7 research outputs found

    Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    Get PDF
    In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC) is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results

    Feasibility of Using PZT Actuators to Study the Dynamic Behavior of a Rotating Disk due to Rotor-Stator Interaction

    Get PDF
    In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction

    Accurate determination of the frequency response function of submerged and confined structures by using PZT-patches

    Get PDF
    To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT.Peer ReviewedPostprint (published version

    Optimization of Sensing and Feedback Control for Vibration/Flutter of Rotating Disk by PZT Actuators via Air Coupled Pressure

    Get PDF
    In this paper, a feedback control mechanism and its optimization for rotating disk vibration/flutter via changes of air-coupled pressure generated using piezoelectric patch actuators are studied. A thin disk rotates in an enclosure, which is equipped with a feedback control loop consisting of a micro-sensor, a signal processor, a power amplifier, and several piezoelectric (PZT) actuator patches distributed on the cover of the enclosure. The actuator patches are mounted on the inner or the outer surfaces of the enclosure to produce necessary control force required through the airflow around the disk. The control mechanism for rotating disk flutter using enclosure surfaces bonded with sensors and piezoelectric actuators is thoroughly studied through analytical simulations. The sensor output is used to determine the amount of input to the actuator for controlling the response of the disk in a closed loop configuration. The dynamic stability of the disk-enclosure system, together with the feedback control loop, is analyzed as a complex eigenvalue problem, which is solved using Galerkin’s discretization procedure. The results show that the disk flutter can be reduced effectively with proper configurations of the control gain and the phase shift through the actuations of PZT patches. The effectiveness of different feedback control methods in altering system characteristics and system response has been investigated. The control capability, in terms of control gain, phase shift, and especially the physical configuration of actuator patches, are also evaluated by calculating the complex eigenvalues and the maximum displacement produced by the actuators. To achieve a optimal control performance, sizes, positions and shapes of PZT patches used need to be optimized and such optimization has been achieved through numerical simulations

    Analysis of the dynamic behaviour of rotating disk-like structures submerged and confined

