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1. Introduction

The electricity supply chain is rather complex due to the technical 

constraints associated with the production and distribution of 

electricity, which is very difficult to store and needs to be 

produced on demand, and due to the wide variety of production 

technologies that co-exist in the same market: coal, gas, nuclear, 

hydro power, wind and solar generation plants. These varied ways 

of generating electricity exhibit uncertain production costs as they 

are affected by the price of gas, oil, coal, uranium and by weather 

conditions. Within this supply chain network, generators sell 
electricity to retailers using bilateral contracts, and they 
participate in the spot and futures markets. 

In this context, it is important to explain how uncertainty 

management is translated into contracts that enable the firms to 

act upon the received information ( Conejo, Carrión, & Morales, 

2010a ). 
In order to achieve this goal we propose a stochastic programming 
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We analyze the procurement problem in the electricity supply chain, focusing on the interaction between futures and spot prices. The supply chain

network analyzed in our study includes risk-averse generators and retailers, both with the ability to use conditional value at risk (CV@R) in their 

decision processes. In this supply chain, the futures price is computed to clear the futures market, without imposing the constraint that the

expected spot price equals the futures price. As major methodological contributions: we compute the Nash equilibrium of the problem using CV@R

and considering conjectural variations; we derive analytical relationships between the futures and the spot market outcomes and study the

implications of demand and marginal cost uncertainty, as well as the level of the players’ risk aversion, on market equilibrium; we introduce the

concept of risk-adjusted expectation to derive the futures market price as a function of the players’ expected losses or profits in the spot market;

and we use consistent spot and wholesale price derivatives to calculate the players’ reaction functions. Finally, we illustrate our model with several

numerical examples in the context of the Spanish electricity market, studying how the shape of the forward curve and the relationship between

spot and futures prices depend on seasonality, risk aversion, generators’ market power, and hydrological resources. Surprisingly we observed that 
risk aversion increases the profit and reduces firms’ risk, and that the consumer utility is higher in the scenarios in which retailers behave a la

Cournot in the wholesale market.

The retailers, the intermediaries between generation and final 
consumers, buy the electricity required to meet demand using 

bilateral trading and organized wholesale markets (spot and 

futures). 

Given the expected demand and respective response to price, the 

retailers determine their bidding curves for buying forward 

using bilateral contracts (or equivalently in the futures market), 

their real-time bidding curves to buy in the spot markets, and the 
retail price charged to the responsive consumers. Similarly, the 
generators decide their offering curves to sell their energy in the 
different markets. At equilibrium, the total quantity sold by the 
generators equals the quantity bought by the retailers in each 
market, and the total electricity traded in both markets equals 
consumer demand. This equilibrium is attained due to the change in 
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model of a complex supply network that accounts for the tw

major sources of uncertainty, i.e., generating costs and deman

behavior. Moreover, we analyze the impact of these uncertaintie

on the electricity retail, spot and futures markets. 

Although complex, the electricity supply network has a very we

defined structure. The consumers (private households and larg

industrial companies) decide how much they want to consume

Some of these consumers are on a fixed tariff, i.e., they pay th

same price per kWh consumed independently of the quantit

bought (this is the traditional scheme for small households

Larger consumers and, increasingly in the more sophisticate

market, also small households, have real-time meters that ar

used to measure electricity consumption and price in real time

As illustrated in Section 4,  in the Spanish electricity marke

demand response is an important part of total consumption. 
he electricity prices in the three markets. Generalizing from Alla
1992),  the structure of the electricity market includes a suppl
hain with the possibility of risk-aversion. The closest article to our
s Oliveira, Ruiz, and Conejo (2013),  which we now extend b
ncluding risk aversion. 

As CV@R can be solved as a Linear Programming (LP) problem

r in the form of a Mixed-Complementarity Problem (MCP) fo

ames, it is very flexible due to the easy parameterization and

oreover, it is distribution independent. These are its majo

dvantages when compared to other risk measures. 



Table 1

Forward Curve (€ /MWh) for Nov. 30, 2017. Source: OMIP (2020).

Price Base Peak Price Base Peak Price Base Peak

Spot 69.56 76.41 Q1-18 56.85 65.47 M Dec-17 62.30 68.98

YR-18 52.35 58.84 Q2-18 48.25 53.35 M Jan-18 63.20 72.78

YR-19 49.25 55.48 Q3-18 51.65 58.05 M Feb-18 57.60 66.28

YR-20 47.79 53.79 Q4-18 52.71 58.50 M Mar-18 49.81 57.09

YR-21 47.31 53.29 Q1-19 53.48 60.24 M Apr-18 44.04 48.70

Q2-19 45.39 51.13 M May-18 48.92 54.09

Q3-19 48.59 54.73

Fig. 1. Normal vs. inverted forward curve in the Spanish electricity market. Source:

OMIP (2020). 
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he main motivation for this article is understanding the

ehavior of the Spanish electricity market. One of the majo

eatures of this market is the low proportion of trade in the

utures market, which made up 30% of total trading in 2015/16

e.g., OMIE, 2020 ). The second focus is to better understand the

elationship between futures and spot electricity markets, as

llustrated by the shape of the forward curve. This curve

epresents the relationship between the spot price and the

utures prices over different durations. As an example, Table 1

resents the forward curve resulting from the futures markets

rading on Nov. 30, 2017 in the Spanish market ( OMIP, 2020 ). Fig

 depicts three forward curves (for the years 2013, 2014, and

015, respectively) in the Spanish electricity market: the prices

resented are for the spot and futures markets with durations o

ne, two, three months, and one year. 
Before proceeding with the description of the market, we need

o define the concepts of a normal versus an inverted forward

urve. A futures market is in a normal state when the spot price

s lower than the one-month futures price, which is less than the 

wo-month futures price, and so on. In this situation supply is

urrently abundant when compared to demand. A futures market

s inverted if the spot price is higher than the one-month

utures, price, which is higher than the two-month futures prices

nd so on. This is an indication that currently supply is scarce

hen compared to demand. 
The years 2013 and 2014 were normal futures markets: the spo

rices were lower than the futures prices and there was

herefore, an expectation that the spot prices were due to

ncrease in the horizon of 1 year. On the other hand, the yea

015 represents an inverted market: the electricity prices were

xpected to decrease, which together with a larger average spo

rice in 2015 clearly illustrates how tight the electricity marke

hroughout the year, due to a heat wave that increased

onsumption and decreased hydro generation. 

The major contributions of this article are: (a) to propose a

upply chain model of the electricity industry based on a

oncentrated market structure with a few producers and retailers

onsidering risk aversion using the CV@R, and solving the

quilibrium of the game for different degrees of market power

b) to derive analytical relationships between the futures and spo

arket outcomes, and to study the implications of demand and

arginal cost uncertainties and the level of the players’ risk

version for market equilibrium, without imposing the constrain

hat the future price equals the expected spot price, which has

een previously used in articles considering uncertainty (e.g.

llaz, 1992, Gulpinar & Oliveira, 2012, Popescu & Seshadri

013 ); (c) to introduce the concept of risk-adjusted expectation

hich allows the futures market price to be derived as a function

f the players’ expected losses or profits in the spot market; (d

o compute consistent derivatives of the spot and wholesale prices

n respect to the quantities traded by generators and retailers, both

f which are scenario-independent; (e) to present severa

umerical examples in the context of the Spanish electricity

arket to illustrate the qualitative impact the players’ risk

version and market power may have on the relationship between

he futures and spot markets.

We believe both retail and generation companies in liberalized

lectricity markets can benefit from the proposed methodology

or several reasons. The ability to explicitly compute a futures

rice as a result of market equilibrium, but one that is possibly

ifferent from the expected spot price, gives a signal to the

urchasing teams for when to go long and short depending on

he state of the futures market. We have discovered that

rucially, the state of the slope of the forward curve depends on

oth market-power and risk aversion (in the presence of risk

version and Cournot generators we have normal backwardation

hen all players are risk-neutral and behave a la Cournot,  we

bserve contango). This is a new and important insight, and, in

he case of the Spanish market, it is also based on the availability

f hydro resources. For these reasons, firms need to take into

ccount market structure and behavioral considerations when

eciding, possibly a few months ahead, how to sell and procure the
equired electricity. It is also evident that in the case of countries where
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ydrological resources are a significant part of the production

ix, forecasting weather (i.e., accumulated rain fall during the

ime horizon) a few months ahead of the delivery date is a

rucial component of an effective policy. 

verall, these results are a major departure from the previous
iterature reporting that the introduction of futures markets
educes producers’ profitability. Our results show that, under risk
version, the inverse is correct: producers are able to increase
pot prices and trade mostly in this market, thus increasing
rofitability, at the expense of retailers and consumers in the
resence of futures markets. 

The article is organized as follows. We start in Section 2 with a 
iterature review. In Section 3 we present the model of the

lectricity supply chain, deriving the analytical properties of the

odel. In Section 4 we apply our model to a realistic electricity

arket and Section 5 concludes the article. 

. Literature review

n this section we review the literature on supply chain

anagement, focusing on risk-averse stochastic models, and

nalyzing the relationship between spot and forward markets. The

nteraction between oligopolistic market power and futures

rading can be traced back to Greenstone (1981),  who argued

hat coffee producing countries used the futures markets to

ncrease spot prices. This theory was, however, challenged by

llaz (1992),  and Allaz and Vila (1993),  who concluded, through

he analysis of a duopoly model, that producers are worse off

ith a futures market. It is therefore important for procurement

epartments to better understand how and when, to use futures

arkets (or bilateral trading) instead of spot markets. For this

eason the topic has been addressed both in the management and

conomics literatures. Powell (1993) presents an analysis of the

elationship between spot and long-term contracts trading with

isk-averse retailers, concluding that, in this case, the contract

rice is larger than the expected spot price. Newbery (1998)

tudies the interaction between long- term contracts and new

ntry. Dong and Liu (2007) have also used a model based on

llaz and Vila (1993) and applied it to study a one-to-one supply

hain considering risk aversion. Anderson and Hu (2008) analyze

he use of forward contracts when the buyer (retailer) has

arket power and offers forward contracts to two different

enerators, concluding that, in this case, there is an increase in

he social optimum. An equilibrium model is used by Aïd

hemla, Porchet, and Touzi (2011) to study the relationship

etween forward, spot and retail markets when firms can be

ertically integrated. The authors concluded that, under demand

ncertainty, both vertical integration and forward hedging

ecrease retail prices. 

Moreover, in the context of electricity markets, the

elationship between spot and forward contracts is analyzed by

essembinder and Lemmon (2002) considering risk aversion

rofit variance, and homogeneous generators, but without

onsidering market power. 

arrión, Conejo, and Arroyo (2007) presents a stochastic
rogramming model to identify optimal forward contracts for
isk-averse (and price-taking) retailers. From the perspective of a
isk-averse producer, Conejo, García-Bertrand, Carrión, Caballero
nd de Andres (2008) develop optimal trading strategies in both
pot and futures markets showing that futures trading may help
o hedge the profit volatility risk. Also in this context ( Murphy &
meers, 2010)  have analyzed the relationship between spot and
orward contracts in an investment model with oligopolistic
layers and capacity constraints, and Oliveira and Costa (2018)
tudied the relationship between investment and futures prices, in
n oligopoly, using indirect reinforcement-learning. Further
azempour, Conejo, and Ruiz (2012) study how the introduction

f a futures market may alter the investment decisions of generators S
ith market power in both futures and spot markets. Finally
ulpinar and Oliveira (2012) propose a worst-case analysis of the

elationship between futures and spot markets, Oliveira et al
2013) develop an integrated model of the electricity supply
hain analyzing the interaction between generators and retailers
nder different market structures and contractual arrangements
nd Oliveira (2017) analyzes the impact of capacity constraints
nd price caps on the relationship between futures and spo
arkets. 

