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Abstract 

OPTIMIZATION OF SHORT-CHANNEL RF CMOS LOW NOISE 

AMPLIFIERS BY GEOMETRIC PROGRAMMING  

 

Xiaoyu Jin 

Thesis Chair: David H. K. Hoe, Ph.D. 

The University of Texas at Tyler 

May 2012 

 

Geometric programming (GP) is an optimization method to produce globally 

optimal circuit parameters with high computational efficiency. Such a method has been 

applied to short-channel (90 nm and 180 nm) CMOS Low Noise Amplifiers (LNAs) with 

common-source inductive degeneration to obtain optimal design parameters by 

minimizing the noise figure. An extensive survey of analytical models and experimental 

results reported in the literature was carried out to quantify the issue of excessive thermal 

noise for short-channel MOSFETs. Geometric programming compatible functions have 

been determined to calculate the noise figure of short-channel CMOS devices by taking 

into consideration channel-length modulation and velocity saturation effects.   

Optimal design parameters (e.g., channel width and noise figure) from geometric 

programming optimization are validated by comparing them with numerical simulations 

using Agilent’s Advanced Design Systems (ADS) software. Furthermore, tradeoff 

analyses have been performed to examine the influence of various design parameters 

such as quality factors and drain current on the optimization of CMOS LNAs. In 

particular, it is found that the optimal input quality factor is slightly higher for LNAs 

using short-channel devices compared with the analysis reported for long-channel 

designs. With the continuous downscaling of CMOS technologies nowadays, geometric 

programming offers high performance advantages in the optimal design of short-channel 

CMOS LNAs. 
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Chapter One 

Introduction 

 

Radio frequency (RF) devices receive and transmit signals from 3 kHz to 

300 GHz, covering a variety of wireless applications [1]. For example, broadcasting at 

radio frequencies has been established on technique for almost a century. Cellular phones 

have been used for decades. New generations of cellular phones (4G) have just been 

available for a couple of years. Moreover, wireless local area network (Wi-Fi) is gaining 

popularity for laptop, tablet and smartphone users, since Wi-Fi can provide access to the 

Internet via an access point (hotspot). Campus-wide Wi-Fi and city-wide Wi-Fi are 

further providing convenience for these users. Other applications of RF include global 

positioning system (GPS), phased array RF systems, radio frequency identification 

devices (RFIDs) and smart handheld devices [2]. Since wireless communication enables 

voice, data, image and video to be transferred to anywhere almost instantaneously, the 

impact of RF on people’s daily lives has become significant. 

The design of RF applications involves an important component known as the 

low-noise amplifier (LNA). The LNA is an essential component located at the first stage 

of a radio receiver circuit. The major function of an LNA is to amplify very weak signals 

(e.g., electrical signals received by an antenna) while adding as little noise and distortion 

as possible [3]. This is particularly true for applications in wireless and mobile 

communications with high frequency receivers. The optimization of low-noise amplifiers 

will minimize noise under power constraints, which is extremely important for mobile 

communications. 

1.1 RF CMOS 

Since there is a wide range of applications for RF, the implementation of LNAs 

depends on the specifics of each application. Historically, bipolar transistors have been 
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used for the design of high-power amplifiers in audio equipment and radio receivers [4]. 

Recently, submicron CMOS has become viable for the implementation of LNAs in 

wireless communication (e.g., cellular phones, Wi-Fi) due to its high integration feature 

and improvements in unity-gain frequency (��) of MOS devices [5]. Four commonly 

used topologies are briefly described to satisfy the design requirements of low-noise 

amplifiers. 

1.1.1 Bipolar vs. CMOS for RF Circuits 

Classic devices in RF receivers consist of bipolar transistors and CMOS. For RF 

receiver applications, an optimal solution can be achieved by taking considerations of 

gain, noise, linearity, power consumption and cost. 

One of the semiconductor devices commonly used for amplification is a bipolar 

transistor. Two major types of bipolar transistors are PNP and NPN. Bipolar transistors 

have pros and cons compared with CMOS. Bipolar devices can switch signals at high 

speeds, and can be manufactured to handle large currents so that they can serve as high-

power amplifiers in audio equipment and in radio receivers. However, bipolar devices are 

not especially effective for low power design and are not suitable for high-integration 

applications, especially when integration with CMOS digital circuits is required. 

The advantages of CMOS implementations for RF circuits are high integration 

density, low cost and exceptional speed performance when the devices are implemented 

in  nanoscale technologies [2]. With the increasing popularity of system-on-chip (SoC) 

designs for increasing integration density and reducing system cost, CMOS 

implementations are very attractive for the realization of mixed-signal and RF designs 

[6]. Significant improvements for transit time and maximum oscillation frequency have 

been achieved when the CMOS gate length is scaled below 100 nm [7]. CMOS 

technology remains the major player for the market of low cost and less performance-

demanding applications such as GPS, Bluetooth and Wi-Fi [2]. 

The shortcomings of CMOS in RF circuits are that the noise/gain performance 

and breakdown voltage of MOSFETs are not as good as that of bipolar devices. 

Nevertheless, such limitations can be overcome with appropriate circuit architectures. 



Consequently, CMOS RF circuits

such as GSM/GPRS/EDGE 

1.1.2 RF CMOS LNA T

The design of RF CMOS 

requirement to provide a 

topologies are available [

termination, and inductive degeneration.

In resistive termination

input terminals of a common

and an output resistance �

and attenuates the signal before the transistor, resulting in unacceptabl

Figure 1.1: Common

In a shunt-series feedback topology (Figure 1.2), the resistor 

attenuation of signals before amplification

series feedback amplifier 

On the other hand, the resistor feedback network remains a source of thermal noise. 

Consequently, the noise performance of this topology is still not optimum.

3 

RF circuits have been used in 3G and 4G cellular applications

/GPRS/EDGE [8]. 

Topologies 

The design of RF CMOS low-noise amplifiers typically involves a critical 

 specific impedance (i.e., 50 Ω) to the input source. Several 

[3], including resistive termination, shunt-series feedback, 

termination, and inductive degeneration. 

