6,031 research outputs found

    Information requirements for strategic decision making: energy market

    Get PDF
    Over the last two decades, the electricity sector has been involved in a challenging restructuring process in which the vertical integrated structure (monopoly) is being replaced by a horizontal set of companies. The growing supply of electricity, flowing in response to free market pricing at the wellhead, led to increased competition. In the new framework of deregulation, what characterizes the electric industry is a commodity wholesale electricity marketplace. This new environment has drastically changed the objective of electricity producing companies. In the vertical integrated industry, utilities were forced to meet all the demand from customers living in a certain region at fixed rates. Then, the operation of the Generation Companies (GENCOs) was centralized and a single decision maker allocated the energy services by minimizing total production costs. Nowadays, GENCOs are involved not only in the electricity market but also in additional markets such as fuel markets or environmental markets. A gas or coal producer may have fuel contracts that define the production limit over a time horizon. Therefore, producers must observe this price levels in these other markets. This is a lesson we learned from the Electricity Crisis in California. The Californian market\u27s collapse was not the result of market decentralization but it was triggered by other decisions, such as high natural gas prices, with a direct impact in the supply-demand chain. This dissertation supports generation asset business decisions -from fuel supply concerns to wholesale trading in energy and ancillary services. The forces influencing the value chain are changing rapidly, and can become highly controversial. Through this report, the author brings an integrated and objective perspective, providing a forum to identify and address common planning and operational needs. The purpose of this dissertation is to present theories and ideas that can be applied directly in algorithms to make GENCOs decisions more efficient. This will decompose the problem into independent subproblems for each time interval. This is preferred because building a complete model in one time is practically impossible. The diverse scope of this report is unified by the importance of each topic to understanding or enhancing the profitability of generation assets. Studies of top strategic issues will assess directly the promise and limits to profitability of energy trading. Studies of ancillary services will permit companies to realistically gauge the profitability of different services, and develop bidding strategies tuned to competitive markets

    Decision support for participation in electricity markets considering the transaction of services and electricity at the local level

    Get PDF
    [EN] The growing concerns regarding the lack of fossil fuels, their costs, and their impact on the environment have led governmental institutions to launch energy policies that promote the increasing installation of technologies that use renewable energy sources to generate energy. The increasing penetration of renewable energy sources brings a great fluctuation on the generation side, which strongly affects the power and energy system management. The control of this system is moving from hierarchical and central to a smart and distributed approach. The system operators are nowadays starting to consider the final end users (consumers and prosumers) as a part of the solution in power system operation activities. In this sense, the end-users are changing their behavior from passive to active players. The role of aggregators is essential in order to empower the end-users, also contributing to those behavior changes. Although in several countries aggregators are legally recognized as an entity of the power and energy system, its role being mainly centered on representing end-users in wholesale market participation. This work contributes to the advancement of the state-of-the-art with models that enable the active involvement of the end-users in electricity markets in order to become key participants in the management of power and energy systems. Aggregators are expected to play an essential role in these models, making the connection between the residential end-users, electricity markets, and network operators. Thus, this work focuses on providing solutions to a wide variety of challenges faced by aggregators. The main results of this work include the developed models to enable consumers and prosumers participation in electricity markets and power and energy systems management. The proposed decision support models consider demand-side management applications, local electricity market models, electricity portfolio management, and local ancillary services. The proposed models are validated through case studies based on real data. The used scenarios allow a comprehensive validation of the models from different perspectives, namely end-users, aggregators, and network operators. The considered case studies were carefully selected to demonstrate the characteristics of each model, and to demonstrate how each of them contributes to answering the research questions defined to this work.[ES] La creciente preocupación por la escasez de combustibles fósiles, sus costos y su impacto en el medio ambiente ha llevado a las instituciones gubernamentales a lanzar políticas energéticas que promuevan la creciente instalación de tecnologías que utilizan fuentes de energía renovables para generar energía. La creciente penetración de las fuentes de energía renovable trae consigo una gran fluctuación en el lado de la generación, lo que afecta fuertemente la gestión del sistema de potencia y energía. El control de este sistema está pasando de un enfoque jerárquico y central a un enfoque inteligente y distribuido. Actualmente, los operadores del sistema están comenzando a considerar a los usuarios finales (consumidores y prosumidores) como parte de la solución en las actividades de operación del sistema eléctrico. En este sentido, los usuarios finales están cambiando su comportamiento de jugadores pasivos a jugadores activos. El papel de los agregadores es esencial para empoderar a los usuarios finales, contribuyendo también a esos cambios de comportamiento. Aunque en varios países los agregadores están legalmente reconocidos como una entidad del sistema eléctrico y energético, su papel se centra principalmente en representar a los usuarios finales en la participación del mercado mayorista. Este trabajo contribuye al avance del estado del arte con modelos que permiten la participación activa de los usuarios finales en los mercados eléctricos para convertirse en participantes clave en la gestión de los sistemas de potencia y energía. Se espera que los agregadores desempeñen un papel esencial en estos modelos, haciendo la conexión entre los usuarios finales residenciales, los mercados de electricidad y los operadores de red. Por lo tanto, este trabajo se enfoca en brindar soluciones a una amplia variedad de desafíos que enfrentan los agregadores. Los principales resultados de este trabajo incluyen los modelos desarrollados para permitir la participación de los consumidores y prosumidores en los mercados eléctricos y la gestión de los sistemas de potencia y energía. Los modelos de soporte de decisiones propuestos consideran aplicaciones de gestión del lado de la demanda, modelos de mercado eléctrico local, gestión de cartera de electricidad y servicios auxiliares locales. Los modelos propuestos son validan mediante estudios de casos basados en datos reales. Los escenarios utilizados permiten una validación integral de los modelos desde diferentes perspectivas, a saber, usuarios finales, agregadores y operadores de red. Los casos de estudio considerados fueron cuidadosamente seleccionados para demostrar las características de cada modelo y demostrar cómo cada uno de ellos contribuye a responder las preguntas de investigación definidas para este trabajo