As exemplified in Powell (1993),  Newbery (1998)

essembinder and Lemmon (2002),  Anderson and Hu (2008)

liveira et al. (2013),  Popescu and Seshadri (2013),  and

liveira (2017),  among other studies, the equilibrium mode

resented in this article assumes that prices are determined by

ndustry participants as we do not consider financial speculators

here are two reasons for choosing this option: first, this is a

ealistic assumption as these markets tend to have low liquidity

nd do not attract many outside traders; second, we want to

nalyze the nature of the relationship between spot and future

rices in an oligopolistic market. 

Crucially, in this article we emphasize the interaction between

isk aversion and market power in determining optimal trading

trategies in the electricity market supply chain. For this reason

e develop a model of the supply chain using conditional value

t risk (CV@R). The CV@R enables the computation of the optima

olicy to minimize the expected loss under extreme conditions in

ow probability scenarios. In previous research, Chen, Shum, and 

imchi-Levi (2014) study a decentralized supply chain with

emand uncertainty and risk-averse firms (a single retailers and

ultiple suppliers) by applying a CV@R objective formulation. In

nother study, Downward, Young, and Zakeri (2016) use the CV@R

o model risk-averse retailers and analyze the impact of risk

version on spot and retail prices; Gersema and Wozabal (2018

elect optimal portfolios of electricity generation technologies

sing risk-optimized pooling of solar and wind plants to conside

arket and volume risks and the impact of feed-in tariffs. Falbo

nd Ruiz (2019) analyze the optimal sales-mix of a generation

lant using CV@R; Wozabal and Rameseder (2020) study the

ptimal bidding of a virtual power producer in the Spanish day

head and intraday electricity markets using CV@R; and Moret

inson, and Papakonstantinou (2020) propose the use of financia

ontracts, in decentralized electricity markets, considering

eterogeneous risk preferences, modeled using CV@R. 

In the literature, the stochastic factor studied is almos

lways demand, but Balakrishnan, Geunes, and Pangburn (2004)

endelson and Tunca (2007) and Lucheroni and Mari (2019) have

lso considered cost uncertainty. Depending on the specific
bjectives of the study, some models have included endogenous
rices whereas some others assume that firms are price takers
ame theory problems have also been studied, including
tackelberg models, e.g., Hsieh and Lu (2010),  Mendelson and
unca (2007),  Adida and DeMiguel (2011) and Shi, Zhang, and Ru
2013),  as well as supply chain Nash equilibrium (e.g., Lin, Cai, &
u, 2010,  and Caliskan-Demirag, Chen, & Li, 2011 ). 

Mean-variance models, with different variants are the mos

ommon focus of studies (e.g., Balakrishnan et al., 2004; Chen

im, Simchi-Levi, & Sun, 2007; Miyaoka & Hausman, 2008; Lin 

t al., 2010; Adida & DeMiguel, 2011; Aïd et al., 2011 ), while

tility based models using loss aversion (e.g., Wang & Webster

009; Ma, Zhao, Xue, Cheng, & Yan, 2012; Deng, Xie, & Xiong

013)  and exponential utility functions (e.g., Choi & Ruszczynski

011)  are also used, but are less popular. CV@R (e.g., Artzner

elbaen, Eber, & Heath, 1999; Chen, Sim, Sun, & Teo, 2010

ockafellar & Uryasev, 20 0 0; Shapiro, 20 09; Shapiro, 2011)  is

pplied by Hsieh and Lu (2010) and Caliskan-Demirag et al

2011):  in both these articles the manufacturer is considered

isk neutral whereas retailers are risk averse. Ehrenmann and
meers (2011) propose a stylized model using CV@R to analyze
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roduction capacity expansion, in which the price-taking decision

akers represent the different technologies. Their analysis is very

ifferent from ours. We provide a detailed model of the the

upply chain interactions between retailers and generators, these

re firms managing their own businesses, and we account fo

arket power when analyzing the re lationship between spot and

utures prices. 

. Modeling the electricity supply chain

e consider an electricity market in which G generators and R
etailers interact in different trading floors. In particular, we
nalyze a two-stage setting composed of a futures market and a
ubsequent spot market (e.g., Conejo, García-Bertrand, Carrión, &
ineda, 2010b ). In the first stage, generators and retailers
articipate in a futures market. As a result, generator g sells a

uantity qF
g and retailer r buys qr

F
 at a price W.  W is the

quilibrium price that clears the futures market, such that supply
quals demand. 

In the second stage, generators and retailers participate in the 

pot market where they sell and buy their electricity, q S gω and q S rω 

espectively, at the spot price S ω , which depends on the specific 

cenario ω for demand and costs. Finally, retailers sell the energy 

urchased in the futures and spot markets to two market seg- 

ents: (a) elastic consumers at the single retail price P ω and (b) 

onsumers who have signed with the retailer at a fixed tariff, i.e., 

 quantity q r at a price P r , where q r and P r are considered as ex- 

genous parameters in the current model. These market segments 

lso represent the degree to which a retailer can differentiate the 

ervice offered to the final consumers without them changing sup- 

lier, even when paying a higher price. This product differentiation 

ay reflect the reputation of the firm, the quality of its services 

e.g., dealing better with consumers), or may just reflect different 

ypes of demand (e.g., consumers with a high degree of risk aver- 

ion will prefer to stay with the same retailer and pay a fixed tariff

ather than changing to a flexible price contract). 

Under this market setting, generators and retailers have to 

ake the first stage decisions (futures market) in the face of un- 

ertainty associated with consumer behavior and generation costs. 

his uncertainty is thus characterized by scenarios ω = 1 , . . . , � for 

he possible realizations of the inverse demand curve representing 

he behavior of final consumers, and of the electricity generation 

osts. 

The profit function of generator g in scenario ω, i.e., �g ω , is 
escribed by (1) where the first term stands for the generator’s 

ncome from selling its electricity in the futures market, the secon

erm is the income from the spot market, and the last term  

accounts for the generation costs. Generator g ′
 s total cost functio

 gω = C gω 
(
q F g , q 

S 
gω 

)
varies with the scenario and is a function of to- 

al production, which equals the sum of the electricity traded in 

he futures and in the spot market, i.e., q F g + q S gω .

gω = q F g W + q S gω S ω − C gω g = 1 , ..., G ω = 1 , ..., �. (1)

Moreover, the futures market variables q F g and W do not de- 

�
ω

end on the scenario ω, as the futures market is settled before the 

ncertain parameters (inverse demand curve and generation costs) 

re observed. Additionally, the expe∑cted profit function of genera- 
or g can be computed as E[  �g ] = 

 

=1 σgω �gω , where σ g ω is the 
robability assigned by generator g to scenario ω. 

The profit function of retailer r in scenario ω, i.e., �r ω,
 

 is for

ulated as (2) where the first term represents the retailer’s in

ome from selling the electricity to consumers under a fixed tar- 

ff, and the second term is the income from selling the remain- 

ng purchased electricity, i.e., q S rω + q F r − q r , to the final elastic con- 

umers at a price P ω . The third and fourth terms are the costs

rom buying in the futures and spot markets, respectively. Again, 

he futures decision variables ( q F r ) do not depend on the scenario 
. Similarly, the expected profit of retailer r can be computed as 

 [ �r ] = 

∑ �
ω=1 σrω �rω , where σ r ω is the probability assigned by 

etailer r to scenario ω. 

rω = P r q r + 

(
q S rω + q Fr − q r 

)
P ω − q F r W − q S rω S ω

r = 1 , ..., R ω = 1 , ..., �. (2) 

Finally, the elastic consumers’ preferences in scenario ω are 

epresented by the inverse linear demand curve (3) where νω > 0

nd β > 0. The uncertainty associated with the consumer’s 

ehavior is represented by the parameter νω,
 

which is scenario 

ependent. 

 ω = νω − β
R ∑ 

r=1

(
q S rω + q Fr − q r

)
. (3) 

In order to characterize the global equilibrium of the

lectricity supply chain we first need to compute the equilibrium

n the spot market (stage two) assuming that the futures marke

as already been settled. Therefore, the resulting spot marke

quilibrium price and quantities, one per scenario ω, are a

unction of the futures decision variables qF
g and qr

F
 , and the

utures price W.  This allows the generators’ and retailers’ profits

1) and (2), respectively, to be rewritten as a function of qF
g , q

nd W. We then move one step backwards to stage one and

btain the futures market equilibrium (and thus the supply chain

quilibrium) by simultaneously maximizing the profits o

enerators and retailers, under different levels of risk aversion, as

nalyzed in the following subsections. 

.1. Characterizing the equilibrium in the spot market (Stage Two) 

In this section we describe the equilibrium conditions for the

pot market. We start by defining a key model assumption and

hen derive the equilibrium purchases and sales by retailers and

enerators in the spot market, together with their respective

ggregate inverse demand and offer curves. 

ssumption 1. All the retailers (generators) are identical with

espect to their conjectural variations, i.e., all the retailers

generators) assume the same impact of their purchases (sales) in

he spot and futures prices, as for their rival retailers’ purchases

generators’ sales). 

Assumption 1 is equivalent to considering the same level o

ompetition (Cournot, Bertrand, perfect competition, etc.) among

enerators and retailers. However, generators and retailers can be

symmetric in terms of costs, share of fixed tariff consumers and

evels of risk aversion. 

roposition 1. Under Assumption 1,  the equilibrium purchases of 

e- tailer r in scenario ω in the spot market are described by Eq. (4)

 

S 
rω =

S ω − P ω −
(
q F r − q r

)
∂P ω
∂q S rω 

∂P ω
∂q S rω 

− ∂S ω
∂q S rω

(4) 

∂q rω 

roof. Assuming monotonicity of P ω and S ω with respect to qr
S
 

 

, we consider the maximization of the retailers profit (2) as: 

�
S
r
 

ω = q S rω + q Fr − q̄ r ) 
∂P ω
∂q S rω 

+ P ω − S ω − q S rω 
∂S ω 
∂q S rω 

= 0 , which can be easily

earranged to obtain (4).  �

q. (4) shows that, although retailers in almost all scenarios behave

s net buyers, we may find some scenarios where qr
S
 

 

ω < 0.

his would indicate that the retailer sells back in the spot

arket part of the electricity bought through futures, probably

aused by a relatively low demand realization in that scenario. 

roposition 2. Under Assumption 1, the aggregate demand

unction for the retailers in the spot market, and its inverse, are  
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and (11).  �

ω

epresented by Eqs. (5) and (6),  respectively: 

R 
 

r=1

q S rω =
R (S ω − νω ) + 

(
Rβ − ∂P ω 

∂q S rω 

)∑ R
r=1

(
q F r − q̄ r

)
∂P ω
∂q S rω 

− ∂S ω
∂q S rω

− Rβ
(5) 

 ω = νω + 

1

R

(
∂P ω 

∂q S rω 

− ∂S ω

∂q S rω

− Rβ

)
R ∑ 

r=1

q S rω + 

1

R

(
∂P ω 

∂q S rω 

− Rβ

)
R ∑ 

r=1

(
q F r − q̄ r

)
.