In resistive termination topology, a 50 Ω resistor (�� is simply placed across the 

input terminals of a common-source amplifier (Figure 1.1) with a source resistance 

��. However, this additional resistor introduces thermal noise 

and attenuates the signal before the transistor, resulting in unacceptably high noise.

 

Common-source amplifier with resistive termination

series feedback topology (Figure 1.2), the resistor � does not cause 

ion of signals before amplification. It is expected that the noise figure in

series feedback amplifier is an improvement over that of a resistive termination a

On the other hand, the resistor feedback network remains a source of thermal noise. 

Consequently, the noise performance of this topology is still not optimum.

cellular applications, 

s typically involves a critical 

) to the input source. Several 

series feedback, 1/�� 

is simply placed across the 

source resistance �� 

is additional resistor introduces thermal noise 

high noise. 

source amplifier with resistive termination 

does not cause 

figure in a shunt-

over that of a resistive termination amplifier. 

On the other hand, the resistor feedback network remains a source of thermal noise. 

Consequently, the noise performance of this topology is still not optimum. 



Figure 1.2

The common-gate topology (

input impedance (Figure 1.3). One of characteristics of the common

the resistance looking into the source terminal equals

The aforementioned topologies 

the presence of a noisy resistance along the signal path. If a resistive input impedance can 

be provided without using an actual resistor, the noise performance of amplifiers can be 

significantly improved. 

To create a resistive input impedance without the noise of real resistors, an 

inductive source degeneration topology (Figure 1.4) is commonly used. The key point of 
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Figure 1.2: Shunt-series feedback amplifier 

gate topology (1/��) is another circuit implementing a resistive 

input impedance (Figure 1.3). One of characteristics of the common-gate topology is that 

into the source terminal equals 1/��. 

 

Figure 1.3: Common-gate amplifier 

The aforementioned topologies do not have attractive noise performance due to 

the presence of a noisy resistance along the signal path. If a resistive input impedance can 

be provided without using an actual resistor, the noise performance of amplifiers can be 

To create a resistive input impedance without the noise of real resistors, an 

inductive source degeneration topology (Figure 1.4) is commonly used. The key point of 

her circuit implementing a resistive 

gate topology is that 

have attractive noise performance due to 

the presence of a noisy resistance along the signal path. If a resistive input impedance can 

be provided without using an actual resistor, the noise performance of amplifiers can be 

To create a resistive input impedance without the noise of real resistors, an 

inductive source degeneration topology (Figure 1.4) is commonly used. The key point of 



this topology is that the input impedance

happens because a phase lag occurs at

varies along the channel and 

source inductor �� and the gate inductor 

the value of the input impedance

impedance at the resonant frequency

degrading the noise performance of the amplifier.

Figure 1.4: Narrowband LNA with inductive source 

1.2 Submicron CMOS Technology

In the past three decades, the downscaling of CMOS technologies has continued 

to change the speed, complexity, and power consumption of many applications 

introduction of submicron CMOS technology has p

analog circuits such as RF 

1.2.1 Submicron Effects

The evolution of CMOS from 

to new challenges in the design of analog circuits 

downscaling of CMOS technology is the reduction in power su

problem is short-channel 

modulation, which have posed more difficulties for the modeling of 

MOSFETs. 

Decreases in power supply voltage may result in lower performan

circuits. The drop of power supply voltages from 5 V to 1.2 V in submicron CMOS 

5 

the input impedance has a resistive component. Conceptually this 

a phase lag occurs at the potential of the bottom plate of 

varies along the channel and depends on the signal at the gate. The addition

and the gate inductor �� enhance this effect and provide

the value of the input impedance [3]. Therefore, this topology provides a resistive input 

at the resonant frequency without the thermal noise of an ordinary resistor and 

degrading the noise performance of the amplifier. 

 

Narrowband LNA with inductive source degeneration

CMOS Technology 

n the past three decades, the downscaling of CMOS technologies has continued 

to change the speed, complexity, and power consumption of many applications 

introduction of submicron CMOS technology has posed new challenges to the design of 

analog circuits such as RF low-noise amplifiers due to various submicron effects

ffects 

The evolution of CMOS from the micron level to the submicron level contributes 

to new challenges in the design of analog circuits [10]. The first concern with 

downscaling of CMOS technology is the reduction in power supply voltage. Another 

 effects, such as velocity saturation and channel-

, which have posed more difficulties for the modeling of short

Decreases in power supply voltage may result in lower performan

circuits. The drop of power supply voltages from 5 V to 1.2 V in submicron CMOS 

Conceptually this 

the potential of the bottom plate of the gate, which 

The additions of the 

this effect and provide control over 

Therefore, this topology provides a resistive input 

l noise of an ordinary resistor and 

degeneration 

n the past three decades, the downscaling of CMOS technologies has continued 

to change the speed, complexity, and power consumption of many applications [9]. The 

osed new challenges to the design of 

due to various submicron effects [6]. 

submicron level contributes 

. The first concern with 

pply voltage. Another 

-length 

short-channel 

Decreases in power supply voltage may result in lower performance of analog 

circuits. The drop of power supply voltages from 5 V to 1.2 V in submicron CMOS 
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technology may not pose serious problems in the design of analog circuits. However, 

further reduction of power supply voltages may cause technical challenges. For example, 

the reduction of power supply voltages results in analog circuits with lower performance 

since biasing at lower voltages causes the degradation of transistor properties [10]. 

Another problem with the reduction of power supply voltages is the loss of headroom 

required to employ cascoded load devices for high-gain amplifiers. This can cause a 

significant reduction in the output swing of the CMOS amplifier resulting in an amplifier 

with degraded performance [10]. 

