1,115 research outputs found

    Copositive certificates of non-negativity for polynomials on semialgebraic sets

    Full text link
    A certificate of non-negativity is a way to write a given function so that its non-negativity becomes evident. Certificates of non-negativity are fundamental tools in optimization, and they underlie powerful algorithmic techniques for various types of optimization problems. We propose certificates of non-negativity of polynomials based on copositive polynomials. The certificates we obtain are valid for generic semialgebraic sets and have a fixed small degree, while commonly used sums-of-squares (SOS) certificates are guaranteed to be valid only for compact semialgebraic sets and could have large degree. Optimization over the cone of copositive polynomials is not tractable, but this cone has been well studied. The main benefit of our copositive certificates of non-negativity is their ability to translate results known exclusively for copositive polynomials to more general semialgebraic sets. In particular, we show how to use copositive polynomials to construct structured (e.g., sparse) certificates of non-negativity, even for unstructured semialgebraic sets. Last but not least, copositive certificates can be used to obtain not only hierarchies of tractable lower bounds, but also hierarchies of tractable upper bounds for polynomial optimization problems.Comment: 27 pages, 1 figur

    Simple Approximations of Semialgebraic Sets and their Applications to Control

    Full text link
    Many uncertainty sets encountered in control systems analysis and design can be expressed in terms of semialgebraic sets, that is as the intersection of sets described by means of polynomial inequalities. Important examples are for instance the solution set of linear matrix inequalities or the Schur/Hurwitz stability domains. These sets often have very complicated shapes (non-convex, and even non-connected), which renders very difficult their manipulation. It is therefore of considerable importance to find simple-enough approximations of these sets, able to capture their main characteristics while maintaining a low level of complexity. For these reasons, in the past years several convex approximations, based for instance on hyperrect-angles, polytopes, or ellipsoids have been proposed. In this work, we move a step further, and propose possibly non-convex approximations , based on a small volume polynomial superlevel set of a single positive polynomial of given degree. We show how these sets can be easily approximated by minimizing the L1 norm of the polynomial over the semialgebraic set, subject to positivity constraints. Intuitively, this corresponds to the trace minimization heuristic commonly encounter in minimum volume ellipsoid problems. From a computational viewpoint, we design a hierarchy of linear matrix inequality problems to generate these approximations, and we provide theoretically rigorous convergence results, in the sense that the hierarchy of outer approximations converges in volume (or, equivalently, almost everywhere and almost uniformly) to the original set. Two main applications of the proposed approach are considered. The first one aims at reconstruction/approximation of sets from a finite number of samples. In the second one, we show how the concept of polynomial superlevel set can be used to generate samples uniformly distributed on a given semialgebraic set. The efficiency of the proposed approach is demonstrated by different numerical examples

    Rational certificates of positivity on compact semialgebraic sets

    Full text link
    Schm\"udgen's Theorem says that if a basic closed semialgebraic set K = {g_1 \geq 0, ..., g_s \geq 0} in R^n is compact, then any polynomial f which is strictly positive on K is in the preordering generated by the g_i's. Putinar's Theorem says that under a condition stronger than compactness, any f which is strictly positive on K is in the quadratic module generated by the g_i's. In this note we show that if the g_i's and the f have rational coefficients, then there is a representation of f in the preordering with sums of squares of polynomials over Q. We show that the same is true for Putinar's Theorem as long as we include among the generators a polynomial N - \sum X_i^2, N a natural number

    On the complexity of Putinar's Positivstellensatz

    Get PDF
    We prove an upper bound on the degree complexity of Putinar's Positivstellensatz. This bound is much worse than the one obtained previously for Schm\"udgen's Positivstellensatz but it depends on the same parameters. As a consequence, we get information about the convergence rate of Lasserre's procedure for optimization of a polynomial subject to polynomial constraints

    Matrix Convex Hulls of Free Semialgebraic Sets

    Full text link
    This article resides in the realm of the noncommutative (free) analog of real algebraic geometry - the study of polynomial inequalities and equations over the real numbers - with a focus on matrix convex sets CC and their projections C^\hat C. A free semialgebraic set which is convex as well as bounded and open can be represented as the solution set of a Linear Matrix Inequality (LMI), a result which suggests that convex free semialgebraic sets are rare. Further, Tarski's transfer principle fails in the free setting: The projection of a free convex semialgebraic set need not be free semialgebraic. Both of these results, and the importance of convex approximations in the optimization community, provide impetus and motivation for the study of the free (matrix) convex hull of free semialgebraic sets. This article presents the construction of a sequence C(d)C^{(d)} of LMI domains in increasingly many variables whose projections C^(d)\hat C^{(d)} are successively finer outer approximations of the matrix convex hull of a free semialgebraic set Dp={X:p(X)⪰0}D_p=\{X: p(X)\succeq0\}. It is based on free analogs of moments and Hankel matrices. Such an approximation scheme is possibly the best that can be done in general. Indeed, natural noncommutative transcriptions of formulas for certain well known classical (commutative) convex hulls does not produce the convex hulls in the free case. This failure is illustrated on one of the simplest free nonconvex DpD_p. A basic question is which free sets S^\hat S are the projection of a free semialgebraic set SS? Techniques and results of this paper bear upon this question which is open even for convex sets.Comment: 41 pages; includes table of contents; supplementary material (a Mathematica notebook) can be found at http://www.math.auckland.ac.nz/~igorklep/publ.htm

    The Maximal Positively Invariant Set: Polynomial Setting

    Get PDF
    This note considers the maximal positively invariant set for polynomial discrete time dynamics subject to constraints specified by a basic semialgebraic set. The note utilizes a relatively direct, but apparently overlooked, fact stating that the related preimage map preserves basic semialgebraic structure. In fact, this property propagates to underlying set--dynamics induced by the associated restricted preimage map in general and to its maximal trajectory in particular. The finite time convergence of the corresponding maximal trajectory to the maximal positively invariant set is verified under reasonably mild conditions. The analysis is complemented with a discussion of computational aspects and a prototype implementation based on existing toolboxes for polynomial optimization
    • …
    corecore