(6) 

roof. From Assumption 1 lets consider that ∂P ω 
∂q S rω 

= 

∂P ω 
∂q S 

r ′ ω 
,

∂S ω 
∂q S rω 

= 

∂S ω 
∂q S 

r ′ ω 
∀ r and ∀ r ′ � = r . At each scenario ω, retailer r

elects the optimal quantity to buy in the spot market, 
 

 

r
S
 

 

ω , to maximize profit. From (2) we get ∂
∂
�

qS
rω

rω
= (q S rω + q F r −

¯ r ) 
∂P ω 
∂q S rω 

+ P ω − S ω − q S rω 
∂S ω
∂q S rω 

 = 0,  which, from (3),  is equivalent to 

ω + q S rω ( 
∂P ω
∂q S rω 

− ∂S ω 
∂q S rω

) + (q F r − q̄ r ) 
∂P ω
∂q S rω 

− β
∑ R

r ′ =1 ( q 
S 
r ′ ω + q F 

r ′ − q̄ r ′ ) −
 ω = 0 . Then, by summing the quantities bought in the spot

arket by all retailers, we get ( ∂P ω 
∂q S rω 

− ∂S ω 
∂q S rω

) 
∑ R 

r=1 q 
S 
rω = RS ω −

 νω + Rβ
∑ R 

r=1 ( q 
S 
rω + q F r − q̄ r ) − ∂P ω 

∂q S rω 

∑ R 
r=1 (q F r − q̄ r ) , which, after

ome term rearrangements, renders ( ∂P ω 
∂q S rω 

− ∂S ω
∂q S rω

− Rβ)
∑ R 

r=1 q 
S 
rω = 

S ω − R νω + Rβ
∑ R 

r=1 ( q 
F 
r ′ − q̄ r ′ ) − ∂P ω 

∂q S rω 

∑ R 
r=1 (q F r − q̄ r ) . From this∑R

xpression the aggregate demand r

 

=
 

1 qr
S
 

 

ω , (5),  or its inverse, 
an be easily computed as a function of the spot price Sω, (6).  �

We proceed by deriving the generators’ equilibrium sales in

he spot market. First, we make the following assumption

egarding the structure of the electricity generators’ cost function

 Cg  ω ). 

Assumption 2. The generators’ costs functions are linear with

espect to the total production q S gω + q F g so that 
∂ C gω
∂q S gω 

and 

∂ C gω
∂q F g 

are constant, i.e., let’s assume that Cg ω = (qS
g 
 

ω 
∂ C gω 

∂qF
g 
 

ω 

= c gω . 

The simplification described by Assumption 2 allows an

nalytically tractable market model to be derived, while stil

apturing the basic functioning of real-world electricity markets

ote that in most of these markets, generators are obliged to

ubmit their offers (marginal costs) in the form of stepwise

unctions, i.e., assuming constant marginal costs per energy block

ence, for the purposes of our equilibrium analysis we will not

xplicitly model the whole piecewise-linear costs function, but

ather assume it to be 

+ q F g , where

                                              in the neighborhood of the equilibrium 

uantity qS
gω                                  this cost function can be considered 

trictly linear. 
We use another set of assumptions, summarized by

ssumption 3,  which are standard in this type of model, and

elate to the structure of information and uncertainty resolution 

t the different stages of the game. 

ssumption 3. (a) Uncertainty over demand and cost functions 

ecreases monotonically with time, i.e., as the last day of the spot 

arket approaches, firms are able to estimate the parameters with 

ore precision. (b) In the last trading day, there is no uncertainty, 

.e., all the firms have common and complete knowledge of the cor- 

ect parameters, including demand and cost functions.

roposition 3. Under Assumption 2,  the equilibrium sales of 

enera- tor g in scenario ω in the spot market are described by: 

 

S 
gω = 

c gω − S ω
∂ S ω 
∂q S gω 

. (7) 

roof. Assuming monotonicity of S ω with respect to q S gω a gen- 

rator g selects the optimal quantity q S gω to sell in the spot 

+
 qF

g 
 

 

) cg ω and thus 
∂

∂ C

q

g
S

 

=  
arket so that its profit (1) is maximized at each scenario ω, 

.e.,
∂�gω 

∂q S gω 
= 

∂ S ω 
∂q S gω 

q S gω + S ω − c gω = 0 , after which it directly follows

q. (7).  Similarly, the concavity of (1) means that (7) are the 

rst-order necessary and sufficient conditions for optimality. This 
∂ 2 �gω 

∂ q S gω 
2 = 2( ∂S 

∂q S gω 
) ≤ 0 as ∂S 

∂q S gω 
≤ 0 onclusion follows from 

 Proposition 6 ). �

We now use a similar process to derive the aggregate supply 

unction (and its inverse) using the generators’ equilibrium trades 

n the spot market. 

roposition 4. Under Assumptions 1 and 2,  the aggregate supply

unction (and its inverse) for generators in the spot market are rep-

esented, respectively, by Eqs. (8) and (9).  

G 
 

g=1

q S gω = 

1
∂ S ω
∂q S gω 

(
G ∑ 

g=1

c gω − G S ω 

)
(8) 

 ω = 

1

G 

(
G ∑ 

g=1

c gω − ∂ S ω 
∂q S gω 

G ∑ 

g=1

q S gω 

)
. (9) 

roof. From Assumption 1 lets consider that ∂S ω 
∂q S gω 

= 

∂S ω 
∂q S 

g ′ ω 
∀ g and

 g ′ � = g . Summing the sales of the generators in the spot market∑G

er

unction is derived: S ω = 

1 
G ( 

7) to compute g

 

=
 

1 qS
g ω , we obtain the aggregate supply functio

n the spot market (8),  from∑ which the inv se aggregate supply
 G 
g=1 c gω − ∂ S ω  

∂q S gω 

∑ G 
g=1 q 

S 
gω ) . �

Furthermore, we need to consider the spot market equilibrium 

ondition, which establishes that for each scenario ω, all the en- 

rgy sold by the generators must be equal to that bought by the 

etailers, Eq. (10).  

G 
 

g=1

q S gω =
R ∑ 

r=1

q S rω . (10) 

Then from aggregate demand function (5) and aggregate 
upply function (8),  we compute the price S w 

that clears the 

pot market per scenario ω, i.e., the price that guarantees that 

upply equals demand as described by Eq. (10).  This is derived 

n Proposition 5.  

roposition 5. The equilibrium spot price is described by Eq. (11).  

 ω = 

(
∂P ω
∂q S rω

− ∂S ω
∂q Srω

− Rβ
)∑ G

g=1 c gω + 

∂ S ω 
∂q S gω

[ 
Rνω −

(
Rβ − ∂P ω 

∂q S rω

)∑ R
r=1 

(
q F r − q̄ r

)]
G

(
∂P ω
∂q S rω

− ∂S ω
∂q Srω

− Rβ
)

+ ∂ S ω
∂q Sgω

(11) 

roof. From (10), (5) and (8) we know that 

1 
∂ S ω
∂q S gω

( 

G ∑ 

g=1

c gω − G S ω 

) 

= 

R (S ω − νω ) + 

(
Rβ − ∂P ω 

∂q S rω

)∑ R
r=1

(
q F r − q̄ r

)
∂P ω
∂q S rω

− ∂S ω
∂q Srω

− Rβ
.

y rearranging the terms we obtain 

 ω 

[
G 

(
∂P ω 

∂q S rω 

− ∂S ω

∂q S rω

− Rβ

)
+ ∂ S ω

∂q S gω

]
= 

(
∂P ω 

∂q S rω 

− ∂S ω

∂q S rω

− Rβ

)
G ∑

g=1

c gω 

+ ∂ S ω
∂q S gω

[ 

Rνω −
(

Rβ − ∂P ω

∂q S rω 

)
R ∑ 

r=1

(
q F r − q̄ r

)] 

,



3.1.1. Conjectural variations in the spot market 
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It is evident from the results described in Eq. (11) there are 

everal partial derivatives from generators and retailers ( ∂P
S
 ω
 

 , ∂S
S
 ω

rω

nd 

∂S ω 
∂q S gω 

) that influence the spot price and, therefore, the retail 

rice, and the total electricity generated. In this section we analyze 

heir consistent values with respect to predefined conjectural vari- 

tions. In particular: let V S r = 

∑ R
r ′ � = r 

∂q S
r ′ 

∂q S r 
and V D r = 

∑ R
r ′ � = r 

∂q S
r ′ 

∂q S r 
stand 

or the conjectural variation of r in respect to the total purchases 

f its competitors r ′ in the spot and retail markets, respectively; 

nd let V S g = 

∑ G
g ′ � = g 

∂q S
g′

∂q S g 
represent the conjectural variation of gen- 

rator g with regard to the total production of their competitors

n the spot market. According to Assumption 1, these conjectures

re scenario independent and symmetric for all generators or

etailers, 
.e., V S g = V S 

g′ for g � = g ′ , V S r = V S 
r ′ and V D r = V D 

r′ for r � = r ′ . Hence, from

ow on, we adopt the notation: V S ∀ g ≡ V S g , V S ∀ r ≡ V S r and V D ∀ r ≡ V D r ,

 r , ∀ g . 

roposition 6. The consistent values for the retail and spot price sen- 

itivities with respect to the quantities procured (sold) by the retailers 

generators) are represented by Eqs. (12),  (13),  (14).  

∂P ω 

∂q S rω 

= −β
(
1 + V 

D
∀ r

) ∀ r, ∀ ω. (12) 

∂S ω 

∂q S rω 

= 

β(1 + V 

S 
∀ g )(1 + V 

S 
∀ r )(1 + V 

D
∀ r + R )

GR − (1 + V 

S 
∀ r )(1 + V 

S 
∀ g )

∀ r, ∀ ω (13) 

∂S ω 

∂q S gω 

= 

−Gβ(1 + V 

S 
∀ g )(1 + V 

D
∀ r + R )

GR − (1 + V 

S 
∀ r )(1 + V 

S 
∀ g )

∀ g, ∀ ω (14) 

roof. ∂P ω 
∂q S rω 

follows directly from (3) and is equal to ∂P ω
∂q S rω 

=
β
(
1 + V D∀ r

)
.

Generators face the aggregate inverse demand function of the 

etailers (6) in the spot market. Considering 
∑ G 

g=1 q 
S 
gω = 

∑ R 
r=1 q 

S 
rω 

nd replacing ∂P ω 
∂q S rω 

by (12) renders (15). 

∂S ω 

∂q S gω 

= 

1

R 

(
−β

(
1 + V 

D 
∀ r

)
− ∂S ω

∂q S rω 

− Rβ

)
(1 + V 

S 
∀ g ) (15) 

Similarly, retailers face the aggregate offer curve of the genera-∑ R 
r=1 q 

S 
rω = 

∑ G 
g=1 q 

S 
gω renders ors (9) in the spot market. Assuming 

16). 