    Get PDF
    The analysis of the dynamic behaviour of rotating turbomachinery components is of relevant interest to avoid damages or fatigue problems in these parts. To determine the dynamic behaviour of a part of a structure it is necessary to perform an analysis of the free vibration of this part and a study of the excitation characteristic. The free vibration analysis (modal analysis) determines the natural frequencies and mode shapes of the structure. The excitation analysis gives the frequency content and the shape of the excitation. Hydraulic runners are very complex structures that are submerged and confined inside a casing. Particularly pump-turbine runners behave as disk-like structures at their first modes of vibration and they are excited with the well known Rotor-Stator Interaction (RSI) when they are under operation. In order to study the effect of the rotation, the confinement and the excitation on the dynamic behaviour of the structure in a systematic and clear way, a simplified model is needed. For this reason, in this thesis the dynamic behaviour of a rotating disk submerged in water and confined inside a casing has been analyzed analytically, experimentally and contrasted with simulation. Firstly, an analytical model for the analysis of the dynamic behaviour is presented. The natural frequencies and mode shapes of a rotating disk considering the surrounding flow are analytically determined with a simplified model. Also the response of the disk with different excitation patterns that simulates the RSI is analyzed. Finally the transmission from the rotating to the stationary frame is discussed. For the experimental analysis a rotating disk test rig has been developed. It consists of a rotating disk submerged and confined inside a casing. The disk has been excited from the rotating frame with piezoelectric patches (PZT) and with a special impact device. The response of the disk has been measured simultaneously from the rotating and from the stationary frame. The first several natural frequencies and mode shapes of the disk when it rotates in air and in water have been obtained in the rotating frame with miniature accelerometers screwed on the disk and contrasted with the analytical model presented and with a numerical FEM simulation. Only the diametrical modes, which are the most relevant and similar to the real hydraulic runners, have been considered in this study. The disk has been excited with several rotating excitation patterns that simulate the real RSI. The dynamic behaviour of the disk due to these excitation patterns has been determined experimentally and contrasted with the analytical model.L'anàlisi del comportament dinàmic de components rotatius en turbomàquines és de gran interès per a evitar danys o problemes de fatiga en aquestes parts. Per determinar el comportament dinàmic d'una part d'una estructura és necessari dur a terme una anàlisi de la vibració lliure d'aquesta part i un estudi de la característica d'excitació. L'anàlisi de les vibracions lliures (anàlisi modal) determina les freqüències i modes propis de l'estructura. Amb l'anàlisi de l’excitació s’obté el contingut freqüencial i el mode de la excitació. Els rodets hidràulics són estructures molt complexes que es troben submergides i confinades dins d'una carcassa. Particularment els rodets de màquines turbina-bomba es comporten com a estructures en forma de disc en els seus primers modes de vibració i estan excitats amb la coneguda interacció rotor-estator (RSI) quan estan en funcionament. Per tal d'estudiar l'efecte de la rotació, el confinament i l'excitació en el comportament dinàmic de l'estructura d'una manera sistemàtica i clara, es necessita un model simplificat. Per això, en aquesta tesi el comportament dinàmic d'un disc giratori submergit en aigua i confinat dins d'una carcassa s'ha analitzat analíticament, experimentalment i contrastat amb simulació. En primer lloc, es presenta un model analític per a l'anàlisi del comportament dinàmic. Les freqüències i modes propis d'un disc giratori considerant el flux que l’envolta es determinen analíticament amb un model simplificat. També s'analitza la resposta del disc amb diferents patrons d'excitació que simulen la excitació RSI. Finalment es discuteix la transmissió del sistema rotatiu al sistema estacionari. Per a l'anàlisi experimental s'ha desenvolupat un banc de proves que consisteix d'un disc giratori submergit i confinat dins d'una carcassa. El disc ha estat excitat des del sistema rotatiu amb excitadors piezoelèctrics (PZT) i amb un dispositiu d'impacte especialment dissenyat. La resposta del disc s'ha mesurat simultàniament des del sistema rotatiu i des del sistema estacionari. Les primeres freqüències i modes propis del disc quan gira en aire i en aigua s'han obtingut des del sistema rotatiu amb acceleròmetres miniatura cargolats en el disc i s’han contrastat amb les obtingudes amb el model analític presentat i amb una simulació numèrica d’elements finits (FEM). Només els modes diametrals del disc, que són els més rellevants i similars als dels rodets hidràulics, s'han considerat en aquest estudi. El disc ha estat excitat amb diversos patrons d'excitació que simulen el veritable RSI. El comportament dinàmic del disc a causa d'aquests patrons d'excitació ha estat determinat experimentalment i contrastat amb el model analític. Finalment, s'ha realitzat l'anàlisi de la transmissió des del sistema rotatiu al sistema estacionari. Les freqüències i modes propis del disc s'han detectat amb diversos tipus de sensors col•locats al sistema estacionari.El análisis del comportamiento dinámico de componentes rotativos en turbomáquinas es de gran interés para evitar daños o problemas de fatiga en estas partes. Para determinar el comportamiento dinámico de una parte de una estructura es necesario llevar a cabo un análisis de la vibración libre de esta parte y un estudio de la característica de excitación. El análisis de las vibraciones libres (análisis modal) determina las frecuencias y modos propios de la estructura. Con el análisis de la excitación se obtiene el contenido frecuencial y el modo de la excitación. Los rodetes hidráulicos son estructuras muy complejas que se encuentran sumergidas y confinadas dentro de una carcasa. Particularmente los rodetes de máquinas turbina-bomba se comportan como estructuras en forma de disco en sus primeros modos de vibración y están excitados con la conocida interacción rotor-estator (RSI) cuando están en funcionamiento. Para estudiar el efecto de la rotación, el confinamiento y la excitación en el comportamiento dinámico de la estructura de una manera sistemática y clara, se necesita un modelo simplificado. Por ello, en esta tesis el comportamiento dinámico de un disco giratorio sumergido en agua y confinado dentro de una carcasa se ha analizado analíticamente, experimentalmente y contrastado con simulación. En primer lugar, se presenta un modelo analítico para el análisis del comportamiento dinámico. Las frecuencias y modos propios de un disco giratorio considerando el flujo que lo rodea se determinan analíticamente con un modelo simplificado. También se analiza la respuesta del disco con diferentes patrones de excitación que simulan la excitación RSI. Finalmente se discute la transmisión del sistema rotativo al sistema estacionario. Para el análisis experimental se ha desarrollado un banco de pruebas que consiste de un disco giratorio sumergido y confinado dentro de una carcasa. El disco ha sido excitado desde el sistema rotativo con excitadores piezoeléctricos (PZT) y con un dispositivo de impacto especialmente diseñado. La respuesta del disco se ha medido simultáneamente desde el sistema rotativo y desde el sistema estacionario. Las primeras frecuencias y modos propios del disco cuando gira en aire y en agua se han obtenido desde el sistema rotativo con acelerómetros miniatura atornillados en el disco y se han contrastado con las obtenidas con el modelo analítico presentado y con una simulación numérica de elementos finitos (FEM). Sólo los modos diametrales del disco, que son los más relevantes y similares a los de los rodetes hidráulicos, se han considerado en este estudio. El disco ha sido excitado con varios patrones de excitación que simulan el verdadero RSI. El comportamiento dinámico del disco debido a estos patrones de excitación ha sido determinado experimentalmente y contrastado con el modelo analítico. Finalmente, se ha realizado el análisis de la transmisión desde el sistema rotativo al sistema estacionario. Las frecuencias y modos propios del disco se han detectado con varios tipos de sensores colocados en el sistema estacionario
    corecore