When device geometries shrink down to the submicron level and beyond, various 

second order effects become prominent [3]. The velocity saturation of the carriers in the 

channel is a prime concern. Velocity saturation occurs when the electric field in the 

channel reaches a critical value which causes the carrier velocities to reach a maximum 

value. This means the drain current saturates sooner for short-channel devices when 

compared with long-channel devices. Channel-length modulation is another concern. For 

long-channel devices, a constant saturation drain current is assumed. However, this is not 

the case for short-channel devices. The extent of the depletion region close to the drain 

increases with the increasing drain to source voltage [3]. Drain current increases with the 

increasing drain to source voltage, which causes a nonzero output conductance. Thus, the 

modeling of MOSFETs needs to be reconsidered for short-channel devices. 

1.2.2 Effect of CMOS Downscaling on Noise Model Analysis 

The continuous downscaling of CMOS technologies requires that accurate 

modeling of noise be established when applied to the design of RF CMOS low-noise 

amplifiers. Thermal noise is the dominant source of noise for CMOS circuits at RF 

frequencies. The classical theory of thermal noise is still valid at the submicron level if 

short-channel effects are properly taken into account. Velocity saturation, channel-length 

modulation and hot carrier effects need special attention for submicron CMOS 

technologies. 

The effect of velocity saturation on the noise performance of CMOS transistors 

becomes noticeable when the size of CMOS device scales down to the submicron level. 

Due to scattering by high-energy phonons, carrier velocities saturate and stop increasing 
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with increasing electrical field. The electron drift velocity finally saturates at a value of 

about 105 m/s when the electrical field reaches about 106 V/m in CMOS devices [3]. The 

drain current for calculating long-channel devices can be modified to reflect the effect of 

velocity saturation in short-channel devices. Details of such modification are available in 

the literature [11]. The drain current of short-channel devices becomes saturated and has 

a linear relationship, rather than a square-law relationship, with the gate-source voltage. 

Thus, thermal noise due to the drain current can be appropriately revised for short-

channel devices by taking into consideration the effects of velocity saturation. 

1.3 Optimization in Design of RF CMOS LNA 

Wireless and mobile communication systems today are very complex and the time 

to market requirements create a short turnaround time, especially in today’s competitive 

marketplace. Simulation becomes a critical tool to discover and correct problems before 

fabrication. Without such a tool, refabrication of an integrated circuit (IC) due to design 

miscalculations is very expensive and time consuming. Optimization techniques are a 

central component for the simulation tool to find the optimum design parameters to 

achieve the best performance. The optimization of CMOS LNA designs focuses on 

minimizing the noise figure in CMOS devices for a set of specifics, such as power 

dissipation, and transistor dimensions. 

1.3.1 Optimization Methods 

The design parameters in LNAs consist of transistor dimensions (e.g., transistor 

gate length L and gate width W) and other passive component values such as inductance 

and capacitance. The objective of optimization methods for low-noise amplifiers is to 

minimize the noise figure while optimizing other performance parameters. Various 

approaches are available for achieve this design optimization. 

General-purpose classical optimization methods are extensively used in the 

computer aided design of analog circuits [12]. These classical methods include steepest 

descent, sequential quadratic programming, and Lagrange multiplier methods. The 

advantage of these classical methods is the ability to handle a large variety of problems. 

The disadvantage of these classical methods is that only a locally optimal design is found. 

The locally optimal design does not guarantee the design is the best design available 
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globally. As an analogy, someone walking in the mountains may see only the nearest 

peak, not the highest peak in the mountain range. 

Another approach for design optimization is based on knowledge and expert 

systems [12]. The advantage is that it can be used anywhere with even fewer limitations 

than the classical optimization methods. The disadvantages of this approach include a 

locally optimum design, no detection of feasibility, and substantial human intervention. 

Global optimization methods have the ability to find the globally optimal design 

and have been widely used in the computer aided design of analog circuits [13]. Two 

well-known methods of global optimization are branch and bound and simulated 

annealing. The advantages of global optimization methods are unambiguously achieving 

a global optimum and handling a wide variety of performance measures and objectives. 

The disadvantage is that global optimization methods can be very slow. 

Convex optimization and geometric programming methods have started to gain 

attention in the computer aided design of analog circuits in recent years [13]. The 

advantages of convex optimization are efficiency of solving large problems with 

thousands of variables and tens of thousands of constraints, globally optimum solutions, 

and unambiguous detection of infeasibility. The disadvantage of convex optimization is 

that there are more limitations on the types of problems to be solved than the 

aforementioned methods for optimization. However, this is a compromise to achieve 

efficiency in solving large problems. 

1.3.2 Geometric Programming 

A geometric programming is an optimization problem of the form with the 

objective function as posynomial function and constraints of posynomial inequality and 

monomial equality. All design parameters are non-negative variables. A geometric 

programming problem can be converted to a convex optimization problem. 

Geometric programming has been used in many problems in analog circuit and 

digital design [14]. For example, component values and transistor dimensions of CMOS 

operational amplifiers have been optimized by formulating geometric programming to 

meet the competing performance measures such as power, open-loop gain and bandwidth 
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[13]. Additional applications of geometric programming include RF circuit design [15, 

16]. 

More importantly, geometric programming has recently been utilized for the 

design of RF CMOS low-noise amplifiers [17]. A low-noise amplifier with a topology of 

source inductive degeneration [18] using standard 0.35 µm CMOS process was optimized 

with the noise figure as the objective function and design constraints such as input circuit 

quality factor and input impedance matching. Globally optimum solutions were obtained 

with an extremely small computational cost. 

This implementation of geometric programming focused on the intermediate 

channel length regime of the CMOS process. With the downscaling of CMOS 

technologies to submicron and nanoscale levels, the complexity of noise models for short 

channels poses challenges to formulate the objective function and design constraints in 

the form of geometric programming. 

1.4 Objective of the Thesis 

The objective of this thesis is to obtain the globally optimal design of RF CMOS 

low-noise amplifiers with short-channel devices by implementing geometric 

programming for minimizing the noise figure and for satisfying design constraints such 

as input circuit quality factor, power consumption, and input impedance matching. 