∂S ω 

∂q S rω 

= 

−1 

G 

∂S ω 

∂q S gω 

(1 + V 

S 
∀ r ) (16) 

By solving the linear system (15) and (16) we can derive

he explicit expressions for ∂S ω 
∂q S rω 

and 

∂S ω 
∂q S gω 

in (13) and (14),

espectively. �

Proposition 6 shows that the price sensitivities (12), (13) and

14) are the same within all retailers, generators, and scenarios.

ence, for simplicity, from now on we will use the notation: ∂P 

∂q S ∀ r 
≡

∂P ω 
∂q S rω 

, ∂S 

∂q S ∀ r 
≡ ∂S ω 

∂q S rω 
and 

∂S 

∂q S ∀ g 
≡ ∂S ω 

∂q S gω 
, ∀ r , ∀ g , ∀ ω. 

g rω

.1.2. Equilibrium spot market outcomes 

We can use Proposition 5 to replace the explicit formulation of

ω in Propositions 1–4 and express all the equilibrium market out-

omes, i.e., Sω,
 

 Pω,
 

qS
ω and qS

 

 

 

as a linear function of the futures

ecision variables 
∑ R 

r=1 q 
F 
r = 

∑ G 
g=1 q 

F
g 
 

= qF
 

 , as represented in Eqs
17) –(21).

 ω = A ω + Bq F ∀ ω (17) 
g f 

s

R ∑ 

r=1

q S rω =
G ∑ 

g=1

q S gω = F ω + Gq F ∀ ω (18) 

 ω = J ω + Kq F ∀ ω (19) 

 

S 
rω = D rω + Eq Fr + Hq F ∀ r, ∀ ω (20) 

 

S 
gω = Q gω + R q F ∀ g, ∀ ω (21) 

The derivation of Eqs. (17) –(21) and the computation of 

arameters A ω , B, F ω , G, J ω , K, Dr ω , E, H, Qg ω and R 

an be found in Appendix A.  

.2. Modeling the futures market considering CV@R (Stage One) 

We use the equilibrium conditions in the spot market to

ompute the sales by all the players in this market, as defined by

17) –(21).  Then, based on these equations, by backward induction

nd given a futures price W,  we calculate the equilibrium sales

nd purchases in the futures market ( qF
g  , qr

F
 

 and W ). With this

urpose we move backwards in time to stage one to solve the

upply chain equilibrium. This equilibrium is characterized by

he joint maximization of all the agents’ profits under differen

evels of risk aversion. Therefore, each generator and retaile

ets conjectures about the behavior of its rivals and optimizes its

rofit by selecting the optimal qF
g and qr

F, respectively, while the

quilibrium price W comes from the resulting system o

ptimality conditions, i.e., the equilibrium price W guarantees tha

ll the players’ optimality conditions are satisfied, and tha

upply equals demand. This is an important contribution o

his work as the futures price is obtained from the optimality

onditions without making any assumption about the

elationship between futures and spot prices. 
The risk aversion of generators and retailers is considered by

sing the CV@R. This concept has been applied both in the

ontext of one decision maker facing a static problem (e.g.

rtzner et al., 1999; Rockafellar & Uryasev, 20 0 0; Rockafella

 Uryasev, 2002; Andersson, Mausser, Rosen, & Uryasev, 2001

nd Chen et al., 2010 ), and a dynamic problem (e.g., Cheridito

elbaen, & Kupper, 2006; Boda & Filar, 2006; Klöppel &

chweizer, 2007; Shapiro, 2009; Shapiro, 2011; Philpott, de

atos, & Finardi, 2013, Ansaripoor, Oliveira, & Liret, 2016 and

nsaripoor & Oliveira, 2018 ). 

Shapiro (2011) provides a version of the dynamic CV@R that is

ime consistent (at each state of the system the optimal decisions

annot depend on the outcome of futures states, which we

lready know to be unreachable), and Philpott et al. (2013

rovide a pro- cedure for computing solutions to multistage

tochastic program- ming problems that minimize dynamic

oherent risk measures. It is important to be clear that in this

rticle we address the static CV@R model only, as the model has

wo time steps (futures, with uncertainty and spot, withou

ncertainty). 
For a stochastic programming setting where scenarios are used 

o represent uncertainty, the CV@R associated with a profi

istribution can be computed by solving a linear optimization

roblem ( Rockafellar & Uryasev, 2000 ). In particular, the profi

aximization problem solved by the risk-averse generator g i

ormulated in (9), where σgω is the probability assigned by

enerator g to scenario ω and 1− α represents the level o
g 

ignificance associated with the CV@R. 
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Maximize 
q F g ,ξg ,ηgω 

φg 

(
�∑

ω=1

σgω �gω (q F g , q 
F 
−g , W ) 

)

+ ( 1 − φg )

(
ξg − 1 

1 − αg 

�∑
ω=1

σgω ηgω 

)
(22a) 

ubject to : 

ηgω ≥ −�gω (q F g , q 
F 
−g , W ) + ξg ∀ ω [ λgω ] (22b) 

ηgω ≥ 0 ∀ ω [ δgω ] (22c)

he objective function represents a trade-off between the

xpected value (first term) and the CV@R (second term) for a

iven confidence level αg.
 

This trade-off is regulated by the

arameter φg,
 

 where 0 ≤ φg ≤ 1. Under this setting, φg = 1

epresents a risk-neutral generator g (maximization of the

xpected value), while φg = 0 corresponds to the maximum leve

f risk aversion (maximization of the CV@R). Let the value at risk

V@R) be the 1 − αg profit left-tail quantile. At the optima

olution, ξ g equals the V@R and ηg ω equals (for each scenario ω

he difference between the V@R and the profit �g ω if this

ifference is positive, or zero otherwise. This condition is imposed

y constraints (22b) and (22c).  Finally λgω and δgω are the dua

ariables associated with constraints (22b) and (22c)

espectively. The optimization problem solved by retailer r is

efined by (23), where σ r ω is the probability assigned by

etailer r to scenario ω. 

Maximize 
q F r ,ξr ,ηrω 

φr 

(
�∑

ω=1

σrω �rω (q F r , q 
F 
−r , W ) 

)

+ ( 1 − φr )

(
ξr − 1 

1 − αr 

�∑
ω=1

σrω ηrω 

)
(23a) 

ubject to : 

ηrω ≥ −�rω (q F r , q 
F 
−r , W ) + ξr ∀ ω [ λrω ] (23b) 

ηrω ≥ 0 ∀ ω [ δrω ] (23c) 

gain, the parameter φr allows a retailer r to balance the tradeof

etween the expected profits and the CV@R for a significance leve
 − αr.  Similarly, auxiliary variables ξ r and ηr ω are used in (23b

nd (23c) to calculate the positive difference between V@R and
rofit �r ω for each scenario ω. The dual variables associated with

onstraints (23b) and (23c) are λrω and δrω , respectively. For a

iven futures price W,  the simultaneous solution of problems
22) and (23) provides the Nash equilibrium quantities for trading
n the futures market by generators and retailers.

Moreover, for the specific market configurations studied in this

aper ( Section 4 ), (22) and (23) are concave optimization

roblems ( Appendix B)  and therefore their solutions are unique. 

n order to search for specific solutions to the supply chain
quilibrium, we replace problems (22) and (23) by thei
orresponding KKT (Karush–Kuhn–Tucker) system of optimality
onditions, which due to the concavity of the profits functions
re first-order necessary and sufficient conditions for optimality
 Appendix B ). The KKT system associated with problem (22) is: 

− φg

�∑
ω=1

σgω 

∂�gω 

∂q F g 
−

�∑
ω=1

λgω 

∂�gω 

∂q F g 
= 0 ∀ g (24a) 

 

1 − φg ) 
1 

1 − αg 
σgω − λgω − δgω = 0 ∀ g, ∀ ω (24b) 
m

�∑
ω=1

λgω = 1 − φg ∀ g (24c) 

 ≤ �gω − ξg + ηgω ⊥ λgω ≥ 0 ∀ g, ∀ ω (24d) 

 ≤ ηgω ⊥ δgω ≥ 0 ∀ g, ∀ ω (24e) 

Similarly, the KKT system associated with problem (23) is: 

− φr

�∑ 

ω=1

σrω 

∂�rω 

∂q F r 
−

�∑ 

ω=1

λrω 

∂�rω 

∂q F r 
= 0 ∀ r (25a) 

 

1 − φr ) 
1 

1 − αr 
σrω − λrω − δrω = 0 ∀ r, ∀ ω (25b) 

�∑
ω=1

λrω = 1 − φr ∀ r (25c) 

 ≤ �rω − ξr + ηrω ⊥ λrω ≥ 0 ∀ r, ∀ ω (25d) 

 ≤ ηrω ⊥ δrω ≥ 0 ∀ r, ∀ ω (25e) 

here the complementarity conditions are denoted by 0 ≤ x ⊥ y 

 0, which is equivalent to: x ≥ 0, y ≥ 0 and xy = 0.  

or a given futures price W and under the profit concavity

ssumption, any particular solution qF
g and qr

F, ∀ g and ∀r

atisfying the KKT conditions (24) and (25),  for both generators

nd retailers, is also a solution to the Nash equilibrium problem

ee Theorem 4.6 in Facchinei and Kanzow (2010).  

Among all the possible prices W,  we are interested in 
dentifying the value that clears the futures market, i.e., the price

hat guarantees that supply equals demand, as described by Eq. 

26),  which was proposed in Oliveira et al. (2013) for the 

eterministic case. 
G 

 

g=1

q F g =
R ∑ 

r=1

q F r . (26) 

herefore, the supply chain equilibrium is obtained by considering

he futures price W as a variable and by solving jointly (24) –(26). 

here are several methodologies to solve complementarity

ystems of the type (24) –(26),  e.g., Gabriel, Conejo, Fuller, Hobbs

nd Ruiz (2013) and Pozo, Sauma, and Contreras (2017).  In this

rticle, we have reformulated this system as an optimization

roblem that minimizes the sum of all the complementarity

onditions, subject to the rest of the system’s constraints. This

ormulation is presented in Appendix C where its equivalence is

lso shown with systems (24) –(26). 

.2.1. Risk-adjusted expectations 

n this section we introduce the concept of risk-adjusted

xpectations and demonstrate its usefulness for understanding the

rice formation mechanism in futures and spot markets. The risk

djusted probabilities are endogenous to the model and reflec

he weight a risk-averse decision maker gives to a scenario. If the

ual variables associated with (22b) or (23b) are positive then a

iven scenario receives a higher weight than if the dua

ariables are zero. 

The major contribution of this analysis is to show the

quivalence of computing the optimal policy based on the

eighted profit between expected value and CV@R with
aximizing the 
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isk-adjusted expected value, which is calculated using the risk- 

djusted probabilities. Therefore, in practice, the way the decision 

aker incorporates risk in the model is reflected in the different 

eights put on the different scenarios, i.e., the risk-adjusted prob- 

bilities take into consideration the influence of the parameteriza- 

ion of the objective function (i.e., φ and 1 − α, for both generators 

nd retailers) on the actual probabilities associated with each sce- 

ario. 

emma 1. (A) Generator g’s risk-adjusted probability in scenario ω 

s equal to φg σgω + λgω .
 

 (B) Retailer r’s risk-adjusted probability in

cenario ω is equal to φr σrω + λrω .
 

