2,972 research outputs found

    Power Load Prediction Based on Fractal Theory

    Get PDF
    The basic theories of load forecasting on the power system are summarized. Fractal theory, which is a new algorithm applied to load forecasting, is introduced. Based on the fractal dimension and fractal interpolation function theories, the correlation algorithms are applied to the model of short-term load forecasting. According to the process of load forecasting, the steps of every process are designed, including load data preprocessing, similar day selecting, short-term load forecasting, and load curve drawing. The attractor is obtained using an improved deterministic algorithm based on the fractal interpolation function, a day’s load is predicted by three days’ historical loads, the maximum relative error is within 3.7%, and the average relative error is within 1.6%. The experimental result shows the accuracy of this prediction method, which has a certain application reference value in the field of short-term load prediction

    Training Echo State Networks with Regularization through Dimensionality Reduction

    Get PDF
    In this paper we introduce a new framework to train an Echo State Network to predict real valued time-series. The method consists in projecting the output of the internal layer of the network on a space with lower dimensionality, before training the output layer to learn the target task. Notably, we enforce a regularization constraint that leads to better generalization capabilities. We evaluate the performances of our approach on several benchmark tests, using different techniques to train the readout of the network, achieving superior predictive performance when using the proposed framework. Finally, we provide an insight on the effectiveness of the implemented mechanics through a visualization of the trajectory in the phase space and relying on the methodologies of nonlinear time-series analysis. By applying our method on well known chaotic systems, we provide evidence that the lower dimensional embedding retains the dynamical properties of the underlying system better than the full-dimensional internal states of the network

    Electricity Peak Load Demand using De-noising Wavelet Transform integrated with Neural Network Methods

    Get PDF
    One of most important elements in electric power system planning is load forecasts. So, in this paper proposes the load demand forecasts using de-noising wavelet transform (DNWT) integrated with neural network (NN) methods. This research, the case study uses peak load demand of Thailand (Electricity Generating Authority of Thailand: EGAT). The data of demand will be analyzed with many influencing variables for selecting and classifying factors. In the research, the de-noising wavelet transform uses for decomposing the peak load signal into 2 components these are detail and trend components. The forecasting method using the neural network algorithm is used. The work results are shown a good performance of the model proposed. The result may be taken to the one of decision in the power systems operation

    Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    Full text link
    For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests. © 2013 Elsevier B.V. All rights reserved

    Crude oil risk forecasting : new evidence from multiscale analysis approach

    Get PDF
    Fluctuations in the crude oil price allied to risk have increased significantly over the last decade frequently varying at different risk levels. Although existing models partially predict such variations, so far, they have been unable to predict oil prices accurately in this highly volatile market. The development of an effective, predictive model has therefore become a prime objective of research in this field. Our approach, albeit based in part on previous research, develops an original methodology, in that we have created a risk forecasting model with the ability to predict oil price fluctuations caused by changes in both fundamental and transient risk factors. We achieve this by disintegrating the multi-scale risk-structure of the crude oil market using Variational Mode Decomposition. Normal and transient risk factors are then extracted from the crude oil price using Variational Mode Decomposition and modelled separately using the Quantile Regression Neural Network (QRNN) model. Both risk factors are integrated and ensembled to produce the risk estimates. We then apply our proposed risk forecasting model to predicting future downside risk level in three major crude oil markets, namely the West Taxes Intermediate (WTI), the Brent Market, and the OPEC market. The results demonstrate that our model has the ability to capture downside risk estimates with significantly improved precision, thus reducing estimation errors and increasing forecasting reliability
    • …
    corecore