    Status of Power Markets and Power Exchanges in Asia and Australia

    Get PDF

    Oligopolistic and oligopsonistic bilateral electricity market modeling using hierarchical conjectural variation equilibrium method

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel UniversityAn electricity market is very complex and different in its nature, when compared to other commodity markets. The introduction of competition and restructuring in global electricity markets brought more complexity and major changes in terms of governance, ownership and technical and market operations. In a liberalized electricity market, all market participants are responsible for their own decisions; therefore, all the participants are trying to make profit by participating in electricity trading. There are different types of electricity market, and in this research a bilateral electricity market has been specifically considered. This thesis not only contributes with regard to the reviewing UK electricity market as an example of a bilateral electricity market with more than 97% of long-term bilateral trading, but also proposes a dual aspect point of view with regard to the bilateral electricity market by splitting the generation and supply sides of the wholesale market. This research aims at maximizing the market participants’ profits and finds the equilibrium point of the bilateral market; hence, various methods such as equilibrium models have been reviewed with regard to management of the risks (e.g. technical and financial risks) of participating in the electricity market. This research proposes a novel Conjectural Variation Equilibrium (CVE) model for bilateral electricity markets, to reduce the market participants’ exposure to risks and maximize the profits. Hence, generation companies’ behaviors and strategies in an imperfect bilateral market environment, oligopoly, have been investigated by applying the CVE method. By looking at the bilateral market from an alternative aspect, the supply companies’ behaviors in an oligopsony environment have also been taken into consideration. At the final stage of this research, the ‘matching’ of both quantity and price between oligopolistic and oligopsonistic markets has been obtained through a novel-coordinating algorithm that includes CVE model iterations of both markets. Such matching can be achieved by adopting a hierarchical optimization approach, using the Matlab Patternsearch optimization algorithm, which acts as a virtual broker to find the equilibrium point of both markets. Index Terms-- Bilateral electricity market, Oligopolistic market, Oligopsonistic market, Conjectural Variation Equilibrium method, Patternsearch optimization, Game theory, Hierarchical optimization metho