 

roof. By rewriting (24a)conditions  and (25a) as 
 �
ω=1

∂�gω 

∂q F g 

(
φg σgω + λgω 

)
= 0 and 

∑ �
ω=1

∂�rω 

∂q F r 
( φr σrω + λrω ) = 0 , 

espectively. Then 

 �
ω=1

(
φg σgω + λgω 

)
= 1 and 

from (2∑4c)
 

 and (25c) it follows tha
�
ω=1 ( φr σrω + λrω ) = 1 . �

These new probabilities are risk-adjusted as they change the 

nitial weights put on the different scenarios in order to account 

or risk. The larger the probability associated with a risky scenario 

in which the actual profit exceeds the CV@R), the larger the ad- 

ustment. This concept of risk-adjusted probability was introduced

n Ehrenmann and Smeers (2011).  Our concept generalizes theirs

y including the trade-off between CV@R and expected value. 

Let Eg  and Er  stand for the risk-adjusted expectation of genera

or g and retailer r.  Eqs. (24a) and (25a) can be interpreted as op

imizing the risk-adjusted expected marginal profits for both gen- 

rators and retailers, i.e., E g 

[ 
∂�gω 

∂q F g 

] 
= 0 and E r 

[ 
∂�rω 

∂q F r 

] 
= 0 , where 

he probability associated with each scenario is 
(
φg σgω + λgω 

)
and 

 

φr σrω + λrω ) , respectively. 

.2.2. Conjectural variations in the futures market 

In (24) and (25) the partial derivative of the spot profit to 

he trading in the futures market is computed, respectively, from 

2) and (1) as:

∂�rω 

∂q F r 
= −W − q F r 

∂W 

∂q F r 
+ ∂ P ω

∂q Fr

(
q S rω + q Fr − q̄ r

)
+ P ω

(
∂q S rω 

∂q F r 
+ 1

)
− ∂q S rω 

∂q Fr
S ω − q S rω 

∂ S ω 
∂q F r 

∀ r, ∀ ω (27a) 

∂�gω 

∂q F g 
= W + q F g 

∂W 

∂q F g 
+ 

∂q S gω 

∂q F g 
S ω + q S gω 

∂ S ω 
∂q F g 

− c gω

(
1 + 

∂q S gω 

∂q F g 

)
∀ g, ∀ ω (27b) 

By analyzing the different terms in (27) we can observe

here are several partial derivatives from generators and retail- 

rs ∂W 

∂q F r 
, ∂W 

∂q F g 
, ∂P ω

∂q F r 
, ∂S ω

∂q F r 
, ∂S ω

∂q F g 
, 

∂q S rω 

∂q F r 
and

∂q S gω 

∂q F g 
that influence the fu- 

ures market equilibrium. We seek to derive their consistent values 

ith respect to predefined conjectural variations. In particular let 

 

F 
r = 

∑ R
r ′ � = r 

∂q F 
r ′ 

∂q F r 
stand for the conjectural variation of retailer r in 

espect to the total purchases of its competitors in the futures mar- 

et, r ′ ; and let Y F g = 

∑ G
g ′ � = g 

∂q F 
g′

∂q F g 
represent the conjectural variation 

f generator g in respect to the total production of their competi- 

ors g ′ in the futures market. Similarly to the spot market conjec- 

ures, we assume these to be scenario independent and symmet- 

= Y F 
gic within all generators or retailers ( Assumption 1 ), i.e., Yg 

F
 

 

 

or g � = g ′ and Y F r = Y F 
r′ for r � = r ′ . Hence, we will use the notation:

 

F ∀ g ≡ Y F g and Y F ∀ r ≡ Y F r ∀ r , ∀ g . 
The partial derivatives of the equilibrium spot market outcomes

 Pω,
 

Sω,
 

 qr
S
ω and qS

g ω ) with respect to the retailers’ and genera-

ors’ futures trading ( qr
F
 

 and qF
g ) are computed using Eqs. (17) –

21).  These partial derivatives are summarized in Eqs. (28) –(32).

∂P ω 

∂q F r 
= K(1 + Y F ∀ r ) ∀ r, ∀ ω. (28) 

∂S ω 

∂q F r 
= B(1 + Y F ∀ r ) ∀ r, ∀ ω (29) 

∂S ω 

∂q F g 
= B(1 + Y F ∀ g ) ∀ g, ∀ ω (30) 

∂q S rω 

∂q F r 
= E + H(1 + Y F ∀ r ) ∀ r, ∀ ω (31) 

∂q S gω 

∂q F g 
= R (1 + Y F ∀ g ) ∀ g, ∀ ω (32) 

∂q roposition 7 describes the consistent partial derivatives ∂W
F r

and 

∂W 

∂q F g 
, derived from the equilibrium conditions in the futures market. 

oreover, ∂W and ∂W 

F are scenario independent and hence valid 

∂qr
F  

            ∂qg 

or any set of risk-adjusted probabilities. 

roposition 7. The consistent partial derivatives of W with respect

o the quantities procured and sold by retailers and generators in

he futures market are represented by Eqs.(33) and (34),

espectively. 
∂W 

∂q F r 
= 

−
(
1 + Y F ∀ r

)[
RG X + 

(
1 + Y F ∀ g 

)
( T + R U ) 

]
RG −

(
1 + Y F ∀ r

)(
1 + Y F ∀ g

) ∀ r (33) 

∂W 

∂q F g 
= 

G 

(
1 + Y F ∀ g

)[
T + R U + X 

(
1 + Y F ∀ r

)]
RG −

(
1 + Y F ∀ r

)(
1 + Y F ∀ g

) ∀ g (34) 

here 

 = 

(
1 + Y F ∀ r 

)
[ K ( E + 1 ) − BE ] (35) 

 = 2 

(
1 + Y F ∀ r

)
H ( K − B ) + K ( E + 1 ) − BE (36) 

 = 2 RB 

(
1 + Y F ∀ g

)
(37) 

The proof for this proposition can be found in Appendix D. 

Similar to Proposition 6 for the spot market

roposition 7 shows that the price sensitivities, (33) and (34)

re the same for all retailers, and for all generators, respectively

nd are both scenario independent. 

Finally, Proposition 8 characterizes the futures market price W

he idea of computing the equilibrium wholesale price withou

equiring the non-arbitrage condition was originally proposed in

liveira et al. (2013),  but only used in a numerical example

n Proposition 8 we derive the close-form solution for the

utures 

rice, taking into account risk aversion. This is a major contribu-

ion of this article. 

roposition 8. The equilibrium futures price is defined as:

 = 

−
(

∂W
∂q Fg

+ G X
)∑ R

r=1 

∑ �
ω=1 σ

∗
rω S rω + 

(
− ∂W

∂q Fr
+ T + R U

)∑ G
g=1

∑ �
ω=1 σ

∗
gω V gω 

−R

(
∂W
∂q Fg

+ G X
)

+ G

(
− ∂W

∂q Fr
+ T + R U

)
(38)
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Fig. 2. Futures markets setting for Dec. 29st, 2017.

Fig. 3. Prices settled on Dec. 29, 2016, for futures base and peak electricity products

for the year 2017 ( OMIP, 2020 ).
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roof. In equilibrium (26),  price W is such that the retailers’ in

erse aggregate demand curve (D.5) equals the generators’ aggre

ate supply curve (D.6).  �

Both the inverse aggregate demand for retailers (D.5) and the

aggregate supply curve for generators (D.6) depend on the risk

djusted probabilities σ ∗
rω = φr σrω + λrω and σ ∗

gω = φg σgω + λgω , 
hich need to be obtained from the joint solution of conditions

24)–(26),  rendering also the optimal value for the futures price

. However, Proposition 8 is still meaningful as it shows that fo

 given set of risk-adjusted probabilities (associated with a

articular solution to the Nash equilibrium), the futures price W is

nique. Moreover, for the particular case where the marke

articipants are risk neutral, i.e., σr
∗
ω = σrω and σg

∗
ω = σgω , the

quilibrium futures price W is unique and can be directly computed

y the closed-form solution provided by Proposition 8.  Note tha

his result is general and allows generators and retailers to diffe

n their perceived scenario probabilities σrω and σgω, respectively.

. Numerical analysis

In this section we analyze a numerical example from the

panish electricity market ( OMIE, 2020 ), liberalized in the late

990s based on a centralized auction where all the electricity was

raded ( Crampes & Fabra, 20 05 ). In the early 20 0 0s it evolved

nto a bilateral trading mechanism in which a large proportion o

he electricity is traded using bilateral contracts between the

enerators and the retailers (who serve the final consumers), and

n which futures contracts are also traded in an exchange ( OMIP

020 ). This market is currently composed of three large

enerators (Endesa, Gas Natural-Fenosa, and Iberdrola), four large

etailers (Endesa, Gas Natural-Fenosa, Iberdrola and

idrocantabrico), and a competitive fringe of small generators

here are also some large consumers participating in the

holesale markets. As their market share is still negligible we

o not consider them in our analysis. We have followed the

iterature in assuming that in equilibrium all retailers charge the

ame price to the final consumers. 

ompared to other deregulated markets, such as the UK or 

AISO, the recent deregulations of the Spanish electricity marke

“Ley del sector eléctrico 1997 and 2013”) do not specifically

mpose vertical separation between generation and retailing

ompanies, i.e., it is not illegal for a holding company to take an

ctive part in both generation and retailing activities through two

ffiliated companies. However, the Spanish Energy Regulato

“Comisión Nacional de los Mercados y la Competencia”

onstantly monitors the behavior of market participants to preven

nd penalize any form of unfair competition, including the

xercise of vertical market power CNMC, 2014.  Hence, in this

ase study we as- sume independent generators and retailers. 

We seek to understand the shape of the forward curves ob- 

erved at specific times of the year (e.g., Table 1)  and the main 

actors affecting it. In particular, mimicking the functioning o

eal-world electricity markets (e.g., OMIP, 2020 ), the generators

nd retailers participate in several futures markets that take place

imultaneously on a given day, for example, Dec. 29, 2016. To

llustrate this process, Fig. 3 presents the futures market prices

or different products settled on Dec. 29, 2016, together with the

esulting monthly spot market prices for 2017. We can observe

hat the resulting spot market prices during the last quarter of the

ear 2017 exceeded the quarterly and yearly futures prices settled

n Dec. 29, 2016. 

We consider only monthly contracts consisting of a single

lectricity load segment (no distinction between peak or base

rices), with a time horizon that extends from 1 to 12 months

nto the future. 
p

oreover, we model the relationship between the final spot price
n the day-ahead market, after all uncertainty has been resolved
nd the futures market prices, by using backward induction
ncertainty evolves as described by Assumption 3:  decreases as
e get closer to the spot market realization. Given the very large

mount of data collected daily, and the very large investment in
he data analytics performed by generation and retail firms, this 

ssumption is very realistic, and becomes more so with every

assing year. 

Fig. 2 illustrates the different futures markets that are traded

ithin the current framework. On the last working day o

ecember the generators and retailers need to plan their futures

nd spot trading throughout the year to maximize their risk

djusted profits, given the seasonal effects and the uncertainty

ssociated with each scenario (which depends on the time

orizon). 

or each of these monthly contracts, we solve our equilibrium

odel to recreate the negotiation process between generators and 

etailers. This results in a futures price W m 

and in a set o

quilibrium energy trades in the futures markets qF
 m
 

 

to be
elivered in month m = ( Jan., Feb.,..., Dec. ).  In this process, each

arket participant decides the optimal level of futures trading

y anticipating the scenarios for the demand and supply

arameters for month m,  and therefore the respective expected
rices and production in the spot market. 



