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ABSTRACT

We analyze the procurement problem in the electricity supply chain, focusing on the interaction between futures and spot prices. The supply chain
network analyzed in our study includes risk-averse generators and retailers, both with the ability to use conditional value at risk (CV@R) in their
decision processes. In this supply chain, the futures price is computed to clear the futures market, without imposing the constraint that the
expected spot price equals the futures price. As major methodological contributions: we compute the Nash equilibrium of the problem using CV@R
and considering conjectural variations; we derive analytical relationships between the futures and the spot market outcomes and study the
implications of demand and marginal cost uncertainty, as well as the level of the players’ risk aversion, on market equilibrium; we introduce the
concept of risk-adjusted expectation to derive the futures market price as a function of the players’ expected losses or profits in the spot market;
and we use consistent spot and wholesale price derivatives to calculate the players’ reaction functions. Finally, we illustrate our model with several
numerical examples in the context of the Spanish electricity market, studying how the shape of the forward curve and the relationship between
spot and futures prices depend on seasonality, risk aversion, generators’ market power, and hydrological resources. Surprisingly we observed that
risk aversion increases the profit and reduces firms’ risk, and that the consumer utility is higher in the scenarios in which retailers behave a la

Cournot in the wholesale market.
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1. Introduction

The electricity supply chain is rather complex due to the technical
constraints associated with the production and distribution of
electricity, which is very difficult to store and needs to be
produced on demand, and due to the wide variety of production
technologies that co-exist in the same market: coal, gas, nuclear,
hydro power, wind and solar generation plants. These varied ways
of generating electricity exhibit uncertain production costs as they
are affected by the price of gas, oil, coal, uranium and by weather
conditions. Within this supply chain network, generators sell
electricity to retailers wusing bilateral contracts, and they
participate in the spot and futures markets.

In this context, it is important to explain how uncertainty
management is translated into contracts that enable the firms to
act upon the received information ( Conejo, Carrién, & Morales,

2010a ).
In order to achieve this goal we propose a stochastic programming

model of a complex supply network that accounts for the two
major sources of uncertainty, i.e., generating costs and demand
behavior. Moreover, we analyze the impact of these uncertainties
on the electricity retail, spot and futures markets.

Although complex, the electricity supply network has a very well
defined structure. The consumers (private households and large
industrial companies) decide how much they want to consume.
Some of these consumers are on a fixed tariff, i.e., they pay the
same price per kWh consumed independently of the quantity
bought (this is the traditional scheme for small households).
Larger consumers and, increasingly in the more sophisticated
market, also small households, have real-time meters that are
used to measure electricity consumption and price in real time.
As illustrated in Section 4, in the Spanish electricity market,
demand response is an important part of total consumption.

The retailers, the intermediaries between generation and final
consumers, buy the electricity required to meet demand using
bilateral trading and organized wholesale markets (spot and
futures).

Given the expected demand and respective response to price, the

retailers determine their bidding curves for buying forward
using bilateral contracts (or equivalently in the futures market),
their real-time bidding curves to buy in the spot markets, and the
retail price charged to the responsive consumers. Similarly, the
generators decide their offering curves to sell their energy in the
different markets. At equilibrium, the total quantity sold by the
generators equals the quantity bought by the retailers in each
market, and the total electricity traded in both markets equals
consumer demand. This equilibrium is attained due to the change in
the electricity prices in the three markets. Generalizing from Allaz
(1992), the structure of the electricity market includes a supply
chain with the possibility of risk-aversion. The closest article to ours
is Oliveira, Ruiz, and Conejo (2013),

including risk aversion.

As CV@R can be solved as a Linear Programming (LP) problem
or in the form of a Mixed-Complementarity Problem (MCP) for
games, it is very flexible due to the easy parameterization and,
moreover, it is distribution independent. These are its major
advantages when compared to other risk measures.

which we now extend by



Table 1
Forward Curve (€ /MWh) for Nov. 30, 2017. Source: OMIP (2020).

Price Base Peak | Price Base Peak | Price Base Peak

Spot 69.56 76.41 Q1-18 56.85 65.47 M Dec-17 62.30 68.98

YR-18 52.35 58.84 Q2-18 48.25 53.35 M Jan-18 63.20 72.78

YR-19 49.25 55.48 Q3-18 51.65 58.05 M Feb-18 57.60 66.28

YR-20 47.79 53.79 Q4-18 52.71 58.50 M Mar-18 49.81 57.09

YR-21 47.31 53.29 Q1-19 53.48 60.24 M Apr-18 44.04 48.70
Q2-19 45.39 51.13 M May-18 48.92 54.09
Q3-19 48.59 54.73
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Fig. 1. Normal vs. inverted forward curve in the Spanish electricity market. Source:
OMIP (2020).

The main motivation for this article is understanding the
behavior of the Spanish electricity market. One of the major
features of this market is the low proportion of trade in the
futures market, which made up 30% of total trading in 2015/16
(e.g., OMIE, 2020). The second focus is to better understand the
relationship between futures and spot electricity markets, as
illustrated by the shape of the forward curve. This curve
represents the relationship between the spot price and the
futures prices over different durations. As an example, Table 1
presents the forward curve resulting from the futures markets
trading on Nov. 30, 2017 in the Spanish market (OMIP, 2020). Fig.
1 depicts three forward curves (for the years 2013, 2014, and
2015, respectively) in the Spanish electricity market: the prices
presented are for the spot and futures markets with durations of

one, two, three months, and one year.
Before proceeding with the description of the market, we need

to define the concepts of a normal versus an inverted forward
curve. A futures market is in a normal state when the spot price
is lower than the one-month futures price, which is less than the
two-month futures price, and so on. In this situation supply is
currently abundant when compared to demand. A futures market
is inverted if the spot price is higher than the one-month
futures, price, which is higher than the two-month futures prices,
and so on. This is an indication that currently supply is scarce
when compared to demand.

The years 2013 and 2014 were normal futures markets: the spot
prices were lower than the futures prices and there was,
therefore, an expectation that the spot prices were due to
increase in the horizon of 1 year. On the other hand, the year
2015 represents an inverted market: the electricity prices were
expected to decrease, which together with a larger average spot
price in 2015 clearly illustrates how tight the electricity market
throughout the year, due to a heat wave that increased
consumption and decreased hydro generation.

The major contributions of this article are: (a) to propose a
supply chain model of the electricity industry based on a
concentrated market structure with a few producers and retailers,
considering risk aversion using the CV@R, and solving the
equilibrium of the game for different degrees of market power;
(b) to derive analytical relationships between the futures and spot
market outcomes, and to study the implications of demand and
marginal cost uncertainties and the level of the players’ risk
aversion for market equilibrium, without imposing the constraint
that the future price equals the expected spot price, which has
been previously used in articles considering uncertainty (e.g.,
Allaz, 1992, Gulpinar & Oliveira, 2012, Popescu & Seshadri,
2013); (c) to introduce the concept of risk-adjusted expectation
which allows the futures market price to be derived as a function
of the players’ expected losses or profits in the spot market; (d)
to compute consistent derivatives of the spot and wholesale prices
in respect to the quantities traded by generators and retailers, both
of which are scenario-independent; (e) to present several
numerical examples in the context of the Spanish electricity
market to illustrate the qualitative impact the players’ risk
aversion and market power may have on the relationship between
the futures and spot markets.

We believe both retail and generation companies in liberalized
electricity markets can benefit from the proposed methodology
for several reasons. The ability to explicitly compute a futures
price as a result of market equilibrium, but one that is possibly
different from the expected spot price, gives a signal to the
purchasing teams for when to go long and short depending on
the state of the futures market. We have discovered that,
crucially, the state of the slope of the forward curve depends on
both market-power and risk aversion (in the presence of risk
aversion and Cournot generators we have normal backwardation;
when all players are risk-neutral and behave a la Cournot, we
observe contango). This is a new and important insight, and, in
the case of the Spanish market, it is also based on the availability
of hydro resources. For these reasons, firms need to take into
account market structure and behavioral considerations when
deciding, possibly a few months ahead, how to sell and procure the
required electricity. It is also evident that in the case of countries where



hydrological resources are a significant part of the production
mix, forecasting weather (i.e., accumulated rain fall during the
time horizon) a few months ahead of the delivery date is a
crucial component of an effective policy.

Overall, these results are a major departure from the previous
literature reporting that the introduction of futures markets
reduces producers’ profitability. Our results show that, under risk
aversion, the inverse is correct: producers are able to increase
spot prices and trade mostly in this market, thus increasing
profitability, at the expense of retailers and consumers in the
presence of futures markets.

. The article is organized as follows. We start in Section 2 with a
literature review. In Section 3 we present the model of the

electricity supply chain, deriving the analytical properties of the
model. In Section 4 we apply our model to a realistic electricity
market and Section 5 concludes the article.