    Virtual power plant models and electricity markets - A review

    Get PDF
    In recent years, the integration of distributed generation in power systems has been accompanied by new facility operations strategies. Thus, it has become increasingly important to enhance management capabilities regarding the aggregation of distributed electricity production and demand through different types of virtual power plants (VPPs). It is also important to exploit their ability to participate in electricity markets to maximize operating profits. This review article focuses on the classification and in-depth analysis of recent studies that propose VPP models including interactions with different types of energy markets. This classification is formulated according to the most important aspects to be considered for these VPPs. These include the formulation of the model, techniques for solving mathematical problems, participation in different types of markets, and the applicability of the proposed models to real case studies. From the analysis of the studies, it is concluded that the most recent models tend to be more complete and realistic in addition to featuring greater diversity in the types of electricity markets in which VPPs participate. The aim of this review is to identify the most profitable VPP scheme to be applied in each regulatory environment. It also highlights the challenges remaining in this field of study

    Exploiting Power-to-Heat Assets in District Heating Networks to Regulate Electric Power Network

    Get PDF

    Current and forthcoming issues in the South African electricity sector

    Get PDF
    One of the contentious issues in electricity reform is whether there are significant gains from restructuring systems that are moderately well run. South Africa's electricity system is a case in point. The sector's state-owned utility, Eskom, has been generating some of the lowest-priced electricity in the world, has largely achieved revenue adequacy, and has financed the bulk of the government's ambitious electrification program. Moreover, the key technical performance indicators of Eskom's generation plants have reached world-class levels. Yet the sector is confronted today with serious challenges. South Africa's electricity system is currently facing a tight demand/supply balance, and the distribution segment of the industry is in serious financial trouble. This paper provides a careful diagnostic assessment of the industry and identifies a range of policy and restructuring options to improve its performance. It suggests removing distribution from municipal control and privatizing it, calls for vertical and horizontal unbundling, and argues that the cost-benefit analysis of different structural options should focus on investment incentives and not just current operating efficiency.Energy Production and Transportation,Electric Power,Environment and Energy Efficiency,Energy and Environment,Infrastructure Economics

    Analysis of futures and spot electricity markets under risk aversion.

    Get PDF
    We analyze the procurement problem in the electricity supply chain, focusing on the interaction between futures and spot prices. The supply chain network analyzed in our study includes risk-averse generators and retailers, both with the ability to use conditional value at risk (CV@R) in their decision processes. In this supply chain, the futures price is computed to clear the futures market, without imposing the constraint that the expected spot price equals the futures price. As major methodological contributions: we compute the Nash equilibrium of the problem using CV@R and considering conjectural variations; we derive analytical relationships between the futures and the spot market outcomes and study the implications of demand and marginal cost uncertainty, as well as the level of the players' risk aversion, on market equilibrium; we introduce the concept of risk-adjusted expectation to derive the futures market price as a function of the players' expected losses or profits in the spot market; and we use consistent spot and wholesale price derivatives to calculate the players' reaction functions. Finally, we illustrate our model with several numerical examples in the context of the Spanish electricity market, studying how the shape of the forward curve and the relationship between spot and futures prices depend on seasonality, risk aversion, generators' market power, and hydrological resources. Surprisingly we observed that risk aversion increases the profit and reduces firms' risk, and that the consumer utility is higher in the scenarios in which retailers behave a la Cournot in the wholesale market

    Forecasting and Risk Management Techniques for Electricity Markets

    Get PDF
    This book focuses on the recent development of forecasting and risk management techniques for electricity markets. In addition, we discuss research on new trading platforms and environments using blockchain-based peer-to-peer (P2P) markets and computer agents. The book consists of two parts. The first part is entitled “Forecasting and Risk Management Techniques” and contains five chapters related to weather and electricity derivatives, and load and price forecasting for supporting electricity trading. The second part is entitled “Peer-to-Peer (P2P) Electricity Trading System and Strategy” and contains the following five chapters related to the feasibility and enhancement of P2P energy trading from various aspects
    corecore