Fig. 4. Inverse demand function and offer curves at a given time period for the

Spanish spot electricity market.
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n the following sections we first describe how the model pa

ameters are generated for the different simulations, and then test

he proposed market settings under different assum ptions regard

ng the level of risk aversion and competitiveness of the marke

articipants. Hence, the main purpose of these simulations is not

o reproduce observed outcomes, but rather to show how the rela

ionship between forward and spot markets is highly conditioned

y the competitive and risk aversion levels of the market partici

ants. 

.1. Data 

The Spanish electricity market has an oligopolistic structure

hat includes three generators and four retailers. We estimate

heir cost and demand parameters using market data. As an

llustration, Fig. 4 presents the aggregate inverse demand and

ffer curves for five different hours of a specific day (Nov. 28

017) in the Spanish spot market. 

By analyzing a larger dataset, demand parameters νω and β

re adjusted so that the retailers aggregated demand in the spo

arket (6) approximates the actual demand observed in the

lectricity market (decreasing gray lines in Fig. 4 ). Similarly

enerators’ costs parameters cg ω are set so that the resulting

ggregated supply curves (9) approximate those observed in the

arket (increasing gray lines in Fig. 4 ). For this reason, at the

resent time, when the futures trading for the different planning

orizons takes place (Dec. 29, 2016, in our case), neither the

emand, market prices, nor the generating costs in any of the

onths in 2017 are known and need to be estimated. From these

stimates, we generate scenarios for the parameters. This

cenarios are characterized by an increasing variance for differen

ime spans. Moreover, we assume the companies are perfectly

ational and are able to estimate the average value of the

arameters actually observed, i.e., based on the electricity marke

utcomes in each month of 2017. Additionally, we assume that al

he participants have common knowledge of the uncertainty

actors (i.e., they all use the same scenarios). 
As previously indicated, when defining the cost and demand 

cenarios, we explicitly account for the increasing level o

ncertainty associated with the contracts whose delivery

onths are further in the future, i.e., not only do we take into

ccount the seasonal effects on electricity demand and resource

vailability, but we also generate a wider range of scenarios fo

ll the uncertain parameters as a function of time. 

Moreover, in order to better reflect demand seasonality, we
orrelate the expected value of its intercept, i.e, ν̄ , with the

verage monthly demand in the spot electricity market during
017, OMIE (2020).  Additionally, we also take into consideration
ow the production from hydro power affects the generators’ cost 
unctions. 

l

able 2 presents the monthly expected value of the demand

ntersection (ν̄ ) and the generating cost for each generator (c̄g) for

 = 1, 2, 3. Higher generation costs for the last months of the year

an be observed as hydro production decreases during 2017

ESIOS, 2020 ). 

Demand uncertainty is incorporated through parameter ν and 

ost uncertainty through parameters cg  for g = 1,  2,  3.  The scenar-
os for each of these parameters are randomly generated based on 

ormal distributions, centered on their expected values with dif- 

erent coefficients of variation (CV). For example, scenarios ω for 

he demand parameter νω are generated by Monte Carlo simula- 

ion assuming that ν ∼ N ( ν̄ , CV × ν̄ ) for ω = 1,  . . . , �. In addition, 

s the uncertainty increases with the time horizon, this leads to 
 wider dispersion of the associated scenarios. This is modeled by 

ssuming that the monthly CV increases steadily (from 0 in Jan- 

ary to 0.275 in December 2017) the further we are from Dec. 29,

016, as indicated in Table 2.  Note that more realistic models, ac

ounting for stochastic processes and temporal auto-correlations, 

an be considered to generate costs and demand scenarios with an 

ncreasing level of uncertainty. However, this will not have a direct 

mpact on the market equilibrium results reported in the following 

ections, as we consider a collection of futures markets that are 

leared independently. 

Finally, the demand slope is set to β = 0.  004 € /MWh 

2.  Fo

implicity, we also assume that the four retailers have consumers 

nder a common fixed price of P̄ 1 = P̄ 2 = P̄ 3 = P̄ 4 = 100 € /MWh
here q̄ 1 = 10 0 0,  q̄ 2 = 120 0,  q̄ 3 = 130 0,  q̄ 4 = 150 0 MWh, i.e., th

otal load required by fixed consumers is 50 0 0 MWh. For the CV@R 

efinition, we use an αg = αr = 0.  9 and � = 500 equiprobable sce-
arios, for both generators and retailers. 

.2. Analysis of the effect of generators’ and retailers’ risk aversion 

nd level of competitiveness 

In this section we study the equilibrium properties and how 

hey are influenced by the degree of risk aversion and level of 

ompetitiveness of generators and retailers. To this end, four mar- 

et configurations are analyzed, combining risk-neutral and risk- 

verse attitudes and Cournot and price-taking behaviors. These 

onfigurations are particularly relevant as they reproduce common 

ligopolistic behaviors in real-world electricity markets. Neverthe- 

ess, the proposed model is able to reproduce any other competi- 

ive setting, from perfect competition to collusion, for both gener- 

tors and retailers. 

.2.1. Cournot generators and retailers in both futures and spot 

arkets ( V ∀Sg 
 

 

= V ∀Sr 
 

 

= V ∀Dr  

= 0 and Y ∀F g  = Y ∀Sr
= 0 ). Risk-averse 

enerators and retailers ( φg = φr = 0)  

Fig. 5 a presents the evolution of the monthly futures, and the

xpected spot and retail prices during 2017, based on Dec. 31, 2016, 

nder this market configuration. To better compare the relation- 

hip between these prices, Fig. 5 a also includes the 95%

onfidence intervals for the expected spot ( E[ S ω ])  and retail ( E[ P

 

])  prices. The prices paid by consumers are always higher than

he spot and futures prices. During January and February the

arket is in contango, as the futures price is higher than the

xpected spot price. However, from April to December the

xpected spot price increases while the futures price remains

tationary, so there is normal back-wardation (futures price lowe

han the expected spot price). This can be explained by noting

hat, as the cost and demand uncertainty increase with time

oth generators and retailers decide to displace the expected

rading from the futures to the spot market (the generators

otivated by potential high cost and the retailers by potentia
ow demand in the future). This is depicted in Fig. 5 b. 



Table 2

Expected value for demand and cost parameters ( € /MWh) and coefficient of variation (CV).

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

ν̄ 217.61 207.83 198.49 183.44 190.07 211.33 211.58 205.80 197.21 190.56 203.99 209.91

c̄ 1 15.20 15.14 11.18 16.25 15.93 17.41 20.15 20.87 19.72 22.25 21.46 20.43

c̄ 2 16.89 16.83 12.42 18.06 17.70 19.34 22.39 23.19 21.91 24.72 23.85 22.70

c̄ 3 18.58 18.51 13.66 19.86 19.47 21.28 24.63 25.51 24.10 27.20 26.23 24.97

CV 0 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275

Fig. 5. Cournot firms - risk aversion.

Table 3

Monthly profits and CV@R (0 0 0 €) for Cournot firms.

(a) Risk-averse generators and retailers.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

E. Profit Generators 1339 1231 1134 1011 1064 1317 1408 1355 1334 1276 1540 1652

E. Profit Retailers 1302 1263 1293 1074 1166 1412 1380 1282 1214 1100 1232 1371

CV@R Generators 1339 1144 974 803 753 855 778 695 625 507 537 457

CV@R Retailers 1302 1116 1031 787 752 807 683 613 557 457 464 456

E. Consumers Utility 2781 2483 2331 1832 1878 2257 2126 1933 1758 1525 1730 1852

(b) Risk-neutral generators and retailers.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

E. Profit Generators 1339 1235 1143 993 1079 1293 1323 1275 1194 1108 1295 1415

E. Profit Retailers 1302 1207 1193 972 1047 1205 1174 1117 1065 946 1098 1197

E. Consumers Utility 2781 2547 2442 1974 2154 2568 2528 2391 2236 1968 2332 2546
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The monthly expected profits and CV@R for generators and re- 

ailers are summarized in Table 3 a. Although the expected profit 

uctuates following the monthly trend of the market prices, the 

V@R for both generators and retailers decreases as we move for-

ard in time. This indicates that generators and retailers face 

rofit distributions with heavier left tails for the last months of 

he year (with a higher probability of low profits). 

.2.2. Cournot generators and retailers in both futures and spot 

arkets ( V ∀Sg 
 

 

= V ∀Sr 
 

 

= V ∀Dr 
 

 

= 0 and Y ∀F g  = Y ∀Sr
= 0 ). Risk-

eutral generators and retailers ( φg = φr = 1)  

We keep the Cournot setting from the previous section but now 

ssume risk-neutral generators and retailers. The equilibrium 

arket prices are presented in Fig. 6 a. 

The market is always in contango as the futures prices are

igher than the expected spot price. Compared to the risk-averse

ase, futures trading does not decrease with the time horizon

 Fig. 6 b), as generators and retailers do not protect themselves 
r

rom the worst cost or demand scenarios (they focus on

aximizing their expected profit). Futures trading maintains high

nergy volumes, and hence, expected spot and retail prices are

ower than in the risk-averse case ( Fig. 5 a). 

Due to lower market prices and a lower margin between retail 

nd futures prices, the expected profits for generators and retailers

re, in general, lower than for the risk-averse case (Table 3 b)

his is a counter-intuitive result. Our prior belief was for the risk-

eutral players to be the most profitable. This is an instance o

he “prisoner’s dilemma” from game theory. A priori, we would

hink, that for risk-neutral players it would be more profitable to

rade more energy in the spot market. However, the individua

ncentives to do so are not that high (compared to a risk-averse

ase where players seek protection against demand and cos

ncertainty) and a unilateral reduction of the futures trading may

ntail a significant decrease in the players’ market shares

evertheless, this is a favorable situation for the final consumers

ncreasing their expected utility through lower retail prices (las
ow in Table 3 b). 



Fig. 6. Cournot firms - risk neutrality.

Fig. 7. Cournot generators, price-taking retailers - Risk aversion.
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.2.3. Cournot generators and price-taking retailers in both futures 

nd spot markets ( V S ∀ g = V D ∀ r = Y F ∀ g = 0 and V S ∀ r= −1 
= Y S ∀ r = −1 ).

isk-averse generators and retailers ( φg = φr = 0 ) 

This configuration is similar to the market model in 

ection 4.2.1,  but assumes that retailers behave as price

akers (and not Cournot) in the futures and spot markets. This is

n electricity market where the energy generation is controlled by

 few dominant firms, while the retailing activity is open to a

arger number of companies of relatively small size (with no

ndividual market power). 

