1,284 research outputs found

    Concepts and methods in optimization of integrated LC VCOs

    Get PDF
    Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-μm MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results

    Optimization of Short-Channel RF CMOS Low Noise Amplifiers by Geometric Programming

    Get PDF
    Geometric programming (GP) is an optimization method to produce globally optimal circuit parameters with high computational efficiency. Such a method has been applied to short-channel (90 nm and 180 nm) CMOS Low Noise Amplifiers (LNAs) with common-source inductive degeneration to obtain optimal design parameters by minimizing the noise figure. An extensive survey of analytical models and experimental results reported in the literature was carried out to quantify the issue of excessive thermal noise for short-channel MOSFETs. Geometric programming compatible functions have been determined to calculate the noise figure of short-channel CMOS devices by taking into consideration channel-length modulation and velocity saturation effects

    An automated design methodology of RF circuits by using Pareto-optimal fronts of EMsimulated inductors

    Get PDF
    A new design methodology for radiofrequency circuits is presented that includes electromagnetic (EM) simulation of the inductors into the optimization flow. This is achieved by previously generating the Pareto-optimal front (POF) of the inductors using EM simulation. Inductors are selected from the Pareto front and their S-parameter matrix is included in the circuit netlist that is simulated using an RF simulator. Generating the EM-simulated POF of inductors is computationally expensive, but once generated, it can be used for any circuit design. The methodology is illustrated both for a singleobjective and a multiobjective optimization of a low noise amplifierMinisterio de Economía y Competitividad TEC2013-45638-C3-3-R, TEC2013-40430-RJunta de Andalucía PIC12-TIC-1481Consejo Superior de Investigaciones Científicas 201350E05

    Layout-level Circuit Sizing and Design-for-manufacturability Methods for Embedded RF Passive Circuits

    Get PDF
    The emergence of multi-band communications standards, and the fast pace of the consumer electronics markets for wireless/cellular applications emphasize the need for fast design closure. In addition, there is a need for electronic product designers to collaborate with manufacturers, gain essential knowledge regarding the manufacturing facilities and the processes, and apply this knowledge during the design process. In this dissertation, efficient layout-level circuit sizing techniques, and methodologies for design-for-manufacturability have been investigated. For cost-effective fabrication of RF modules on emerging technologies, there is a clear need for design cycle time reduction of passive and active RF modules. This is important since new technologies lack extensive design libraries and layout-level electromagnetic (EM) optimization of RF circuits become the major bottleneck for reduced design time. In addition, the design of multi-band RF circuits requires precise control of design specifications that are partially satisfied due to manufacturing variations, resulting in yield loss. In this work, a broadband modeling and a layout-level sizing technique for embedded inductors/capacitors in multilayer substrate has been presented. The methodology employs artificial neural networks to develop a neuro-model for the embedded passives. Secondly, a layout-level sizing technique for RF passive circuits with quasi-lumped embedded inductors and capacitors has been demonstrated. The sizing technique is based on the circuit augmentation technique and a linear optimization framework. In addition, this dissertation presents a layout-level, multi-domain DFM methodology and yield optimization technique for RF circuits for SOP-based wireless applications. The proposed statistical analysis framework is based on layout segmentation, lumped element modeling, sensitivity analysis, and extraction of probability density functions using convolution methods. The statistical analysis takes into account the effect of thermo-mechanical stress and process variations that are incurred in batch fabrication. Yield enhancement and optimization methods based on joint probability functions and constraint-based convex programming has also been presented. The results in this work have been demonstrated to show good correlation with measurement data.Ph.D.Committee Chair: Swaminathan, Madhavan; Committee Member: Fathianathan, Mervyn; Committee Member: Lim, Sung Kyu; Committee Member: Peterson, Andrew; Committee Member: Tentzeris, Mano
    corecore