2. Literature review

In this section we review the literature on supply chain
management, focusing on risk-averse stochastic models, and
analyzing the relationship between spot and forward markets. The
interaction between oligopolistic market power and futures
trading can be traced back to Greenstone (1981), who argued
that coffee producing countries used the futures markets to
increase spot prices. This theory was, however, challenged by
Allaz (1992), and Allaz and Vila (1993), who concluded, through
the analysis of a duopoly model, that producers are worse off
with a futures market. It is therefore important for procurement
departments to better understand how and when, to use futures
markets (or bilateral trading) instead of spot markets. For this
reason the topic has been addressed both in the management and
economics literatures. Powell (1993) presents an analysis of the
relationship between spot and long-term contracts trading with
risk-averse retailers, concluding that, in this case, the contract
price is larger than the expected spot price. Newbery (1998)
studies the interaction between long- term contracts and new
entry. Dong and Liu (2007) have also used a model based on
Allaz and Vila (1993) and applied it to study a one-to-one supply
chain considering risk aversion. Anderson and Hu (2008) analyze
the use of forward contracts when the buyer (retailer) has
market power and offers forward contracts to two different
generators, concluding that, in this case, there is an increase in
the social optimum. An equilibrium model is used by Aid,
Chemla, Porchet, and Touzi (2011) to study the relationship
between forward, spot and retail markets when firms can be
vertically integrated. The authors concluded that, under demand
uncertainty, both vertical integration and forward hedging
decrease retail prices.

Moreover, in the context of electricity markets, the
relationship between spot and forward contracts is analyzed by
Bessembinder and Lemmon (2002) considering risk aversion,

profit variance, and homogeneous generators, but without
considering market power.
Carrién, Conejo, and Arroyo (2007) presents a stochastic

programming model to identify optimal forward contracts for
risk-averse (and price-taking) retailers. From the perspective of a
risk-averse producer, Conejo, Garcia-Bertrand, Carrion, Caballero,
and de Andres (2008) develop optimal trading strategies in both
spot and futures markets showing that futures trading may help
to hedge the profit volatility risk. Also in this context ( Murphy &
Smeers, 2010) have analyzed the relationship between spot and
forward contracts in an investment model with oligopolistic
players and capacity constraints, and Oliveira and Costa (2018)
studied the relationship between investment and futures prices, in
an oligopoly, using indirect reinforcement-learning. Further,
Kazempour, Conejo, and Ruiz (2012) study how the introduction
of a futures market may alter the investment decisions of generators

with market power in both futures and spot markets. Finally,
Gulpinar and Oliveira (2012) propose a worst-case analysis of the
relationship between futures and spot markets, Oliveira et al.
(2013) develop an integrated model of the electricity supply
chain analyzing the interaction between generators and retailers
under different market structures and contractual arrangements,
and Oliveira (2017) analyzes the impact of capacity constraints
and price caps on the relationship between futures and spot
markets.

As exemplified in Powell (1993), Newbery (1998),
Bessembinder and Lemmon (2002), Anderson and Hu (2008),
Oliveira et al. (2013), Popescu and Seshadri (2013), and
Oliveira (2017), among other studies, the equilibrium model
presented in this article assumes that prices are determined by
industry participants as we do not consider financial speculators.
There are two reasons for choosing this option: first, this is a
realistic assumption as these markets tend to have low liquidity
and do not attract many outside traders; second, we want to
analyze the nature of the relationship between spot and future
prices in an oligopolistic market.

Crucially, in this article we emphasize the interaction between
risk aversion and market power in determining optimal trading
strategies in the electricity market supply chain. For this reason,
we develop a model of the supply chain using conditional value
at risk (CV@R). The CV@R enables the computation of the optimal
policy to minimize the expected loss under extreme conditions in
low probability scenarios. In previous research, Chen, Shum, and
Simchi-Levi (2014) study a decentralized supply chain with
demand uncertainty and risk-averse firms (a single retailers and
multiple suppliers) by applying a CV@R objective formulation. In
another study, Downward, Young, and Zakeri (2016) use the CV@R
to model risk-averse retailers and analyze the impact of risk
aversion on spot and retail prices; Gersema and Wozabal (2018)
select optimal portfolios of electricity generation technologies
using risk-optimized pooling of solar and wind plants to consider
market and volume risks and the impact of feed-in tariffs. Falbo
and Ruiz (2019) analyze the optimal sales-mix of a generation
plant using CV@R; Wozabal and Rameseder (2020) study the
optimal bidding of a virtual power producer in the Spanish day-
ahead and intraday electricity markets using CV@R; and Moret,
Pinson, and Papakonstantinou (2020) propose the use of financial
contracts, in decentralized electricity markets, considering
heterogeneous risk preferences, modeled using CV@R.

In the literature, the stochastic factor studied is almost
always demand, but Balakrishnan, Geunes, and Pangburn(2004),
Mendelson and Tunca (2007) and Lucheroni and Mari (2019) have
also considered cost uncertainty. Depending on the specific
objectives of the study, some models have included endogenous
prices whereas some others assume that firms are price takers.
Game theory problems have also been studied, including
Stackelberg models, e.g., Hsieh and Lu (2010), Mendelson and
Tunca (2007), Adida and DeMiguel (2011) and Shi, Zhang, and Ru
(2013), as well as supply chain Nash equilibrium (e.g., Lin, Cai, &
Xu, 2010, and Caliskan-Demirag, Chen, & Li, 2011).

Mean-variance models, with different variants are the most
common focus of studies (e.g., Balakrishnan et al., 2004; Chen,
Sim, Simchi-Levi, & Sun, 2007; Miyaoka & Hausman, 2008; Lin
et al, 2010; Adida & DeMiguel, 2011; Aid et al, 2011), while
utility based models using loss aversion (e.g., Wang & Webster,
2009; Ma, Zhao, Xue, Cheng, & Yan, 2012; Deng, Xie, & Xiong,
2013) and exponential utility functions (e.g., Choi & Ruszczynski,
2011) are also used, but are less popular. CV@R (e.g., Artzner,
Delbaen, Eber, & Heath, 1999; Chen, Sim, Sun, & Teo, 2010;
Rockafellar & Uryasev, 200 0; Shapiro, 2009; Shapiro, 2011) is
applied by Hsieh and Lu (2010) and Caliskan-Demirag et al.
(2011): in both these articles the manufacturer is considered
risk neutral whereas retailers are risk averse. Ehrenmann and
Smeers (2011) propose a stylized model using CV@R to analyze



production capacity expansion, in which the price-taking decision
makers represent the different technologies. Their analysis is very
different from ours. We provide a detailed model of the the
supply chain interactions between retailers and generators, these
are firms managing their own businesses, and we account for
market power when analyzing the re lationship between spot and
futures prices.

3. Modeling the electricity supply chain

We consider an electricity market in which G generators and R
retailers interact in different trading floors. In particular, we
analyze a two-stage setting composed of a futures market and a
subsequent spot market (e.g., Conejo, Garcia-Bertrand, Carrién, &
Pineda, 2010b ). In the first stage, generators and retailers
participate in a futures market. As a result, generator g sells a
quantity qg and retailer r buys gf at a price W. W is the
equilibrium price that clears the futures market, such that supply
equals demand.

In the second stage, generators and retailers participate in the
spot market where they sell and buy their electricity, qgw and ¢3,
respectively, at the spot price S,, which depends on the specific
scenario w for demand and costs. Finally, retailers sell the energy
purchased in the futures and spot markets to two market seg-
ments: (a) elastic consumers at the single retail price P, and (b)
consumers who have signed with the retailer at a fixed tariff, i.e.,
a quantity g, at a price Pr, where g, and P, are considered as ex-
ogenous parameters in the current model. These market segments
also represent the degree to which a retailer can differentiate the
service offered to the final consumers without them changing sup-
plier, even when paying a higher price. This product differentiation
may reflect the reputation of the firm, the quality of its services
(e.g., dealing better with consumers), or may just reflect different
types of demand (e.g., consumers with a high degree of risk aver-
sion will prefer to stay with the same retailer and pay a fixed tariff
rather than changing to a flexible price contract).

Under this market setting, generators and retailers have to
make the first stage decisions (futures market) in the face of un-
certainty associated with consumer behavior and generation costs.
This uncertainty is thus characterized by scenarios w =1, ..., Q for
the possible realizations of the inverse demand curve representing
the behavior of final consumers, and of the electricity generation
costs.

The profit function of generator g in scenario w, i.e., gy, is
described by (1) where the first term stands for the generator’s
income from selling its electricity in the futures market, the second
term is the income from the spot market, and the last term
accounts for the generation costs. Generator g’s total cost function
Cow = G (qg, qgw) varies with the scenario and is a function of to-
tal production, which equals the sum of the electricity traded in
the futures and in the spot market, i.e., g + g3,

—Co» g=1,..C w=1,..%. (1)

Moreover, the futures market variables qg and W do not de-
pend on the scenario w, as the futures market is settled before the
uncertain parameters (inverse demand curve and generation costs)
are observed. Additionally, the expected profit function of genera-

tor g can be computed as E[IT,] Ogw g, Where o4, is the
pro§ ability assigned by generator 5‘6 ~Scefiarid o. &

The profit function of retailer r in scenario w, i.e., I1;,, is for-
mulated as (2) where the first term represents the retailer’s in-
come from selling the electricity to consumers under a fixed tar-
iff, and the second term is the income from selling the remain-

Mg, = ng + qng

ing purchased electricity, i.e., g3, + ¢f — ,, to the final elastic con-
sumers at a price P,. The third and fourth terms are the costs
from buying in the futures and spot markets, respectively. Again,
the futures decision variables (qf) do not depend on the scenario

w. Similarly, the expected profit of retailer r can be computed as
E[I1;] = zszl 0rellw, Where oy, is the probability assigned by
retailer r to scenario w.