A framework for noise modeling of short-channel RF CMOS transistors is first 

established by taking into consideration the velocity saturation effect. Then, the objective 

function of the noise figure is formulated in the form of a posynomial function and design 

constraints are described in the form of a posynomial inequality and monomial equality. 

After that, geometric programming is applied to obtain the globally-optimal solution. 

Design parameters from the optimal solution are compared with simulation results. 

Finally, the implication of geometric programming for short-channel CMOS designs is 

discussed and future work in this area is described. 
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Chapter Two 

Noise Modeling in CMOS 

  

In this chapter, major thermal noise models for MOSFETs in the literature are 

discussed, taking short-channel effects into consideration, such as velocity saturation, 

channel-length modulation, and the effect of mobility degradation. Most of these noise 

models are good for short-channel devices. A noise model suitable for geometric 

programming has been chosen for this study. 

2.1 RF Noise 

In general, noise means any unwanted signal. It is the opposite phrase to signal in 

electronics. Therefore, it can be defined as “everything except the desired signal” [3]. 

There are noise sources called artificial noise that can be reduced or removed using a 

good shielding system. An example is the interference between two adjacent cables 

transmitting voice or data information. On the other hand, noise sources that are inherent 

and irreducible in the system or devices are known as fundamental noise, for example, 

the snowy pictures in analog TV sets. The mystery of fundamental noise was unfolded by 

a series of papers written by H. Nyquist, J.B. Johnson and W. Schottky [19-21] with 

explanations of the origins of different noise sources and numerous analyses. In general, 

there are several types of fundamental noise sources: thermal noise, shot noise, flicker 

noise, and generation-recombination noise. 

In MOSFETs, thermal noise and shot noise are the major noise sources. Flicker 

noise is known for its 1/f characteristic, which suggests that the power spectral density of 

flicker noise increases as frequency decreases. Therefore, flicker noise is insignificant in 

RF noise modeling but it is dominant at the low frequency range. Generation-

recombination noise can be generally neglected since it is even much smaller than flicker 

noise. In RF MOSFET transistors, shot noise plays the main role in the noise 

characteristics only when the device is in the subthreshold region [3]. For low-noise 
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design, transistors are operating in the saturation region where shot noise can be 

thermal noise is the focus for the noise analysis in this thesis.

Thermal noise, also known as Johnson-Nyquist noise, can be considered

phenomenon of Brownian motion [21]. Thermally-excited carriers (usually electrons) 

generate a randomly varying current in a conductor. Because of the randomness of the 

noise process, it is impossible and meaningless to identify an exact value 

voltage at a particular time. In order to characterize the thermal noise, statistical measures 

are commonly used in noise analysis. Due to the thermal origin, the noise 

of a conductor is dependent on the absolute temperature [19]. Therefore, the 

mean square value for a resistor is determined only by the temperature 

� at thermal equilibrium [3]: 
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. The two noise models for a resistor are depicted in Figure 2.1. 

 

Figure 2.1: Thermal noise models for resistors [3] 
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The polarity signs for the noise voltage source and the noise current source do not 

indicate the noise has a particular polarity because noise has a zero mean voltage. They 

are simply references. 

2.2.1 Thermal Noise in MOSFETs 

MOSFETs behave basically as voltage-controlled resistors. Therefore, thermal 

noise is present in MOSFETs, which is the result of random potential fluctuations in the 

channel [23]. These fluctuations in the channel lead to one source of thermal noise, which 

is the drain current noise. In addition, through the oxide capacitance of the gate terminal, 

the fluctuations are introduced to the gate and cause a gate noise current, also known as 

induced gate thermal noise. The drain current noise and the gate noise are correlated 

because they both are agitated by the thermal noise sources in the channel. Since noise 

characteristics are one of the main concerns in the LNA design, it is very important for 

circuit designers to be able to predict and calculate the noise of MOS devices with 

reasonable accuracy and also to recognize the noise dependence on the geometry and 

biasing conditions of the device. Modeling of the thermal noise generated in the channel 

of MOSFETs started a few decades ago and much research on the compact modeling of 

thermal noise has been done [24]. 

2.2.2 Analytical Compact Thermal Noise Models 

The fundamental assumption for most analytical and semi analytical MOSFET 

thermal noise models is the so-called gradual channel approximation (GCA). For the 

ideal two-terminal MOS device, the charge density profile is defined by a one-

dimensional Poisson’s equation, as it is described in the structure of a MOS capacitor. As 

for three-terminal or four-terminal MOSFET devices, they generally pose a two-

dimensional electrostatic problem due to the geometric effects and the drain-source bias 

[25]. This approximation states that the rate of variation of the lateral field within the 

channel (./||/.0) is much smaller than the rate of variation of the vertical field        

(./⊥/.1), as illustrated in Figure 2.2, and the channel potential is a gradually changing 

function of position along the channel from the drain to the source, which varies very 

little along the channel over a distance of the order of the gate oxide insulator thickness 

[11, 25, 26]. 
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GCA is valid for long-channel MOSFETs, where the aspect ratio

gate length and the vertical distance of the space charge region from the gate electrode is 

if the MOSFET is biased in strong inversion, which is in 

, the GCA always becomes invalid beyond the pinch-off

gradient that develops in this region [22, 25]. Under the assumption 

of the GCA, a couple of noise models have been developed for long-channel 

Figure 2.2: Gradual channel approximation [25] 
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�34+0)5 � 89�:
34�� − 4+0)5																																																																	+2.4) 
where 4�� is the overdrive voltage and it equals 4�� − 4�< (4�� is the gate-source voltage, 4�< is the threshold voltage), 4+0) is the channel potential at 0, 
 is the width of the 

MOSFET, μ is the mobility, and 9�: is the oxide capacitance per unit area. Assuming a 

differential segment ∆0 of the channel, a small noise voltage contribution >+0) across the 

segment ∆0 is observed, which is added to the dc voltage 4+0). This voltage can cause 

noise in the drain current, which leads to a change in the dc current through the 

MOSFET. There are some assumptions throughout the following analysis. First, noise 

sources of the different channel segments are local and not correlated. Second, the charge 

carriers are in thermal equilibrium. The boundary conditions of the small voltage 

contribution >+0) are >+0)|:?�,� � 0 [23, 27]. Therefore, the Klaassen-Prins equation for 

the power spectral density �%B of thermal noise of a long-channel MOSFET is 

�%B � 4()��2�C ��+4) ∙ .4DBE
� 																																																																												+2.5) 

where 2� is the drain current, � is the gate length and �+4) is the local output 

conductivity. This equation can be developed into another commonly used expression, 

which is the so-called white noise gamma factor formula discussed in the following 

section. The details for this derivation can be found in Appendix A. 