When uncertainty is very small, for one month time horizon

with delivery time in January), the futures price equals the spo

rice ( Fig. 7 a). However, as we move forward in time and cos

nd demand uncertainty increases, the market enters norma

ackwardation (futures price lower than expected spot price)

imilar to 

ection 4.2.1,  this effect is caused by a decrease in the futures

rading level ( Fig. 7 b) as risk-averse generators and retailers prefe

o postpone their sales and purchases until the elimination o
ost and demand uncertainties, respectively. Compared to the 
ournot retailers case ( Section 4.2.1 ), market prices are simila

ith the exception that for the first months of the year, the

xpected spot prices are higher than the futures prices. Similarly

xpected spot trading is also higher during the first months of the

ear than for the Cournot retailers case. 
Again, compared to the Cournot case in Section 4.2.1,  the price

aker behavior of retailers entails a decrease for both thei

xpected profit and CV@R ( Table 4 a). Generators benefit from

his and increase both their profit and CV@R. It is therefore

vident from these simulations that firms’ risk aversion is the

ajor factor explaining contango markets, and is exacerbated by

he retailers’ market power. 

.2.4. Cournot generators and price-taking retailers in both futures 

nd spot markets ( V ∀Sg 
 

 

= V ∀Dr 
 

 

= Y ∀F g  = 0 and V ∀Sr = −1 
= Y ∀Sr

 −1 ). risk-neutral generators and retailers ( φg = φr = 1)  

In this case we assume that both Cournot generators and price- 

aking retailers are risk-neutral in the futures market. Market

rices are presented in Fig. 8 a. Futures prices equal expected spot 



Table 4

Monthly profits and CV@R (0 0 0 €) for Cournot generators and price-taking retailers.

(a) Risk-averse generators and retailers.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

E. Profit Generators 1467 1357 1272 1128 1215 1525 1573 1622 1510 1510 1784 1942

E. Profit Retailers 1274 1221 1232 1019 1094 1287 1222 1198 1101 970 1121 1227

CV@R Generators 1467 1246 1063 865 826 908 830 754 635 551 547 436

CV@R Retailers 1274 1096 1006 773 743 768 656 594 532 437 447 430

E. Consumers Utility 2736 2469 2325 1848 1931 2285 2143 2048 1851 1626 1896 2033

(b) Risk-neutral generators and retailers.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

E. Profit Generators 1467 1347 1258 1088 1173 1402 1431 1379 1297 1231 1434 1542

E. Profit Retailers 1274 1178 1167 956 1022 1172 1141 1079 1045 937 1087 1173

E. Consumers Utility 2736 2497 2407 1948 2111 2508 2474 2327 2211 1981 2339 2536

Fig. 8. Cournot generators, Price-Taking Retailers - Risk neutrality.
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rices for all months of the year. Generators exercise thei

arket power over the retailers and establish the best selling price

or their energy, which, due to their risk neutrality, is the same

or both futures and spot markets. Similar to the Cournot case

resented in Section 4.2.2,  futures trading is always higher than

pot trading ( Fig. 8 b), although the gap is smaller. 

The expected profit and CV@R are presented in Table 4.  The

etail and generation profits are smaller in the risk-neutral case

han under risk aversion. This is again a counter-intuitive resul

here risk-neutral players achieve lower expected profits than

isk-averse firms. 

oreover, a third surprising result is that the expected consume

tility is higher in the scenarios in which retailers behave a la

ournot in the wholesale markets, and the largest when the firms

re risk-neutral. This shows that double marginalization is

ctually worse when the retailers do not have market power in the

utures and spot markets, as they need to pass the highe

holesale prices onto the consumers, which they are able to do

s they behave as Cournot players in the retail market. 

he numerical results reported above have been complemented
ith an extensive set of simulations, including differen

ombinations of cost and demand parameters, and intermediate
evels of competition and risk aversion. We conclude that the

ain market trends observed within Section 4.2 are general and
obust against variations of the market data. Specifically, norma
ackwardation emerges as the dominant state of the futures
arket principally due to risk aversion (and mostly facilitated by

he retailers’ market power), whereas the contango is harder to
bserve and is only dominant when all firms are risk-neutral and 
d

he retailers’ have market power in the wholesale markets

ormal backwardation was indeed observed for the last months

f 2017 in the Spanish Market ( OMIP, 2020 ), as shown by Fig. 3

hich according to our model, may be explained by the presence

f risk aversion. 

. Conclusions

In this article we have analyzed the relationship between

utures and spot markets in the electricity supply chain, taking

nto consideration the interaction between risk aversion (using

V@R) and the market power held by multiple electricity

enerators and retailers. We have developed a model of the

lectricity supply chain that considers uncertainty in demand and

eneration costs, proposing a dynamic game to analyze the

nteraction between generators (who sell in futures and spo

arkets) and retailers (who buy from the generators in the

holesale markets and sell to the final consumers). 

 As a major methodological contribution to the study of electricity

nd futures markets, we derive the Nash equilibrium of the

elationship between futures and spot markets in the context o

he electricity supply chain, using CV@R as the risk measure and

onsidering conjectural variations. We show that the futures price

rises from the optimality conditions without requiring any
ssumptions regarding arbitrage between futures and spot price
nd that, for the risk-neutral case, it is unique and can be derived
nalytically. Additionally, we use the concept of risk-adjusted
xpectation and consistent futures, spot and wholesale price

erivatives to 
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alculate the players’ reaction functions. The resulting equilibrium 

nables the identification of the conditions in which firms pay or 

eceive a premium to trade in the futures market. 

The main theoretical insight of this article is the analysis of the 

elationship between spot and futures prices, explaining why the 

utures market is in normal backwardation or in contango, pro- 

iding the first explanation for the inversion of the forward curve 

ased on risk attitudes. 

As a policy contribution, we have studied the Spanish electric- 

ty market, explaining how the interaction between market power 

nd risk aversion impacts futures markets. We observed that nor- 

al backwardation appears under risk aversion when the genera- 

ors behave a la Cournot, independently of the retailers’ degree of 

arket power. On the other hand, contango is only dominant when 

ll the players are risk-neutral and the retailers (together with the 

enerators) behave a la Cournot in the wholesale markets. Counter- 

ntuitively our simulations illustrate that when all firms are risk- 

verse the profit increases and risk decreases. Moreover, consumer 

tility is higher if the retailers behave a la Cournot in the whole- 

ale market. 

There are several possible applications and extensions to the 

odel and methodology proposed in this article. First, the profit 

quations of some of the firms could be modified to consider 

ertical integration, under which part of the production is traded 

etween the generation and retail branches of the firm and any 

roduction margins are internalized. Second, the model could be 

sed to study the impact of real-time metering on the optimal 

rading strategies of the firms. Third, the market setting can be 

odified to analyze the direct participation of large consumers in 

he wholesale markets. Fourth, this methodology is general enough 

o be applied to other types of supply chains, such as petroleum 

nd gas, by including storage. Finally, the model provides the equi- 

ibrium solution for a very complex problem that incorporates the 

elationship between futures and spot markets under risk aversion, 

hich can then be used as a test bed for empirical studies on the 

bility of people to deal with inter-temporal decision making and 

isk aversion. 

ppendix A. Derivation of the spot market outcomes (17)–(21) 

•
The linear expression for Sω in (17),  together with the 
definition of parameters Aω and B in (39) and (40), respectivel
is directly obtained by rearranging the terms in (11).

•

∑
R

r

 

1 qr
S

ω
= Similarly the expression for the total spot trading

G
g

 

=1 qS
gω in (18), and the definition of parameters Fω 

=
and G in 

(41)
expression (5) and by solving for 

∑
R
r

 

=
 

1 qr
S 
ω or 

and (42),  respectively, are derived by re∑placing (17) wit
G

g

 

= 1 qS
gω.

 

• The formulation of the retail price Pω in (19), and the arameter
 ∑R

r

 

=
 

1 qr
S
ω

J ω and K are obtained from Eq. (3) by replacing 
with expression (18).  

• In order to derive qr
S
ω in (20), we replace Sω by (17) and Pω by

(19) in (4), which renders (20) with the corresponding values

for Drω , E and H indicated in (45), (46), (47),  respectively.
• In equilibrium the generators’ sales in the spot market, qS

gω,

and the respective Qgω and R, are derived from Eq. (7) by

replacing S by (17). 

 = 

( R − 1 ) 
(
1 + V 

D
∀ r

)[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
− GR 

][(
1 + V 

S 
∀ g 

)(
1 + V 

S 
∀ r

)
R 

2 G 

(
1 + V 

S 
∀ g + GR

)[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
+ G 

(
1 + V

∑∑
ω 
onsidering this, parameters A ω , B, F ω , G, J ω , K, D rω , E, H, Q gω 

nd R are computed as follows. 

 ω = 

R 

∑ G 
g=1 c gω + 

(
1 + V 

S 
∀ g

)[
Rνω + β

(
1 + R + V 

D 
∀ r

)∑ R 
r=1 q̄ r 

]
1 + GR + V 

S 
∀ g

∀ ω

(39) 

 = −
β
(
1 + V 

S 
∀ g

)(
1 + R + V 

D
∀ r

)
1 + GR + V 

S 
∀ g

(40) 

 ω = 

[
R ( A ω − νω ) − β

(
1 + R + V D ∀ r 

)∑ R
r=1 q̄ r 

][(
1 + V S ∀ g 

)(
1 + V S ∀ r 

)
− GR

]
GR 

(
1 + R + V D ∀ r 

) ∀ ω 

(41) 

 = 

[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
− GR 

][(
1 + V 

S 
∀ g 

)
( 1 − R ) + GR 

]
GR 

(
1 + GR + V 

S 
∀ g

) (42) 

 ω = νω − βF ω + β
R ∑ 

r=1

q̄ r ∀ ω (43) 

 = −β

⎡ 

⎣[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
− GR 

][(
1 + V 

S 
∀ g 

)
( 1 − R ) + GR 

]
GR 

(
1 + GR + V 

S 
∀ g

) + 1 

⎤
⎦

(44) 

 rω = 

[
−β

(
1 + V S ∀ r 

)
q̄ r − J ω + A ω 

][(
1 + V S ∀ g 

)(
1 + V S ∀ r 

)
− GR

]
Rβ

[ (
1 + V S ∀ g 

)(
1 + V S ∀ r 

)
+ G 

(
1 + V D ∀ r 

)] ∀ r, ∀ ω (45) 

 = 

(
1 + V 

D
∀ r

)[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
− GR 

]
R 

[(
1 + V 

S 
∀ g

)(
1 + V 

S 
∀ r

)
+ G 

(
1 + V 

D
∀ r

)] (46) 

R 

(
V 

D
∀ r − V 

S 
∀ r

)]
(47) 

 gω = 

( A ω − c gω ) 
[
GR − (1 + V 

S 
∀ r )(1 + V 

S 
∀ g )

]
Gβ(1 + V 

S 
∀ g )(1 + V 

D
∀ r + R )

∀ g, ∀ ω (48) 

 = 

(
1 + V 

S 
∀ r

)(
1 + V 

S 
∀ g

)
− GR 

G 

(
1 + GR + V 

S 
∀ g

) (49) 

ppendix B. Concavity characterization and first-order 
ptimality conditions for problems (22) and (23) 

This appendix is devoted to mathematically characterizing th

roperties of the optimization problems (22) and (23). Within th

ollowing propositions, we show that the KKT conditions (24) and

25) are necessary and sufficient for the optimality of the two

arket configurations considered in the case study:

a) Both generators and retailers behave as Cournot players in

the futures and spot markets, i.e., V D ∀ r = V S ∀ r = V S ∀ g = Y F ∀ r =
Y F ∀ g = 0 .

b) Generators behave as Cournot and retailers behave as price- 

taker players in the futures and spot markets, i.e., V D ∀ r =
S F S F 
V ∀ g = Y ∀ g = 0 and V ∀ r = Y ∀ r = −1 .
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roposition 9. For the market configurations (a) and (b) above, in 

quilibrium, generator’s g profit �g ω is a concave function of qF
g 

nd the retailer’s r profit �r ω is a concave function of qr
F
 . 

roof. From (D.1) and (D.2) we can compute the second order 

erivatives: 

∂ 2 �rω 

∂ q F r 
2

= −2 

∂W 

∂q F r 
+ U

(
1 + Y F ∀ r

)
(50) 

∂ 2 �gω 

∂ q F g 
2

= 2 

∂W 

∂q F g 
+ X

(
1 + Y F ∀ g

)
(51) 

By replacing ∂W 

∂q F r 
and 

∂W 

∂q F g 
with (33) and (34),  respectively, to

ether with (35) –(37) and their associated inner dependencies

39) –(49),  we derive the following second order derivatives.

