a comparative assessment and benchmarking framework is developed which presents a clear computational budget dependent definition for the success/failure of surrogate modelling strategies. Two large families of surrogate modelling strategies are critically scrutinized and evaluated: “response surface surrogate” modelling which involves statistical or data–driven function approximation techniques (e.g., kriging, radial basis functions, and neural networks) and “lower-fidelity physically-based surrogate” modelling strategies which develop and utilize simplified models of the original system (e.g., a groundwater model with a coarse mesh). This thesis raises fundamental concerns about response surface surrogate modelling and demonstrates that, although they might be less efficient, lower-fidelity physically-based surrogates are generally more reliable as they to-some-extent preserve the physics involved in the original model. Five different surface water and groundwater models are used across this thesis to test the performance of the developed strategies and elaborate the discussions. However, the strategies developed are typically simulation-model-independent and can be applied to the calibration of any computationally intensive simulation model that has the required characteristics. This thesis leaves the reader with a suite of strategies for efficient calibration of computationally intensive environmental models while providing some guidance on how to select, implement, and evaluate the appropriate strategy for a given environmental model calibration problem
    corecore