 

Figure 2.3: Schematic representation of an n-channel MOSFET transistor [27] 



15 

2.2.2.2 The Model of Albert van der Ziel 

After Klaassen and Prins introduced their model for channel thermal noise in 

MOSFETs, Albert van der Ziel included hot electron effects in his model by substituting 

the lattice temperature with carrier temperature, ) +0), and modified the model to [23] 

�%B � 4()��2�C ) +0)) 	��+4) ∙ .4DBE
� 																																																															+2.6) 

Once 
�H+:)�  and �+4) are known,  �%B can be easily calculated. In order to treat a MOSFET 

as resistor element, van der Ziel presented a convenient expression [23]: 

�%B � 4()����																																																																																																		+2.7) 
where 

� � 1��2��C ) +0)) 	��+4) ∙ .4DBE
� 																																																															+2.8) 

In Eq. (2.8), �� is the channel conductance per unit length at the source and ���is the 

channel conductance at zero drain bias. The parameter � is often called the white noise 

gamma factor and the expression in Eq. (2.8) is commonly used to calculate and 

demonstrate the channel thermal noise in long-channel MOSFETs and the excess channel 

thermal noise in short-channel transistors. The parameter � relates the thermal noise 

power spectral density with the output conductance at different bias conditions. However, 

it is very practical and continues to be used to allow experimental or theoretical results to 

be compared from different research groups [28]. The value of � is unity for zero drain 

bias, in long-channel devices, and decreases toward 2/3 in saturation. 

In addition, a MOSFET can be described as an RC network at high frequencies, 

with the oxide capacitance of the gate terminal and the resistance due to the channel 

itself. The fluctuations in the channel are introduced to the gate and cause a gate noise 

current, also known as induced gate thermal noise (Figure 2.4 (a)). Van der Ziel has 

shown the induced gate noise can be expressed as [23] 

�%K � 4()���																																																																																																			+2.9) 
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circuit model for gate noise has been illustrated in 

noise in the form of Eq. (2.9).

Figure 2.4: (a) Induced gate noise, (b) Standard representation
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is basically independent of the substrate conductivity, and its value is 4/3 in 

long-channel MOSFETs. The conductance �� has the form as

9����� 																																																																																			
the intrinsic gate capacitance of transistor 9�� � �M9�:
� where

capacitance per unit area, 
 is the channel width and � is the channel length.

circuit model for gate noise has been illustrated in [3], which describes the induced

noise in the form of Eq. (2.9). 
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(b)  

 

(c)  

(a) Induced gate noise, (b) Standard representation, (c) Equivalent Th
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In the circuit model representation, the conductance �� is connected between the 

gate and source shunted by the gate noise current. An equivalent Thévenin representation 

seems more intuitive with N� � OP�BQ [3]. As shown in Eq. (2.10), the conductance �� 

increases with frequency, indicating that the induced gate noise can dominate at radio 

frequencies. The conductance �� is also proportional to the square of 9��, so a small 

value of 9�� will favor a lower induced gate noise. This is discussed further in the 

following chapter. 

Since the induced gate noise is correlated with the drain thermal noise, the 

correlation coefficient is defined as [23] 

� � #�� ∙ #��∗����������
S#������� ∙ #�������																																																																																																+2.11) 

where #�� ∙ #��∗���������� is the spectrum of the crosscorrelation of the drain thermal noise and the 

induced gate noise. The complex correlation coefficient � is theoretically 0.395j for long-

channel MOSFETs (see Appendix B). 

2.2.2.3 The Model of Tsividis 

Another frequently used equation for the channel thermal noise proposed by 

Tsividis is given by [22] 

�%B � 4() 8�� +−	%�T)																																																																																			+2.12) 
where 8 is the carrier mobility and 	%�T is the total inversion layer charge. 

The aforementioned models are developed and valid for long-channel MOSFETs, 

where short-channel effects were not taken into account. The short-channel effects, such 

as velocity saturation, enhanced channel-length modulation and mobility degradation, are 

basically caused by the high longitudinal field due to the short gate length of the 

MOSFET. Meanwhile, the GCA assumption becomes invalid due to the velocity 

saturation for short-channel MOSFETs. Additionally, considerable increase in the drain 

current noise of short-channel MOSFETs has been observed and becomes significant 
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while MOSFETs geometries shrink down to the submicron level [11, 22, 24, 25, 30, 31]. 

Therefore, several models have been developed to explain this enhanced thermal noise 

present in short-channel MOSFETs. 

2.2.2.4 The Model of Scholten et al. 

In the Klaassen-Prins model shown in Eq. (2.5), � is the MOSFET gate length and � is the local channel conductivity. This model is suitable for long-channel MOSFETs. 

Unfortunately, for submicron channel lengths, short-channel effects become more 

significant. Scholten and his colleagues developed a nonquasi-static RF MOSFET model 

based on the concept of channel segmentation [22, 30]. This was implemented in the so-

called MOS Model 11 [32], where every channel segment is taken into account. 