Market configuration (a):

∂ 2 �rω 

∂ q F r 
2

= −2 β

[
R 6 G 3 (G 2 − 1) + GR 4 (4 G 2 − 3) + GR 2 (6 R − 5) + R 2 (2 G 2 R 3 + G 2 R

G 2 R 3 (G

∂ 2 �gω 

∂ q F g 
2 

= −2 β

[
G 

2 R 5 (G 

2 − 1) + G 

2 R 4 (2 G 

2 − 1) + R 3 (3 G 

2 − 1) + 6 R (4 R − 1

GR 2 (GR −

Market configuration (b): 

∂ 2 �rω 

∂ q F r 
2

= 0 (54) 

∂ 2 �gω 

∂ q F g 
2

= −2 β

[
(R + 1)(R (G − 1) + 1) 

(GR + 1) 2 

]
(55) 

ote that G ≥ 1 and R ≥ 1 as they represent the number of 
enerators and retailers in the market, respectively. Hence, it is 
asy to see that all the terms in the numerators and denominators
f expressions (52) –(55) are always positive, which entails the 
oncavity 

f the profit functions as ∂ 2 �rω 

∂ q F r 
2 ≤ 0 and 

∂ 2 �gω 

∂ q F g 
2 ≤ 0 , for both mar- 

et configurations (parameter β is always assumed positive in our

odel). �

Finally, we study the optimization problems (22) and (23) and

heir connection with the complementarity systems (24) and (25). 

roposition 10. For the market configurations (a) and (b) above, 

ptimization problems (22) and (23) are concave. 

roof. As shown in Rockafellar and Uryasev (20 0 0),  the problem

ormulations (22) and (23) are linear in the variables ξ g,
 

 ηg ω and

gω,
 

and ξ r, ηrω and �rω,
 

respectively. Moreover, �gω and �rω ar

resent in both the objective functions and inequality constraint
f problems (22) and (23).  Thus, by Proposition 9 we conclud
hat both the objective and constraints of (22) and (23) ar
oncave functions. Consequently, the optimization problems are

oncave. �

orollary 1. For the market configurations (a) and (b) above, the 

omplementarity systems (24) and (25) are necessary and sufficient 

onditions for the optimality of problems (22) and (23), respectively. 

roof. Problems (22) and (23) are concave maximization 

roblems ( Proposition 10)  and both the objective functions and 

onstraints are continuously differentiable functions, which 

nsures that the Karush–Kuhn–Tucker necessary conditions (24) 

nd (25) are also sufficient conditions for optimality. �
 G 2 R − 5) + + G 5 R 5 + G 4 R 5 + G 5 R 4 + G 3 R 3 + 2 G 3 R 5 + 2 GR + 2 R 3 + (4 R − 1) 

)(GR + 1) 2 (G + 1) 

]
(52) 

 R (G 

2 R − 1) + + G 

4 R 3 + G 

3 R 3 + G 

3 R 2 + G 

2 R + 2 GR 4 + G + R 2 + 2 

R + 1) 2 (G + 1) 

]
(53) 

ppendix C. Nonlinear formulation of the KKT system 

Consider the following nonlinear optimization problem: 

Minimize 
W ,q Fg ,q 

F
r ,ξg ,ηgω ,δgω ,λgω 

δgω ,ξr ,ηrω ,δrω ,λrω ,δrω

F O = 

G ∑ 

g=1 

�∑ 

ω=1

(
�gω − ξg + ηgω 

)
λgω 

+ 

R ∑ 

r=1

�∑
ω=1

( �rω − ξr + ηrω ) λgω

+ 

G ∑ 

g=1 

�∑
ω=1

ηgω δgω +
R ∑ 

r=1

�∑
ω=1

ηrω δrω (57a) 

ubject to: 

− φg

�∑
ω=1

σgω 

∂�gω 

∂q F g 
−

�∑
ω=1

λgω 

∂�gω 

∂q F g 
= 0 ∀ g (57b) 

( 1 − φg ) 
1 

1 − αg 
σgω − λgω − δgω = 0 ∀ g, ∀ ω (57c) 

�∑
ω=1

λgω = ( 1 − φg ) ∀ g (57d) 

�gω − ξg + ηgω ≥ 0 ∀ g, ∀ ω (57e) 

− φr

�∑ 

ω=1

σrω 

∂�rω 

∂q F r 
−

�∑ 

ω=1

λrω 

∂�rω 

∂q F r 
= 0 ∀ r (57f) 

( 1 − φr ) 
1 

1 − αr 
σrω − λrω − δrω = 0 ∀ r, ∀ ω (57g) 

�∑
ω=1

λrω = ( 1 − φr ) ∀ r (57h) 

�rω − ξr + ηrω ≥ 0 ∀ r, ∀ ω (57i) 

ηgω , λgω , δgω , ηrω , λrω , δrω ≥ 0 ∀ g, ∀ r, ∀ ω (57j) 

G ∑ 

g=1

q F g =
R ∑ 

r=1

q F r (57k) 

Under the optimization problem (57) Proposition 11 holds. 

roposition 11. A solution to the NLP problem (57) that meets F O 

 0 is also a solution to the complementarity system (24) and (25). 
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roof. The proof is straightforward noting that conditions (57b) –

57j) are almost the same as conditions (24) and (25),  bu

ithout including the products of the complementarity

onstraints (24d), (24e), (25d) and (25e).  However, the objective

unction (57a) is the sum of these positive terms so that if a

olution to (57) meets F O = 0,  it then implies that every single

erm equals zero, which is equivalent to enforcing the

omplementarity conditions (24d), (24e), (25d) and (25e).  �

ppendix D. Proof for Proposition 7 

roof. First we compute explicit formulations of the partial deriva-

ives ∂�rω 

∂q F r 
and 

∂�gω 

∂q F g 
as a function of the futures trading q F r and 

F
g 
 

 

. To this end, we replace the spot market equilibrium 

utcomes 

17)–(21),  together with the spot partial derivatives (28) –(32),  in

27a) and (27b).  After some term rearrangements we obtain

he following linear expressions:
∂�rω 

∂q F r 
= −W + S rω + q F r 

(
−∂W

∂q F r 
+ T

)
+ Uq F (1) 

∂�gω 

∂q F g 
= W + q Fg 

∂W 

∂q F g 
+ V gω + X q F (2) 

here parameters S rω , T , U rω , V gω and X are defined as follows: 

 rω = K 

(
1 + Y F ∀ r 

)
( D rω − q̄ r ) + 

[
H 

(
1 + Y F ∀ r 

)
+ E + 1 

]
J ω

−
[
H 

(
1 + Y F ∀ r

)
+ E 

]
A ω − B

(
1 + Y F ∀ r

)
D rω ∀ r, ∀ ω

 = 

(
1 + Y F ∀ r

)
[ K ( E + 1 ) − BE ]

 = 2 

(
1 + Y F ∀ r

)
H ( K − B ) + K ( E + 1 ) − BE

 gω = 

(
1 + Y F ∀ g 

)
( RA ω + BQ gω − c gω R ) − c gω ∀ g, ∀ ω

 = 2 RB 

(
1 + Y F ∀ g

)
Section 3.2.1 shows that the risk-averse equilibrium for the

utures market is equivalent to solving the system of equations 

 r 

[ 
∂�rω 

∂q F r 

] 
= 0 and E g 

[ 
∂�gω 

∂q F g 

] 
= 0 , ∀ r , ∀ g , where E r and E g rep-

esent risk-adjusted expectations. In this setting, the probability 
ssociated with each scenario is σr

∗
ω = φr σrω + λrω and σg

∗
ω = φg

gω + λgω, respectively. By imposing these equilibrium conditions

o the partial derivatives (D.1) and (D.2),  and realizing that some
erms are scenario independent, we obtain expressions (D.3) and 

D.4).  

− W +
�∑

ω=1

σ ∗
rω S rω + q F r 

(
−∂W

∂q F r 
+ T

)
+ U

R ∑ 

r=1

q F r = 0 ∀ r (3) 

 + q F g 
∂W 

∂q F g 
+ 

�∑
ω=1

σ ∗
gω V gω + X 

G ∑ 

g=1

q F g = 0 ∀ g (4) 

y using expr∑ 

essions (D.3) and (D.4)∑ 

, and aggregating all the 
nergy bought  (r

R
=
 

1 qr
F) and sold ( g

G
=
 

1 q
F
g ), we can derive the 

nverse aggregate demand for retailers (D.5) and the aggregate 
upply curve for generators (D.6) in the futures market.

 

 = 

1

R 

[ (
−∂W

∂q F r 
+ T + R U

)
R ∑

r=1

q F r + 

R ∑ 

r=1

�∑
ω=1

σ ∗
rω S rω 

]
(5) 

 = 

1

G 

[
−
(

∂W 

∂q F g 
+ G X

)
G ∑

g=1

q F g −
G ∑ 

g=1 

�∑
ω=1

σ ∗
gω V gω 

]
(6) 

Therefore, the generators face the inverse demand curve 

D.5) which, considering that supply equals demand in the futures
arket (26),  i.e., qF
 

 = 

∑ R 
r=1 q 

F 
r = 

∑ G 
g=1 q 

F 
g , can be used to evaluate

he impact of their sales qF
g in the futures price W, as represented 

y (D.7).  

∂W 

∂q F g 
= 

1

R 

(
−∂W

∂q F r 
+ T + R U

)(
1 + Y F ∀ g

)
(7) 

rs

hat q  = 

 G 
g=1 q 

F 
g = 

∑ R 
r=1 q 

imilar
F 

ly, ∑the retaile face
F

 the supply curve (D.6) which, noting
 

r , can be used to evaluate the impact of

heir purchases qr
F
 in the futures price W, as summarized in (D.8). 

∂W 

∂q F r 
= − 1

G 

(
∂W 

∂q F g 
+ G X

)(
1 + Y F ∀ r

)
(8) 

Note that expressions (D.7) and (D.8) do not depend on the

isk-adjusted probabilities σr
∗
ω or σg

∗
ω.
 

 From the solution of the 
inear system (D.7) and (D.8), we can derive the explicit expressio

or ∂W 

∂q F r 
and 

∂W 

∂q F g 
in (33) and (34),  respectively. �
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