Hrw = Frar + (qfw + qlr: - ar)

R w=1,..Q.

—qfW — ¢, S0
r=1,..,

(2)

Finally, the elastic consumers’ preferences in scenario w are
represented by the inverse linear demand curve (3) where vy, > 0
and B > 0. The uncertainty associated with the consumer’s
behavior is represented by the parameter v,, which is scenario
dependent.

R
Po=vo—BY (G +dr

r=1

_qr)' (3)

In order to characterize the global equilibrium of the
electricity supply chain we first need to compute the equilibrium
in the spot market (stage two) assuming that the futures market
has already been settled. Therefore, the resulting spot market
equilibrium price and quantities, one per scenario w, are a
function of the futures decision variables qg and ¢f , and the
futures price W. This allows the generators’ and retailers’ profits,
(1) and (2), respectively, to be rewritten as a function of qg, qf
and W. We then move one step backwards to stage one and
obtain the futures market equilibrium (and thus the supply chain
equilibrium) by simultaneously maximizing the profits of
generators and retailers, under different levels of risk aversion, as
analyzed in the following subsections.

3.1. Characterizing the equilibrium in the spot market (Stage Two)

In this section we describe the equilibrium conditions for the
spot market. We start by defining a key model assumption and
then derive the equilibrium purchases and sales by retailers and
generators in the spot market, together with their respective
aggregate inverse demand and offer curves.

Assumption 1. All the retailers (generators) are identical with
respect to their conjectural variations, i.e., all the retailers
(generators) assume the same impact of their purchases (sales) in
the spot and futures prices, as for their rival retailers’ purchases
(generators’ sales).

Assumption 1 is equivalent to considering the same level of
competition (Cournot, Bertrand, perfect competition, etc.) among
generators and retailers. However, generators and retailers can be
asymmetric in terms of costs, share of fixed tariff consumers and
levels of risk aversion.

Proposition 1. Under Assumption 1, the equilibrium purchases of
re- tailer r in scenario w in the spot market are described by Eq. (4).
Sw — Py — Ot
@ (0] qr qr 3q
B0 = 9P, _ S, (4)
%, G

Proof. Assuming monotonicity of P, and S, with respect to qf
we consider the maximization of the retailers profit (2)

Qe

=0, which can be easily

w

tgw +_qr Qr) dPa, +Py—Sw —
rearranged to obtaln (4). O

S 0S
Qrwa Sw

Eq. (4) shows that, although retailers in almost all scenarios behave
as net buyers, we may find some scenarios where g5 , < O.
This would indicate that the retailer sells back in the spot
market part of the electricity bought through futures, probably
caused by a relatively low demand realization in that scenario.

Proposition 2. Under Assumption 1, the aggregate demand
function for the retailers in the spot market, and its inverse, are



represented by Eqs. (5) and (6), respectively:

 RGs-vo)+ (RB- B ) T (af - d)
quw_ %_ asw RIB (5)
r=1

%0

aP,  8S, R op, R
5w=Vw+*<W*W*Rﬁ>§qm) *( - ﬂ);(%*qr)'
(6)

that 0Py _ 0Py

Proof. From lets consider

Assumption 1

aq? aqr’w
% = 3521550) Vr and Vr'#r. At each scenario w, retailer r
ro o
selects the optimal quantity to buy in the spot market,
g , » to maximize proﬁt From (2) we get ° 3“’“’ = (G0 +qf -

B

ary - a5, 3qs = 0, which, from (3) is equ1valer1t to
9Py S,

vw+qm,(8q§w - 3q§(u)+(qr @) e = BXhy (@, + ) —dp) -
Sw =0. Then, by summing the quantities bought in the spot
market by all retailers, we get (———)Zr_] 4, =RSw —

Rvey +RB Zr:l (Qm) + qr ar) — BP(U Zr 1(qr dr),
some term rearrangements, renders ( de - "’S—w “RATR ¢, =

RSw —Rvey +RB Zr:] (qr’ 4r) — 8;:” Zr 1(Qr Qr)-

R
expression the aggregate demand Z ? » » (5), or its inverse,
can be easily computed as a function of 'tfe spot price S,, (6). U

which, after

From this

We proceed by deriving the generators’ equilibrium sales in
the spot market. First, we make the following assumption
regarding the structure of the electricity generators’ cost function
(G o)

Assumption 2. The generators' costs functions are linear with

respect to the total production qgw +qg so that gc# and anw
aqh
are constant, i.e., let’s assume that Cg, = (qgw +qg)cgw and thug BCg‘”
— 3G _ Cao-
aqk ®

Thge simplification described by Assumption 2 allows an
analytically tractable market model to be derived, while still
capturing the basic functioning of real-world electricity markets.
Note that in most of these markets, generators are obliged to
submit their offers (marginal costs) in the form of stepwise
functions, i.e., assuming constant marginal costs per energy block.
Hence, for the purposes of our equilibrium analysis we will not

explicitly model the whole piecewise-linear costs function, but
rather assume 1t to be in the neighborhood of the equilibrium

quantity qgw +Qg, where this cost function can be considered

strictly linear.
e use another set of assumptions, summarized by

Assumption 3, which are standard in this type of model, and
relate to the structure of information and uncertainty resolution
at the different stages of the game.

Assumption 3. (a) Uncertainty over demand and cost functions
decreases monotonically with time, i.e., as the last day of the spot
market approaches, firms are able to estimate the parameters with
more precision. (b) In the last trading day, there is no uncertainty,
i.e., all the firms have common and complete knowledge of the cor-
rect parameters, including demand and cost functions.

Proposition 3. Under Assumption 2, the equilibrium sales of
genera- tor g in scenario w in the spot market are described by:

Cow — S

S 8w (0}

Qg = 35, (7)
943

Proof. Assuming monotonicity of S, with respect to qgw a gen-
erator g selects the optimal quantity qéw to sell in the spot

market so that its profit (1) is maximized at each scenario w,

ie, 'msg“’ = 355"’ 45, + Sw — Cgw = 0, after which it directly follows
93, 9y, &

Eq. (7). Similarly, the concavity of (1) means that (7) are the

first-order necessary and sufficient conditions for optimality. This

9211
85%’ ( )_Oasa—s<0
g

conclusion follows from

(Proposition 6). O

We now use a similar process to derive the aggregate supply
function (and its inverse) using the generators’ equilibrium trades
in the spot market.

Proposition 4. Under Assumptions 1 and 2, the aggregate supply
function (and its inverse) for generators in the spot market are rep-
resented, respectively, by Eqgs. (8) and (9).

G
Z qgw = 35“ Z Cow — GSw (8)

aqg, \&=1

¢ asa,
Y Cow— Z B |- (9)
g=1

gw g=1

3Sw

Proof. From Assumption 1 lets consider that % = o Vg and

Vg #g. Summing the sales of the generators in the spot market

G
(7) to compute%: g5 ., we obtain the aggregate supply function
in the spot market 8§ from which the inverse aggregate supply

Sy
function is derived: S, = £ ( Yg_; Cgw — oy, Ye1G8)- O

Furthermore, we need to consider the spot market equilibrium
condition, which establishes that for each scenario w, all the en-
ergy sold by the generators must be equal to that bought by the
retailers, Eq. (10).

G R
Z qga) = Z qfw
g=1 r=1

Then from aggregate demand function (5) and aggregate
supply function (8), we compute the price S, that clears the
spot market per scenario o, i.e., the price that guarantees that
supply equals demand as described by Eq. (10). This is derived
in Proposition 5.

(10)

Proposition 5. The equilibrium spot price is described by Eq. (11).
. (jqi — —Rﬁ) T oot [va (R,B 2 ) Y (e _Qr):|
w = G(,BPE" _ ‘assm —Rﬁ) + ‘35510

¢, 0q; 04z,

(11)

Proof. From (10), (5) and (8) we know that
1 G R(Sw — Vo) + <Rﬂ - gq%) Zf:l (Qf - Qr)
5 | 2o e — G | = 9, _ 35, _ R :

9qg, \8=1 0%, 3¢,

By rearranging the terms we obtain

aP,  3S, S, aP,  3S, ¢
SolG - -R Do Fo P _p ”
[ <8q§w 3G ﬂ) * 8q§w} <8q 3G ﬂ) g:Z]Cg

3S., P\, 5 -
aqgw |:Rl)w - <R,3 - aqfﬂ)) ; (qr - qr):|a

and (11). O




31.1. Conjectural variations in the spot market

It is evident from the results described in Eq. (11) there are

several partial derivatives from generators and retailers ( 1%1”5@ 7,83—55@
T~ ro

and %) that influence the spot price and, therefore, the retail
g0

price, and the total electricity generated. In this section we analyze
their consistent values with respect to predefined conjectural vari-
, . g g’

. S R ! D R /

ations. In particular: let VP> =370, ﬁ and VP =370, ﬁ
for the conjectural variation of r in respect to the total purchases

of its competitors 1’ in the spot and retail markets, respectively;
S

and let Vgs = Zg,#g 3Lg; represent the conjectural variation of gen-
erator g with regard®o the total production of their competitors
in the spot market. According to Assumption 1, these conjectures
are scenario independent and symmetric for all generators or

{.eet.,a\l/gri Vgs, for g#g’, V¥ = V3 and VP =V? for r#r'. Hence, from
now on, we adopt the notation: Vg, =Vg, Vg =V{ and Vj = VP,
Vr, Vg.

stand

Proposition 6. The consistent values for the retail and spot price sen-
sitivities with respect to the quantities procured (sold) by the retailers
(generators) are represented by Egs. (12), (13), (14).

aP,

o -B(1+w) VrVo. (12)
A+VEYA+VS)A+VP +R)

95y _ PUH R+ W)+ Yy Vr, Vo (13)
aqrw GR - (] + er)(l + VVg)

-GBA+VS)1+VD +R)
05, _ ZOPU+Vy) (1 +Vy 4 Vg, Vo (14)
043z, GR—-(1+V;)(1 +va)
Proof. daq% follows directly from (3) and is equal to g—’;@ =
-B(1+V).