An improved Klaassen-Prins model including the effect of channel-length 

modulation and the effect of velocity saturation is presented in [28, 30, 33]. The noise 

power spectral density is 

�%B � 4()� U V� 2�C �V�+4) ∙ .4DBE
� 																																																																				+2.13) 

where � U V is the electrical channel length of the MOSFET, replacing the effective 

channel length � WW in the original Klaassen-Prins expression. The parameter � U V is 

defined as � U V � � WW − ∆� where ∆� is the length of the velocity saturated region. The 

parameter �V is the revised conductivity taking velocity saturation into consideration. The 

noise contribution of the pinch-off region is assumed to be negligible due to insignificant 

dependence of channel thermal noise on the drain-to-source voltage beyond the saturation 

voltage [30]. 

2.2.2.5 The Model of Han et al. 

In Han’s approach [31, 34], the effect of velocity saturation and the effect of 

carrier heating are taken into account. In long-channel MOSFETs, the carrier mobility is 

considered independent of the bias conditions and is usually modeled as a constant. 

However, the carrier mobility in short-channel MOSFETs is degraded due to the high 

lateral electric field from drain to source [11] and is thus dependent on the bias 

conditions. The impedance field method [35] was used to recalculate the thermal noise 
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for short-channel MOSFETs. The drain current of a MOSFET with the effect of mobility 

degradation is given in [34] as 

2� � ��+4) X�D�:Y1 + X�D�:Y //[ 																																																																											+2.14) 
where the local channel conductance ��+4) � 8 WW
9�:+4�� − \4). The parameter /[ � 2>�]�/8 WW is the critical field at which velocity saturation occurs, >�]� is the 

saturation velocity of carriers, 8 WW is the effective mobility, 9�: is the gate oxide 

capacitance per unit area, 4�� is the gate overdrive voltage (4�� − 4�<), 4 is the source-

referenced channel potential at 0, and \ is a coefficient describing the bulk-charge effect. 

The bulk-charge effect is the variation of threshold voltage caused by non-uniform 

channel depletion and the dependence of the threshold voltage on the channel potential. 

The impact of the carriers in the velocity saturation region on the drain thermal noise 

current is ignored in this analysis. Applying a similar procedure and method as Scholten, 

the channel noise of the MOSFET takes the form of 

�%B � 4()� U V� 2�+1 + DBE�H^H_`a)�C ���+4)+1 + //[) ∙ .4DBE
� 																							+2.15) 

where the electrical channel length of the MOSFET is � U V � � WW − ∆�. 

In order to obtain a compact analytical equation, a closed-form expression is 

given [34] as 

�%B ≈ 4()��� 1 − c + �dM1 − �� 																																																																											+2.16) 
where ��� is the drain conductance at 4�� � 0 V, c � \4��/4�� and \ is the coefficient 

of the bulk charge effect. The parameter \ has a typical value of 1.2 [36]. The parameter 4�� is the gate overdrive voltage, which equals (4�� − 4�<). 
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2.2.2.6 The Model of Deen et al. 

Based on Han’s model, the longitudinal electric field (/) along the channel was 

examined by Deen’s group [24]. They claimed that the longitudinal electric field (/) is a 

function of the position 0 along the channel instead of a constant along the channel, and 

is given by 

/+0) � /[4�[+24�� − 4�)� − 4\/[4�0]gd 																																																							+2.17) 
where 4� � 2�/+
9hi>�]�). The revised total channel charge can be obtained by 

integrating the drain current from 0 to � U V with the expression of /+0) in Eq. (2.17). 

The total drain-current noise power spectral density is then obtained, 

�%� � 4() 44��� + 4�� + 4��4�34��� +4�� − 4�) 	\2� 																																																										+2.18) 
2.2.2.7 The Model of Jeon et al. 

Jeon and his colleagues also have developed an analytical channel thermal noise 

model for deep-submicron MOSFETs with short-channel effects [37]. By following 

Tsividis’ method [22], they derived an analytical noise model. In their analytical channel 

thermal noise model, short-channel effects, such as channel-length modulation, velocity 

saturation, and hot carrier effects, have been taken into account. 

The ac conductance �]V is a small-signal conductance with the consideration of 

velocity saturation. It was used to express the current noise source spectrum of a small 

segment ∆0 of channel length, and it is given as 

∆#������ � 4()V�]V∆&																																																																																										+2.19) 
where )V is the carrier effective temperature. The carrier temperature has shown a 

dependency on the electric field when a high electric field is present in short-channel 

MOSFETs. The relation of )V and the electric field is given as 

)V)� � j1 + //Vk� 																																																																																													+2.20) 
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where )� is the lattice temperature, and when l � 0 the carrier is in thermal equilibrium 

without carrier heating effect. The heating effect is considered for l � 1 or l � 2 [23]. 

This small noise source will be added on the top of the drain current 2��, which 

already includes the velocity saturation effect in this model [37]. By integrating the new 

drain current over the channel, the total drain-current noise power spectral density for 

different values of l is given as 

�%� � 4()� 44��
� + 104�� + 74��4� + M� DQmDnBoDQU�pdqnBrqQpqQ3+4�� − 4�)+4�� + 4�)� 	�2� 	 

											stuℎ	l � 2																																																																																									+2.21w) 
�%� � 4()� 44��� + 44�� + 44��4�3+4�� − 4�)+4�� + 4�)� 	�2�	 
											stuℎ	l � 1																																																																																									+2.21x) 
�%� � 4()� 44��� + 4�� + 4��4�3+4�� − 4�)+4�� + 4�)� 	�2� 

											stuℎ	l � 0																																																																																								+2.21�)	 
where 4�� is equal to (4�� − 4�<), and 4� � 2�/+
9hi>�]�), which is the same as 4� in 

Deen’s model. The parameter � is body effect factor [11]. These models show great 

similarity with Han’s model and Deen’s model, and were validated with measurement 

results by Jeon’s group. 

2.2.2.8 White Noise Factor Formula 

The aforementioned models all included some of the short-channel effects based 

on different perspectives of the researchers, such as the effect of velocity saturation, the 

effect of channel-length modulation, and the effect of mobility degradation. However, the 

expressions in Eq. (2.13) and Eq. (2.15) are not suitable for hand analysis. Particularly, 

they are not practical for use in geometric programming, which is the special 

optimization method adapted in this thesis. A simpler noise formula would be a better 
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choice. As mentioned in the discussion of van der Ziel’s model, the channel thermal noise 

can be conveniently expressed using the so-called white noise gamma factor formula 

given in Eq. (2.7), where � is the thermal noise factor. Since this expression is a simple 

closed-form equation, it has been widely used for noise analysis by circuit designers, and 

it is also used in this thesis. For long-channel MOSFETs, the theoretical values of � are 

well known. It is equal to unity at zero drain bias and 2/3 in the saturation region. 

However, when the size of MOSFETs approaches the submicron and even smaller level, 

it is observed that the values of � are not the same as in long-channel MOSFETs under 

the same bias conditions. There are some reports regarding the modeling of � in short-

channel MOSFETs [30, 34, 38]. Since excess thermal noise has been observed in short-

channel MOSFETs, an increase of the value � is expected for short-channel MOSFETs. 

In the work of Scholten and his group [30], measurements and modeling had been 

carried out. Short-channel effects, such as effect of velocity saturation and effect of 

channel-length modulation, have been taken into account in their noise modeling, which 

has been described in the previous section. Based on their results, both the channel 

thermal noise constant � and the induced gate current noise constant	� are independent of 

the operating frequencies within moderate frequencies (for example, 10 GHz or less), and 

they are not very sensitive to bias conditions for high bias voltages. However, they do 

vary with the channel lengths, which agreed with the fact that larger thermal noise was 

present in short-channel MOSFETs than long-channel MOSFETs. The values of � are 

expected to be larger than their theoretical long-channel values. Because of the same 

origin of channel thermal noise and induced gate noise, a similar trend of increase in � 

has been observed at short channel lengths. 

Jeon and his group recently have also investigated and measured the white noise 

factor � [38], which is an extension of their previous work. The channel thermal noise 

power spectral density can still be expressed as Eq. (2.7), the well-known white noise 

gamma factor formula. However, the white noise factor � for short-channel MOSFETs 

takes the form of 

� � ������ y1 + /�/[z																																																																																									+2.22) 
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where ��� is the conductance of the channel, /� is the average longitudinal electric field 

which is equal to 4��/� U V .The parameter /[ is the critical electric field, which is equal 

to 2>�]�/8 WW. Based on the model of Eq. (2.22), � is a function of the drain bias for 

different channel length. A comparison between Deen’s analytical model of the channel 

thermal noise in Eq. (2.18), and the thermal noise calculation using the two � models 

from Scholten’s and Jeon’s results have been made. As it is shown in Figure 2.5, their 

results are comparable with a similar trend regarding different channel lengths. Since 

Scholten and Jeon have completed a relatively in depth study of the noise parameters and 

there is relatively good agreement of their work with Deen’s analytical model, the noise 

calculations in this thesis are carried out based upon the results of Scholten and Jeon. 

 

Figure 2.5: Thermal noise comparison of different analytical noise models 

The numerical results for Figure 2.5 are shown in Table 2.1. 

Table 2.1: Thermal noise comparison of different analytical noise models 

Gate Length 
Power spectral density of channel thermal noise (A2/Hz) 

Deen Scholten Jeon 

90 nm 9.07×10-24  1.04×10-23  1.07×10-23 

180 nm 4.22×10-24  4.63×10-24  4.54×10-24  

350 nm 9.86×10-25  1.17×10-24  1.41×10-24  
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2.3 Noise Parameters 

Noise parameters are used to measure and evaluate the noise performance of a 

given system. The noise factor is a useful and important one among the noise parameters, 

which is usually denoted as {. If only the overall input-output behavior of a system is 

concerned, all the internal noise sources can be represented by a pair of external sources: 

a noise current and a noise voltage. The noise factor { is then defined as 

{ � u|uw}	|cu~cu	l|t��	~|s�N|cu~cu	l|t��	.c�	u|	tl~cu	�|cN�� 																																															+2.23) 
where the source temperature is at 290 K by convention [3]. The noise factor gives a 

quantitative evaluation of the degradation in the signal-to-noise ratio due to the system 

noise sources, which means the larger noise factor would be expected if the larger 

degradation in signal-to-noise occurs. Since the lower signal-to-noise ratio is always 

desired, the smaller noise factor is the optimum goal for LNA circuit designs. An 

alternative expression of the noise factor is the noise figure, which is commonly used and 

simply the noise factor expressed in decibels as 

�{ � 10 logO�+{)																																																																																								+2.24) 
In summary, different short-channel noise models have been reviewed and 

discussed in this chapter. The experimental results from Scholten’s and Jeon’s groups, 

which both take into account short-channel effects, have shown good agreement with 

Deen’s analytical model. Therefore, an excess thermal noise model with elevated white 

noise gamma parameter following Scholten and Jeon has been chosen for the noise 

analysis in this study. In the next chapter, the derivation of the noise figure and the design 

considerations for low-noise amplifier optimization will be presented and discussed in 

detail. 
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Chapter Three 

Formulation of Geometric Programming for Short-channel CMOS 

LNAs 

 
Geometric programming is proposed as the method to optimize the design of 

short-channel CMOS LNAs. The objective function for geometric programming is to 

minimize the noise figure of the CMOS LNA subject to design constraints. The noise 

figure for short-channel devices is placed in the form of posynomial functions, which are 

compatible with geometric programming. In addition, design constraints, such as output 

conductance, transconductance, dimensional constraints, input impedance, and power 

dissipation are expressed either as a posynomial function or a monomial function.  

3.1 Geometric Programming 

A geometric optimization problem has an objective function in the form of  a 

posynomial function with inequality constraints expressed as posynomial functions and 

equality constraints as monomial functions [14]. 

A monomial function has the following form: 

�+0%) � �	0O]g0�]d0M]m …0�]! 																																																																											+3.1) 
where � is a positive constant (� > 0); 0O, 0�, …, and 0� are real positive variables; wO, wO, …, and wO are constants known as the exponents of the monomial. Any positive 

constant is a monomial. Monomials are closed under multiplication and division.  