Generators face the aggregate inverse demand function of the
retailers (6) in the spot market. Considering >¢_; g3, = >r_; 45,
and replacing el by (12) renders (15).

30,
39S, 1 0S4
aqgw:R<_’3(1+V‘3)_m_Rﬁ)(l+v‘§g) (15)

Similarly, retailers face the aggregate offer curve of the genera-
tors (9) in the spot market. Assuming 25:1 a5, = Z§:1 qgw renders
(16).

0S, =1 09S, s
=——00+V 16
95, ~ G agg, | T (e
By solving the linear system (15) and (16) we can derive

the explicit expressions for %‘” and i% in (13) and (14),

gw

respectively. O

Proposition 6 shows that the price sensitivities (12), (13) and
(14) are the same within all retailers, generators, and scenarios.

Hence, for simplicity, from now on we will use the notation: ai’s’ =
vr

P, S _ 3w 9S _ S
, - = - and - = =¢-, Vr, Vg, Vo
B‘TE(;) aQ\S,/r dq?w d‘@g dqga) &
3.1.2. Equilibrium spot market outcomes

We can use Proposition 5 to replace the explicit formulation of
Se in Propositions 1-4 and express all the equilibrium market out-
comes, i.e., S,, Py, %Sw and qrsw as a linear function of the futures

Elec)ision )variables Y=Y gf ., as represented in Egs.
17)-(21).

So =Aw+Bq" Yo (17)

R G
Y Go=) Gu=Fot+9d" Vo (18)
r=1 g=1

P, =Juw+K¢" Vo (19)

Gw =Dro + €47 +HG V1, Vo (20)
G = Qe +RG" V8 Vo (21)

The derivation of Eqs. (17) —(21) and the computation of
parameters A » , B, F v .G Jw. K. Drw, & H, Qg wand R
can be found in Appendix A.

3.2. Modeling the futures market considering CV@R (Stage One)

We use the equilibrium conditions in the spot market to
compute the sales by all the players in this market, as defined by
(17)-(21). Then, based on these equations, by backward induction
and given a futures price W, we calculate the equilibrium sales
and purchases in the futures market ( g5 , gf and W ). With this
purpose we move backwards in time to stage one to solve the
supply chain equilibrium. This equilibrium is characterized by
the joint maximization of all the agents’ profits under different
levels of risk aversion. Therefore, each generator and retailer
sets conjectures about the behavior of its rivals and optimizes its
profit by selecting the optimal qg and gf, respectively, while the
equilibrium price W comes from the resulting system of
optimality conditions, i.e., the equilibrium price W guarantees that
all the players’ optimality conditions are satisfied, and that
supply equals demand. This is an important contribution of
this work as the futures price is obtained from the optimality
conditions without making any assumption about the
relationship between futures and spot prices.

The risk_aversion of generators and retailers, is considered
using the CV@R. This cgoncept has been applied %otﬁ] l1-n t1b1¥e

context of one decision maker facing a static problem (e.g.,
Artzner et al, 1999; Rockafellar & Uryasev, 2000; Rockafellar
& Uryasev, 2002; Andersson, Mausser, Rosen, & Uryasev, 2001;
and Chen et al, 2010), and a dynamic problem (e.g., Cheridito,
Delbaen, & Kupper, 2006; Boda & Filar, 2006; Kloppel &
Schweizer, 2007; Shapiro, 2009; Shapiro, 2011; Philpott, de
Matos, & Finardi, 2013, Ansaripoor, Oliveira, & Liret, 2016 and
Ansaripoor & Oliveira, 2018).

Shapiro (2011) provides a version of the dynamic CV@R that is
time consistent (at each state of the system the optimal decisions
cannot depend on the outcome of futures states, which we
already know to be unreachable), and Philpott et al. (2013)
provide a pro- cedure for computing solutions to multistage
stochastic program- ming problems that minimize dynamic
coherent risk measures. It is important to be clear that in this
article we address the static CV@R model only, as the model has
two time steps (futures, with uncertainty and spot, without

uncertainty). . . . .
or a sé’o)chastlc programming setting where scenarios are used

to represent uncertainty, the CV@R associated with a profit
distribution can be computed by solving a linear optimization
problem ( Rockafellar & Uryasev, 2000 ). In particular, the profit
maximization problem solved by the risk-averse generator g is
formulated in (9), where og, is the probability assigned by
generator g to scenario w and 1- og represents the level of

significance associated with the CV@R.
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subject to:
New = —Mgu(q}, q . W) + & VYo [iy,] (22b)
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The objective function represents a trade-off between the
expected value (first term) and the CV@R (second term) for a
given confidence level og This trade-off is regulated by the
parameter ¢, where 0 < ¢ < 1. Under this setting, ¢y = 1
represents a risk-neutral generator g (maximization of the
expected value), while ¢y = 0 corresponds to the maximum level
of risk aversion (maximization of the CV@R). Let the value at risk
(V@R) be the 1 — «g profit left-tail quantile. At the optimal
solution, £ equals the V@R and g «, equals (for each scenario w)
the difference between the V@R and the profit Iy . if this
difference is positive, or zero otherwise. This condition is imposed
by constraints (22b) and (22c). Finally A4, and &g, are the dual
variables  associated with constraints (22b) and (22c),
respectively. The optimization problem solved by retailer r is
defined by (23), where o , , is the probability assigned by
retailer r to sceyfario w.
Maximize ¢T(Z orollio (gt qF . W))
aF & e w=1

1 Q
+ (1-¢r) (Sr 1—a Z ernrw) (23a)
- w=1
subject to:
Mo = —Ile (Qf, qF,r, W)+ & Yo [)‘ra)] (23b)
Nre > 0 Vo (6101 (23¢)

Again, the parameter ¢, allows a retailer r to balance the tradeoff
between the expected profits and the CV@R for a significance level
1 — a. Similarly, auxiliary variables &, and 7, are used in (23b)
and (23c) to calculate the positive difference between V@R and
profit I, for each scenario w. The dual variables associated with
constraints (23b) and (23c) are A,, and §,,, respectively. For a
given futures price W, the simultaneous solution of problems
(22) and (23) provides the Nash equilibrium quantities for trading
in the futures market by generators and retailers.

Moreover, for the specific market configurations studied in this
paper ( Section 4 ), (22) and (23) are concave optimization
problems (Appendix B) and therefore their solutions are unique.
In order to search for specific solutions to the supply chain
equilibrium, we replace problems (22) and (23) by their
corresponding KKT (Karush-Kuhn-Tucker) system of optimality
conditions, which due to the concavity of the profits functions,
are first-order necessary and sufficient conditions for optimality
( Appendix B ). The KKT system associated with problem (22) is:

¢ am 2 aM
—¢gZangi‘”—Zkngi”=0 vg (24a)
w=1 9 oo e
1
(1- ¢g)]_7ag0gw —Agy =84, =0 Vg Vo (24b)

Q
Y hgo=1-¢y Vg (24c)
w=1
0<Tly, —&+Mglh,, >0 Vg Vo (24d)
0 < Ngyldg, >0 Vg Vo (24e)
Similarly, the KKT system associated with problem (23) is:
Q Q
oIl oIl
_¢TZJWW?D - Ekrwﬁ =0 Vr (25a)
w=1 w=1
1-¢r) 3 ]a Orp — Ay — 81y =0 vr,Vo (25b)
- r
Q
Y hp=1=¢ Vr (25¢)
w=1
0<I,, — &+ Mplry,>0 VrVo (25d)
0<npld,>0 VrVo (25e)

where the complementarity conditions are denoted by 0 <x L y
>0, which is equivalent to: x >0, y >0 and xy = 0.

For a given futures price W and under the profit concavity
assumption, any particular solution qg and ¢f, V g and Vr,

satisfying the KKT conditions (24) and (25), for both generators
and retailers, is also a solution to the Nash equilibrium problem,
see Theorem 4.6 in Facchinei and Kanzow (2010).

Among all the possible prices W, we are interested in
identifying the value that clears the futures market, i.e., the price
that guarantees that supply equals demand, as described by Eq.
(26), which was proposed in Oliveira et al. (2013) for the
dGetermini%tic case.

=) 4
g=1 r=1

Therefore, the supply chain equilibrium is obtained by considering
the futures price W as a variable and by solving jointly (24)-(26).

There are several methodologies to solve complementarity
systems of the type (24)-(26), e.g., Gabriel, Conejo, Fuller, Hobbs,
and Ruiz (2013) and Pozo, Sauma, and Contreras (2017). In this
article, we have reformulated this system as an optimization
problem that minimizes the sum of all the complementarity
conditions, subject to the rest of the system’s constraints. This
formulation is presented in Appendix C where its equivalence is
also shown with systems (24)-(26).

(26)

3.2.1. Risk-adjusted expectations

In this section we introduce the concept of risk-adjusted
expectations and demonstrate its usefulness for understanding the
price formation mechanism in futures and spot markets. The risk-
adjusted probabilities are endogenous to the model and reflect
the weight a risk-averse decision maker gives to a scenario. If the
dual variables associated with (22b) or (23b) are positive then a
given scenario receives a higher weight than if the dual
variables are zero.

The major contribution of this analysis is to show the
equivalence of computing the optimal policy based on the
weighted profit between expected value and CV@R with
maximizing the



risk-adjusted expected value, which is calculated using the risk-
adjusted probabilities. Therefore, in practice, the way the decision
maker incorporates risk in the model is reflected in the different
weights put on the different scenarios, i.e., the risk-adjusted prob-
abilities take into consideration the influence of the parameteriza-
tion of the objective function (i.e., ¢ and 1 — «, for both generators
and retailers) on the actual probabilities associated with each sce-
nario.

Lemma 1. (A) Generator g’s risk-adjusted probability in scenario w
is equal to ¢ga + Agy- (B) Retailer r's risk-adjusted probability in
scenario w is equal to (bram) + Ay

Proof. By rewriting  conditions (24a) and (25a) as
Zw 1 6qF (¢g s T )‘ga)) =0 and ZS 1 aqF 2 (PrOrey + hryy) =
respectlvely Then from (24c) and (25c) it follows that

Zw 1 (¢g0 +)‘gw) =1and Zg=l (¢T6rw +)‘rw) =1 O

These new probabilities are risk-adjusted as they change the
initial weights put on the different scenarios in order to account
for risk. The larger the probability associated with a risky scenario
(in which the actual profit exceeds the CV@R), the larger the ad-
justment. This concept of risk-adjusted probability was introduced
in Ehrenmann and Smeers (2011). Our concept generalizes theirs
by including the trade-off between CV@R and expected value.

Let E; and E; stand for the risk-adjusted expectation of genera-
tor g and retailer r. Eqs. (24a) and (25a) can be interpreted as op-
timizing the risk-adjusted expected marginal profits for both gen-

] 0 and Er[an"ﬂ] =0, where

the probability associated with each scenario is (Pgogw + Agy) and
(¢rOrw + Ay, TESPECtively.

M,
erators and retailers, i.e., Eg[

3.2.2. Conjectural variations in the futures market

In (24) and (25) the partial derivative of the spot profit to
the trading in the futures market is computed, respectively, from
(2)and (1) as:

a1, SOW 0Py, o 5 -
gk = W ger g (@t ar - @)
aq g as,
P ro 4 q s R vr, Y 27
- w(aqf * ) agf >~ T aqr RYe  (272)
9T, ow qu as
-W F 8w » S w
aqg Tsgqr T g T Yo
3q5w
cgw(l +5 (;gg) Vg Vo (27b)

By analyzing the different terms in (27) we can observe
there are several partial derivatives from generators and retail-

AW OW 9Py 9Sw 9Sw 8qrm aqgﬂ)
ers 2% , Yo , , and that influence the fu-
agt’ E)qF aqt’ dqf’ 9qf’ dqf

tures market equilibrium. We seek to derlve their consistent values
with respect to predefined conjectural variations. In particular let

=yF T fF’ stand for the conjectural variation of retailer r in
respect to the total purchases of its competitors in the futures mar-
aqf,

X F_ G (7g’ . ..
ket, r’; and let Yy = Zg,#g it represent the conjectural variation
of generator g in respect to the total production of their competi-
tors g’ in the futures market. Similarly to the spot market conjec-
tures, we assume these to be scenario independent and symmet-
ric within all generators or retailers (Assumption 1), i. YF = YF
for g#g and Yf =YF for rs1". Hence, we will use the notatlon

F _vyF F _ yF
ng = Y‘g and Yy, =Y, Vr, Vg.

’

The partial derivatives of the equilibrium spot market outcomes
( P Sw» 43, and qg » ) with respect to the retailers’ and genera-
tors’ futures trading ( qf and qg ) are computed using Egs. (17) -

(21). These partial derivatives are summarized in Egs. (28) -(32).

35 =K1+ YVr) Vr,Vo. (28)
F

gf]“’ =B(+YS) VrVo (29)
f

as

39 ‘; B(1+Yy,) Vg Vo (30)

0o _ e 14 vE)  Vr Vo (31)

dqf v ’

%% _p14vE) VeV (32)
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Proposition 7 describes the consistent partial derivatives %r and
STV‘;, derived from the equilibrium conditions in the futures market.

g
Moreover, 3—"}/ and am; are scenario independent and hence valid
94g

for any set of risk- adjusted probabilities.

Proposition 7. The consistent partial derivatives of W with respect
to the quantities procured and sold by retailers and generators in
the futures market are represented by Egs.(33) and (34),

%e‘s,\‘}emvfl 1+ YE)[RGA + (14 Y5) (T + R y )
= r

o RG— (1Y) (1473

ow G +Yg)[T+Ru+x(1+Yy )] 34

aqf  RG—(1+Y5)(1+Y) £

where

T=(1+Yg)IKE+1) - BE] (35)

U=2(1+Y)H(K - B) +K(E+1) - BE (36)

X =2RB(1+Y{,) (37)

The proof for this proposition can be found in Appendix D.

Similar to  Proposition 6 for the spot market,
Proposition 7 shows that the price sensitivities, (33) and (34),
are the same for all retailers, and for all generators, respectively,
and are both scenario independent.

Finally, Proposition 8 characterizes the futures market price W.
The idea of computing the equilibrium wholesale price without
requiring the non-arbitrage condition was originally proposed in
Oliveira et al. (2013), but only used in a numerical example.
In Proposition 8 we derive the close-form solution for the
futures
price, taking into account risk aversion. This is a major contribu-
tion of this article.

Proposition 8. The equilibrium futures price is defined as:
qu + GX) Zr 1 Zw 1070,Sro + STM; +7T+ RL/) Zgzl Z(Suz:l og*wvgw

—R(gg‘ﬁ +GX) + G(

r+7’+RL{)
(38)



Proof. In equilibrium (26), price W is such that the retailers’ in-
verse aggregate demand curve (D.5) equals the generators’ aggre-
gate supply curve (D.6). O

Both the inverse aggregate demand for retailers (D.5) and the
aggregate supply curve for generators (D.6) depend on the risk-

adﬂusted probabilities o}, = w+ Ay and o Ogw + Aoy
ich need to be obtained rom the ]omt sollﬁlon 0‘% condlt?ons

(24)-(26), rendering also the optimal value for the futures price
W. However, Proposition 8 is still meaningful as it shows that for
a given set of risk-adjusted probabilities (associated with a
particular solution to the Nash equilibrium), the futures price W is
unique. Moreover, for the particular case where the market
participants are risk neutral, i.e., o}, = oy, and Ogy = Ogw » the
equilibrium futures price W is unique and can be directly computed
by the closed-form solution provided by Proposition 8. Note that
this result is general and allows generators and retailers to differ
on their perceived scenario probabilities oy, and oy, respectively.

4. Numerical analysis

In this section we analyze a numerical example from the
Spanish electricity market ( OMIE, 2020 ), liberalized in the late
1990s based on a centralized auction where all the electricity was
traded ( Crampes & Fabra, 2005). In the early 200 0s it evolved
into a bilateral trading mechanism in which a large proportion of
the electricity is traded using bilateral contracts between the
generators and the retailers (who serve the final consumers), and
in which futures contracts are also traded in an exchange ( OMIP,
2020 ). This market is currently composed of three large
generators (Endesa, Gas Natural-Fenosa, and Iberdrola), four large
retailers  (Endesa,  Gas Natural-Fenosa, Iberdrola  and
Hidrocantabrico), and a competitive fringe of small generators.
There are also some large consumers participating in the
wholesale markets. As their market share is still negligible we
do not consider them in our analysis. We have followed the
literature in assuming that in equilibrium all retailers charge the
same price to the final consumers.

Compared to other deregulated markets, such as the UK or

CAISO, the recent deregulations of the Spanish electricity market
(“Ley del sector eléctrico 1997 and 2013”) do not specifically
impose vertical separation between generation and retailing
companies, i.e., it is not illegal for a holding company to take an
active part in both generation and retailing activities through two
affiliated companies. However, the Spanish Energy Regulator
(“Comisién Nacional de los Mercados y la Competencia”)
constantly monitors the behavior of market participants to prevent
and penalize any form of unfair competition, including the
exercise of vertical market power CNMC, 2014. Hence, in this
case study we as- sume independent generators and retailers.

We seek to understand the shape of the forward curves ob-
served at specific times of the year (e.g., Table 1) and the main
factors affecting it. In particular, mimicking the functioning of
real-world electricity markets (e.g., OMIP, 2020 ), the generators
and retailers participate in several futures markets that take place
simultaneously on a given day, for example, Dec. 29, 2016. To
illustrate this process, Fig. 3 presents the futures market prices
for different products settled on Dec. 29, 2016, together with the
resulting monthly spot market prices for 2017. We can observe
that the resulting spot market prices during the last quarter of the
year 2017 exceeded the quarterly and yearly futures prices settled
on Dec. 29, 2016.

We consider only monthly contracts consisting of a single
electricity load segment (no distinction between peak or base
prices), with a time horizon that extends from 1 to 12 months
into the future.

Futures trading on

Dec. 29th 2016
Delivery months

Futures Market 12

- P
Whee. qhec

Futures Market 2

; r
Wreb. Qi

Futures Market 1

. P
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> Future
Dec. 29th Jan. Feb. o o Dec.
2016 2017 2017 2017
Fig. 2. Futures markets setting for Dec. 29st, 2017.
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Fig. 3. Prices settled on Dec. 29, 2016, for futures base and peak electricity products
for the year 2017 (OMIP, 2020).

Moreover, we model the relationship between the final spot price
in the day-ahead market, after all uncertainty has been resolved,
and the futures market prices, by using backward induction.
Uncertainty evolves as described by Assumption 3: decreases as
we get closer to the spot market realization. Given the very large
amount of data collected daily, and the very large investment in
the data analytics performed by generation and retail firms, this
assumption is very realisticc and becomes more so with every
passing year.

Fig. 2 illustrates the different futures markets that are traded

within the current framework. On the last working day of
December the generators and retailers need to plan their futures
and spot trading throughout the year to maximize their risk-
adjusted profits, given the seasonal effects and the uncertainty
associated with each scenario (which depends on the time
horizon).
For each of these monthly contracts, we solve our equilibrium
model to recreate the negotiation process between generators and
retailers. This results in a futures price Wy and in a set of
equilibrium energy trades in the futures markets g¢f, to be
delivered in month m = (Jan., Feb.,.., Dec.). In this process, each
market participant decides the optimal level of futures trading
by anticipating the scenarios for the demand and supply
parameters for month m, and therefore the respective expected
prices and production in the spot market.
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Fig. 4. Inverse demand function and offer curves at a given time period for the
Spanish spot electricity market.

In the following sections we first describe how the model pa-
rameters are generated for the different simulations, and then test
the proposed market settings under different assumptions regard-
ing the level of risk aversion and competitiveness of the market
participants. Hence, the main purpose of these simulations is not
to reproduce observed outcomes, but rather to show how the rela-
tionship between forward and spot markets is highly conditioned
by the competitive and risk aversion levels of the market partici-
pants.

4.1. Data

The Spanish electricity market has an oligopolistic structure
that includes three generators and four retailers. We estimate
their cost and demand parameters using market data. As an
illustration, Fig. 4 presents the aggregate inverse demand and
offer curves for five different hours of a specific day (Nov. 28,
2017) in the Spanish spot market.

By analyzing a larger dataset, demand parameters v, and B
are adjusted so that the retailers aggregated demand in the spot
market (6) approximates the actual demand observed in the
electricity market (decreasing gray lines in Fig. 4 ). Similarly,
generators’ costs parameters cg , are set so that the resulting
aggregated supply curves (9) approximate those observed in the
market (increasing gray lines in Fig. 4 ). For this reason, at the
present time, when the futures trading for the different planning
horizons takes place (Dec. 29, 2016, in our case), neither the
demand, market prices, nor the generating costs in any of the
months in 2017 are known and need to be estimated. From these
estimates, we generate scenarios for the parameters. This
scenarios are characterized by an increasing variance for different
time spans. Moreover, we assume the companies are perfectly
rational and are able to estimate the average value of the
parameters actually observed, i.e., based on the electricity market
outcomes in each month of 2017. Additionally, we assume that all
the participants have common 1<nowledge of the uncertainty

factors (i.e., they all use the s me scenarios).
As previously indicated, en defining the cost and demand

scenarios, we explicitly account for the increasing level of
uncertainty associated with the contracts whose delivery
months are further in the future, i.e., not only do we take into
account the seasonal effects on electricity demand and resource
availability, but we also generate a wider range of scenarios for
all the uncertain parameters as a function of time.

Moreover, in order to better reflect demand seasonality, we
correlate the expected value of its intercept, i.e, U, with the
average monthly demand in the spot electricity market during
2017, OMIE (2020). Additionally, we also take into consideration
how the production from hydro power affects the generators’ cost
functions.

Table 2 presents the monthly expected value of the demand
intersection (V) and the generating cost for each generator (Cg) for
g = 1, 2, 3. Higher generation costs for the last months of the year
can be observed as hydro production decreases during 2017
(ESIOS, 2020 ).

Demand uncertainty is incorporated through parameter v and

cost uncertainty through parameters ¢, for g=1,2,3. The scenar-
ios for each of these parameters are randomly generated based on

normal distributions, centered on their expected values with dif-
ferent coefficients of variation (CV). For example, scenarios w for
the demand parameter v, are generated by Monte Carlo simula-
tion assuming that v ~ N(»,CV x V) for =1, ..., Q. In addition,
as the uncertainty increases with the time horizon, this leads to
a wider dispersion of the associated scenarios. This is modeled by
assuming that the monthly CV increases steadily (from 0 in Jan-
uary to 0.275 in December 2017) the further we are from Dec. 29,
2016, as indicated in Table 2. Note that more realistic models, ac-
counting for stochastic processes and temporal auto-correlations,
can be considered to generate costs and demand scenarios with an
increasing level of uncertainty. However, this will not have a direct
impact on the market equilibrium results reported in the following
sections, as we consider a collection of futures markets that are
cleared independently.

Finally, the demand slope is set to B =0.004 € /MWhZ. For
simplicity, we also assume that the four retailers have consumers
under a common fixed price of P; =P, = P; =P, =100 € [MWh,
where §; = 1000, ¢, = 1200, g3 = 1300, g4 = 1500 MWh, i.e., the
total load required by fixed consumers is 5000 MWh. For the CV@R

definition, we use an og =y = 0. 9 and 2 = 500 equiprobable sce-
narios, for both generators and retailers.

4.2. Analysis of the effect of generators’ and retailers’ risk aversion
and level of competitiveness

In this section we study the equilibrium properties and how
they are influenced by the degree of risk aversion and level of
competitiveness of generators and retailers. To this end, four mar-
ket configurations are analyzed, combining risk-neutral and risk-
averse attitudes and Cournot and price-taking behaviors. These
configurations are particularly relevant as they reproduce common
oligopolistic behaviors in real-world electricity markets. Neverthe-
less, the proposed model is able to reproduce any other competi-
tive setting, from perfect competition to collusion, for both gener-
ators and retailers.

4.2.1. Cournot generators and retailers in both futures and spot
markets (V5, =V5 =VD =0and YF =Y5. =0). Risk-averse
generators and retallers ( Pg = ¢r = 0)

Fig. 5a presents the evolution of the monthly futures, and the
expected spot and retail prices during 2017, based on Dec. 31, 2016,
under this market configuration. To better compare the relation-
ship between these prices, Fig. 5 a also includes the 95%
confidence intervals for the expected spot (E[S,]) and retail (E[P
»]) prices. The prices paid by consumers are always higher than
the spot and futures prices. During January and February the
market is in contango, as the futures price is higher than the
expected spot price. However, from April to December the
expected spot price increases while the futures price remains
stationary, so there is normal back-wardation (futures price lower
than the expected spot price). This can be explained by noting
that, as the cost and demand uncertainty increase with time,
both generators and retailers decide to displace the expected
trading from the futures to the spot market (the generators
motivated by potential high cost and the retailers by potential
low demand in the future). This is depicted in Fig. 5b.



Table 2

Expected value for demand and cost parameters (€ /MWh) and coefficient of variation (CV).

Month

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
v 217.61 207.83 198.49 183.44 190.07 211.33 211.58 205.80 197.21 190.56 203.99 209.91
o 15.20 15.14 11.18 16.25 15.93 17.41 20.15 20.87 19.72 22.25 21.46 20.43
s 16.89 16.83 12.42 18.06 17.70 19.34 22.39 23.19 21.91 24.72 23.85 22.70
3 18.58 18.51 13.66 19.86 19.47 21.28 24.63 25.51 24.10 27.20 26.23 24.97
v 0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
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Fig. 5. Cournot firms - risk aversion.
Table 3
Monthly profits and CV@R (000 €) for Cournot firms.
(a) Risk-averse generators and retailers.
Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
E. Profit Generators 1339 1231 1134 1011 1064 1317 1408 1355 1334 1276 1540 1652
E. Profit Retailers 1302 1263 1293 1074 1166 1412 1380 1282 1214 1100 1232 1371
CV@R Generators 1339 1144 974 803 753 855 778 695 625 507 537 457
CV@R Retailers 1302 1116 1031 787 752 807 683 613 557 457 464 456
E. Consumers Utility 2781 2483 2331 1832 1878 2257 2126 1933 1758 1525 1730 1852
(b) Risk-neutral generators and retailers.
Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
E. Profit Generators 1339 1235 1143 993 1079 1293 1323 1275 1194 1108 1295 1415
E. Profit Retailers 1302 1207 1193 972 1047 1205 1174 1117 1065 946 1098 1197
E. Consumers Utility 2781 2547 2442 1974 2154 2568 2528 2391 2236 1968 2332 2546

The monthly expected profits and CV@R for generators and re-
tailers are summarized in Table 3 a. Although the expected profit
fluctuates following the monthly trend of the market prices, the
CV@R for both generators and retailers decreases as we move for-
ward in time. This indicates that generators and retailers face
profit distributions with heavier left tails for the last months of
the year (with a higher probability of low profits).

4.2.2. Cournot generators and retailers in both futures and spot
S _vyS _yb _ F _vyS _ ;

markets (Vg, =Vy, = \/W =0 and ng =Yy, =0) Risk-
neutral generators and retailers ( ¢g = ¢y ='1)

We keep the Cournot setting from the previous section but now
assume risk-neutral generators and retailers. The equilibrium
market prices are presented in Fig. 6a.

The market is always in contango as the futures prices are
higher than the expected spot price. Compared to the risk-averse
case, futures trading does not decrease with the time horizon

(Fig. 6b), as generators and retailers do not protect themselves

from the worst cost or demand scenarios (they focus on
maximizing their expected profit). Futures trading maintains high
energy volumes, and hence, expected spot and retail prices are
lower than in the risk-averse case ( Fig. 5 a).

Due to lower market prices and a lower margin between retail
and futures prices, the expected profits for generators and retailers
are, in general, lower than for the risk-averse case (Table 3 b).
This is a counter-intuitive result. Our prior belief was for the risk-
neutral players to be the most profitable. This is an instance of
the “prisoner’s dilemma” from game theory. A priori, we would
think, that for risk-neutral players it would be more profitable to
trade more energy in the spot market. However, the individual
incentives to do so are not that high (compared to a risk-averse
case where players seek protection against demand and cost
uncertainty) and a unilateral reduction of the futures trading may
entail a significant decrease in the players’ market shares.
Nevertheless, this is a favorable situation for the final consumers,
increasing their expected utility through lower retail prices (last
row in Table 3 b).
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Fig. 7. Cournot generators, price-taking retailers - Risk aversion.

4.2.3. Cournot generators and price-taking retailers in both futures
and spot markets (V\§g =Vh = Y\’fg =0and V§,__, =Y5 =-1).
Risk-averse generators and retailers (¢g = ¢r = 0)

This configuration is similar to the market model in
Section 4.2.1, but assumes that retailers behave as price
takers (and not Cournot) in the futures and spot markets. This is
an electricity market where the energy generation is controlled by
a few dominant firms, while the retailing activity is open to a
larger number of companies of relatively small size (with no
individual market power).

When uncertainty is very small, for one month time horizon
(with delivery time in January), the futures price equals the spot
price (Fig. 7a). However, as we move forward in time and cost
and demand uncertainty increases, the market enters normal
backwardation (futures price lower than expected spot price).
Similar to
Section 4.2.1, this effect is caused by a decrease in the futures
trading level (Fig. 7b) as risk-averse generators and retailers prefer
to postpone their sales and purchases until the elimination of
cost and demand uncertainties, respectively. Compared to the

Cournot retailers case ( Section 4.2.1 ), market prices are similar
with the exception that for the first months of the year, the
expected spot prices are higher than the futures prices. Similarly,
expected spot trading is also higher during the first months of the
year than for the Cournot retailers case.

Again, compared to the Cournot case in Section 4.2.1, the price
taker behavior of retailers entails a decrease for both their
expected profit and CV@R (Table 4a). Generators benefit from
this and increase both their profit and CV@R. It is therefore
evident from these simulations that firms’ risk aversion is the
major factor explaining contango markets, and is exacerbated by
the retailers’ market power.

4.2.4. Cournot generators and price-taking retailers in both futures
and spot markets (V3, =V0 =Yl =0and V3 _ | =Y
= —1 ). risk-neutral generators and retailers ( ¢g = ¢r = 1}

In this case we assume that both Cournot generators and price-
taking retailers are risk-neutral in the futures market. Market
prices are presented in Fig. 8a. Futures prices equal expected spot



Table 4
Monthly profits and CV@R (000 €) for Cournot generators and price-taking retailers.

(a) Risk-averse generators and retailers.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec
E. Profit Generators 1467 1357 1272 1128 1215 1525 1573 1622 1510 1510 1784 1942
E. Profit Retailers 1274 1221 1232 1019 1094 1287 1222 1198 1101 970 1121 1227
CV@R Generators 1467 1246 1063 865 826 908 830 754 635 551 547 436
CV@R Retailers 1274 1096 1006 773 743 768 656 594 532 437 447 430
E. Consumers Utility 2736 2469 2325 1848 1931 2285 2143 2048 1851 1626 1896 2033
(b) Risk-neutral generators and retailers.
Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.
E. Profit Generators 1467 1347 1258 1088 1173 1402 1431 1379 1297 1231 1434 1542
E. Profit Retailers 1274 1178 1167 956 1022 1172 1141 1079 1045 937 1087 1173
E. Consumers Utility 2736 2497 2407 1948 2111 2508 2474 2327 2211 1981 2339 2536
4
110 35 K0
Futures Price Futures Trading
100 - = © —Exp. Spot Price — © —Exp. Spot Trading
«+=+BF+++ Exp. Retail Price 95% CI
95% CI 3r 4
90
SBeeLg e u ]
... g B, (<]
§ 80 e, & Heoreer a a5k ]
el
Broesss o= =
% 70 - B \/__\/
o =
U?‘ 20. p
60 - ~ - O~ -
O~ -~a p ~© -6 = 5 oo 5]
? T - Tte”
50¢ b
1.5 b
40 - 1
30 . . . . . . . . . . 1 . . . . . . . . . .
Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept. Oct. Nov. Dec.
(a) Prices. (b) Total Trading Quantities.

Fig. 8. Cournot generators, Price-Taking Retailers - Risk neutrality.

prices for all months of the year. Generators exercise their
market power over the retailers and establish the best selling price
for their energy, which, due to their risk neutrality, is the same
for both futures and spot markets. Similar to the Cournot case
presented in Section 4.2.2, futures trading is always higher than
spot trading (Fig. 8b), although the gap is smaller.

The expected profit and CV@R are presented in Table 4. The
retail and generation profits are smaller in the risk-neutral case
than under risk aversion. This is again a counter-intuitive result
where risk-neutral players achieve lower expected profits than
risk-averse firms.

Moreover, a third surprising result is that the expected consumer
utility is higher in the scenarios in which retailers behave a la
Cournot in the wholesale markets, and the largest when the firms
are risk-neutral. This shows that double marginalization is
actually worse when the retailers do not have market power in the
futures and spot markets, as they need to pass the higher
wholesale prices onto the consumers, which they are able to do
as they behave as Cournot players in the retail market.

The numerical results reported above have been complemented
with an extensive set of simulations, including different
combinations of cost and demand parameters, and intermediate
levels of competition and risk aversion. We conclude that the
main market trends observed within Section 4.2 are general and
robust against variations of the market data. Specifically, normal
backwardation emerges as the dominant state of the futures
market principally due to risk aversion (and mostly facilitated by
the retailers’ market power), whereas the contango is harder to
observe and is only dominant when all firms are risk-neutral and

the retailers’ have market power in the wholesale markets.
Normal backwardation was indeed observed for the last months
of 2017 in the Spanish Market (OMIP, 2020), as shown by Fig. 3,
which according to our model, may be explained by the presence
of risk aversion.

5. Conclusions

In this article we have analyzed the relationship between
futures and spot markets in the electricity supply chain, taking
into consideration the interaction between risk aversion (using
CV@R) and the market power held by multiple electricity
generators and retailers. We have developed a model of the
electricity supply chain that considers uncertainty in demand and
generation costs, proposing a dynamic game to analyze the
interaction between generators (who sell in futures and spot
markets) and retailers (who buy from the generators in the
wholesale markets and sell to the final consumers).

As a major methodological contribution to the study of electricity
and futures markets, we derive the Nash equilibrium of the
relationship between futures and spot markets in the context of
the electricity supply chain, using CV@R as the risk measure and
considering conjectural variations. We show that the futures price
arises from the optimality conditions without requiring any
assumptions regarding arbitrage between futures and spot prices
and that, for the risk-neutral case, it is unique and can be derived
analytically. Additionally, we use the concept of risk-adjusted
expectation and consistent futures, spot and wholesale price
derivatives to



calculate the players’ reaction functions. The resulting equilibrium
enables the identification of the conditions in which firms pay or
receive a premium to trade in the futures market.

The main theoretical insight of this article is the analysis of the
relationship between spot and futures prices, explaining why the
futures market is in normal backwardation or in contango, pro-
viding the first explanation for the inversion of the forward curve
based on risk attitudes.

As a policy contribution, we have studied the Spanish electric-
ity market, explaining how the interaction between market power
and risk aversion impacts futures markets. We observed that nor-
mal backwardation appears under risk aversion when the genera-
tors behave a la Cournot, independently of the retailers’ degree of
market power. On the other hand, contango is only dominant when
all the players are risk-neutral and the retailers (together with the
generators) behave a la Cournot in the wholesale markets. Counter-
intuitively our simulations illustrate that when all firms are risk-
averse the profit increases and risk decreases. Moreover, consumer
utility is higher if the retailers behave a la Cournot in the whole-
sale market.

There are several possible applications and extensions to the
model and methodology proposed in this article. First, the profit
equations of some of the firms could be modified to consider
vertical integration, under which part of the production is traded
between the generation and retail branches of the firm and any
production margins are internalized. Second, the model could be
used to study the impact of real-time metering on the optimal
trading strategies of the firms. Third, the market setting can be
modified to analyze the direct participation of large consumers in
the wholesale markets. Fourth, this methodology is general enough
to be applied to other types of supply chains, such as petroleum
and gas, by including storage. Finally, the model provides the equi-
librium solution for a very complex problem that incorporates the
relationship between futures and spot markets under risk aversion,
which can then be used as a test bed for empirical studies on the
ability of people to deal with inter-temporal decision making and
risk aversion.
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Considering this, parameters Ay, B, Fw, G, Jo, K, Drw, €, H, Qgo
and R are computed as follows.
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Appendix A. Derivation of the spot market outcomes (17)-(21)

The linear expression for S, in (17), together with the
* definition of parameters A, and Bin (39) and (40), respectively,
is directly obtained by rearranging the terms in (11).

Slmllarly the expression for the total spot trading ZR L
* . qgw in (18), and the definition of parameters 7, and gru(f

(41% and (42), respectively, are derived by replacing (17) with
expression (5 ) and by solving forz 1 G, or Zg _, qgw.

The formulation of the retail price P, in (19), and the arameters

J » and K are obtained from Eq. (3) by replacing ZR s
with expression (18). r =1 Qo

In order to derive g3, in (20), we replace S, by (17) and P, by
(19)in (4), which renders (20) with the corresponding values
for Dy, , £and H indicated in (45), (46), (47), respectively.

In equilibrium the generators’ sales in the spot market, qgw,
and the respective Qg,, and R, are derived from Eq. (7) by
replacing S, by (17).
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Appendix B. Concavity characterization and first-order
optimality conditions for problems (22) and (23)

This appendix is devoted to mathematically characterizing the
properties of the optimization problems (22) and (23). Within the
following propositions, we show that the KKT conditions (24) and
(25) are necessary and sufficient for the optimality of the two
market configurations considered in the case study:

a) Both generators and retailers behave as Cournot players in
the futures and spot markets, ie., VD =V§ = Vég =Yl =
Y\fg =0.

b) Generators behave as Cournot and retailers behave as price-
taker players in the futures and spot markets, i.e., V\?r:

S _yF _ S _yF _
va = ng =0and Vj =Yy =-1.



Proposition 9. For the market configurations (a) and (b) above, in
equilibrium, generator’s g profit Tlg, is a concave function of qg
and the retailer’s r profit T, is a concave function of qf .

Proof. From (D.1) and (D.2) we can compute the second order
derivatives:

0211, ow
=-2—+U(1+YF (50)
g’ dqr (1+%)
0211 ow
=2 +X(1+Y) (51)
dqg qg
inoc W W Wi i
By replacing 3 and o with (33) and (34), respectively, to-
r g

gether with (35)-(37) and their associated inner dependencies
(39)-(49), we derive the following second order derivatives.
Market configuration (a):

Appendix C. Nonlinear formulation of the KKT system

Consider the following nonlinear optimization problem:

¢ @
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Note that G zdl anle >1 aﬁ they IEepresent the lnumber of Q
generators and retailers in the market, respectively. Hence, it is _1_
easy to see that all the terms in the numerators and denominators Z )Lg‘“ =(1-¢) vg (57d)
of expressions (52)-(55) are always positive, which entails the w=1
concavity X
of the profit functions as % <0 and aq% <0, for both mar- My, — &g+ 1y, =0 Vg, Yo (57e)
r g
ket configurations (parameter §is always assumed positive in our
model). O Q Q
anra) 81-[7'0)
Finally, we study the optimization problems (22) and (23) and —¢r210"m, gt 2)"“’ agqr =0 vr (576)
their connection with the complementarity systems (24) and (25). = “=
Proposition 10. For the market configurations (a) and (b) above, (1-ér) 1 Crw— A — 8. =0 Vr Vo (57g)
optimization problems (22) and (23) are concave. 1 - e e '
Proof. As shown in Rockafellar and Uryasev (2000), the problem Q
formulations (22) and (23) are lingar in the variables &g, 74, and Z Ay = (1— ) vr (57h)
[Mgw and &, nre and Iy, respectively. Moreover, Ilg, and Iy, are o
present in both the objective functions and inequality constraints
of problems (22) and (23). Thus, by Proposition 9 we conclude .
that both the objective and constraints of (22) and (23) are My =& 41y 2 0 vr.Vo (571)
concave functions. Consequently, the optimization problems are
concave. [J .
Ngw» Mgewr Sgp Mrewos pgys Opgy = 0 Vg, Vr.Vo (57j)
Corollary 1. For the market configurations (a) and (b) above, the
complementarity systems (24) and (25) are necessary and sufficient
conditions for the optimality of problems (22) and (23), respectively. ¢ R
Yag=>af (57k)
Proof. Problems (22) and (23) are concave maximization g=1 r=1

problems (Proposition 10) and both the objective functions and
constraints are continuously differentiable functions, which
ensures that the Karush-Kuhn-Tucker necessary conditions (24)
and (25) are also sufficient conditions for optimality. O

Under the optimization problem (57) Proposition 11 holds.

Proposition 11. A solution to the NLP problem (57) that meets FO
= 0 is also a solution to the complementarity system (24) and (25).



Proof. The proof is straightforward noting that conditions (57b)-
(57j) are almost the same as conditions (24) and (25), but
without including the products of the complementarity
constraints (24d), (24e), (25d) and (25e). However, the objective
function (57a) is the sum of these positive terms so that if a
solution to (57) meets FO = 0, it then implies that every single
term equals zero, which is equivalent to enforcing the
complementarity conditions (24d), (24e), (25d) and (25e). O

Appendix D. Proof for Proposition 7

Proof. First we compute explicit formulations of the partial deriva-

tives 351;‘“ and a;_; 2 a5 a function of the futures trading gf and
r g
qg . To this end, we replace the spot market equilibrium

outcomes
(17)-(21), together with the spot partial derivatives (28)-(32), in
(27a) and (27b). After some term rearrangements we obtain

t51e following linear expre, sugns
—W+Srw+qr +T)+Z/qu (1)
01y, aw
=W+qf Vew + X 2
3" + g Fr +Vew + Xq" (2)

where parameters Sm), T, Urw, Vg and X are defined as follows:
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Section 3.2.1 shows that the risk-averse equilibrium for the
futures market is equivalent to solving the system of equations

]Er[m;‘”] 0 and lEg[ qgw] =0, Vr, Vg, where E; and Eg rep-
g

aqy
resent risk-adjusted expectations. In this setting, the probability
associated with each scenario is o, = ¢ 0r» + Ay, and Ogp = Og
Ogw + gy, respectively. By imposing these equilibrium conditions
to the partial derivatives (D.1) and (D.2), and realizing that some
terms are scenario independent, we obtain expressions (D.3) and
(D.4).

Q 8W R
_W+Za;;)$m+qf<—+’r> +Uy gf=0 Vr (3)
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By using expressions (D.3) and (D. 4) and aggregating all the
energy boughty” (R K 1 ¢5) and sold (Z we can derive the
inverse aggregate demand for retailets l§5 and the aggregate
supply curve for generators (D.6) in the futures market.

1' W R R Q
W= (—8F+T+Ru)2qf+220rw8m (5)

r=1 w=1

1| [ow
w=l —(+GX>qu S5 0 Vi (6)

g=1 w=1

Therefore, the generators face the inverse demand -curve
(D.5) which, considering that supply equals demand in the futures

market (26), ie, ¢f 3F,qf = Z§:1 q5. can be used to evaluate
the impact of their sales qg in the futures price W, as represented
by (D.7).

aw 1 BW

Similarly, the retailers face the supply curve (D.6) which, noting
that ¢ = 3¢, q§ = >F_; ¢f. can be used to evaluate the impact of

their purchases ¢f in the futures price W, as summarized in (D.8).

ow ow
Fr =—<8F+GX>(1+Y\Q) (8)
F

Note that expressions (D 7) and (D.8) do not depend on the

risk-adjusted probabilities oy, or oy, From the solution of the

linear system (D.7) and (D. 8) we can derive the explicit expressions

for 2 T W and aw in (33) and (34), respectively. O
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