A posynomial function is a sum of one or more monomial functions as shown in 

the following equation, 

&+0%) � ���0O]g�0�]d�0M]m� …0�]!��
�?O 																																																												+3.2) 
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where �� > 0. Note that posynomial functions are also closed under addition and 

multiplication. 

With the introduction of the basic concepts for monomial and posynomial 

functions, a standard form for a geometric programming can be defined as an 

optimization problem with the following form 

  Minimize an objective function: &�+0) 
  Subject to constraints: 																		&%+0) ≤ 1, t � 1,⋯ ,�																							+3.3)  
     																			�%+0) � 1, t � 1,⋯ , ~  

where 0 � +0O, …	, 0�) a vector with components 0%, &�+0) is an objective function with 

the form of a posynomial function; &O+0), &�+0), …, &�+0) are posynomial functions; �O+0), ��+0), …, ��+0) are monomial functions; and 0% are the optimization variables 

(0% are always greater than zero).  

As a global optimization method, geometric programming has provided a very 

efficient method for designing CMOS operational amplifiers [13] and RF CMOS low-

noise amplifiers using long-channel MOSFETs [17]. In this thesis, geometric 

programming was applied to the design optimization of a short-channel CMOS 

narrowband low-noise amplifier. The frequency of operation was chosen to be 2.4 GHz, 

which is the operating frequency for widely-used Bluetooth applications. For narrowband 

operation, which is the focus of this thesis, inductive source degeneration offers the best 

noise performance compared to other topologies discussed previously in Chapter Two. 

Therefore, an LNA with inductive source degeneration, as shown in Figure 3.1, is 

selected for design optimization in this thesis. A cascode device �� is added to improve 

the isolation between the tuned input and tuned output circuits and also to reduce the 

effect of the gate-to-drain capacitance of transistor �O [3]. An additional capacitance 9  

across the gate and source is introduced into the circuit, which is in parallel to the 

intrinsic gate capacitance 9�� of the transistor �O. By adding this capacitor, a relatively 

high quality factor can be obtained without very high values of the on-chip inductors (�� 

and ��), which is very important for high-integration density circuit implementations. 
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This additional capacitance also gives the freedom to choose small intrinsic gate 

capacitance 9��. Since the induced gate noise is proportional to the square of 9��, smaller 9�� will result in a lower induced gate noise, which has been found to be more significant 

in short-channel devices [18]. The formulation of such a design problem as a geometric 

programming is shown in detail in this chapter.   

 

Figure 3.1: Schematic of CMOS cascode LNA with inductive source degeneration 

3.2 Design Considerations for a Short-channel CMOS LNAs 

The major goal of an LNA is to provide a reasonable gain with a small noise 

level. The noise performance is the most crucial issue for a front-end amplifier. 

Therefore, minimizing the noise figure is the main objective of the CMOS LNA design in 

this thesis. To achieve the best noise performance, design variables such as channel width 

(
) and channel length (�) need to be optimized.  In addition, design constraints, such as 
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quality factor of the input circuit, maximum allowed power dissipation, and input 

impedance matching, need to be satisfied during the optimization process. 

3.2.1 Objective Function 

The objective of LNA design in this thesis is to minimize the noise figure. 

Consequently, the noise figure is considered as the objective function for geometric 

programming. By small-signal analysis, the equation for the noise figure is described in 

the following section.  

Assuming the output impedance of transistor �O (N�O) is large, transistor �� has 

an insignificant influence on the noise performance of the low-noise amplifier. Therefore, 

its contribution to the total noise is neglected in the noise analysis. In addition, the 

contribution of the substrate noise is also neglected as well for simplicity [18]. Therefore, 

the noise figure will be minimized for the given design constraints. Based on the previous 

discussion of noise sources in RF CMOS, the thermal noise is the main concern at RF 

intermediate frequencies (i.e., the carrier frequency) for MOSFETs, where 1/f noise is no 

longer significant. Therefore, four noise sources have been considered in the design, 

which are the thermal noise of the source resistance (#�̅,�E), the channel thermal noise 

(#�̅,�), the gate induced current noise (#�̅,�), and the thermal noise of the output resistance 

(#�̅,�n��). 

 

Figure 3.2: Small-signal circuit for noise analysis 
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Before the discussion of the noise analysis, the input impedance needs to be 

calculated in order to determine the noise contributions of the input referred noise in the 

following derivations. All the passive components in the circuit are considered to be 

lossless except the output load, which is represented by an LC tank including a parasitic 

resistance, as shown in Figure 3.1. To compute the input impedance of the circuit in 

Figure 3.2, the small-signal MOSFET is modeled only with a transconductance (��) and 

a gate-source capacitance (9��). The equivalent circuit to calculate the input impedance 

of the circuit is shown in Figure 3.3.  

 

Figure 3.3: Equivalent circuit for the input impedance calculation 

Therefore, the input impedance is (see Appendix C for the full derivation) 

�%� � 4�2�  

							� 1��39 + 9��5 + ��+�� + ��) + ��39 + 9��5 �� 
							� ��39 + 9��5 �� + � ��+�� + ��) − 1�39 + 9��5�																											+3.4) 

At the resonant frequency ��, which is the operating frequency of the circuit, the 

input impedance should be resistive and equal to the source resistance for the maximum 
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power delivery. In this case, the input resistance is ��, which gives the following relation 

regarding the input impedance, 

��+�� + ��) − 1��39 + 9��5 � 0																																																															+3.5) 
��39 + 9��5 �� � ��																																																																																										+3.6) 

After applying some simple algebra, the final equations required to obtain an input 

impedance match at the resonant frequency are 

�� � 1S+�� + ��)39 + 9��5 �
1����� ∙ 9��� 																																													+3.7) 

�� � ��39 + 9��5 �� � ��9��� ��																																																																								+3.8) 
where ���� � +�� + ��) and 9��� � 39 + 9��5. 

Since the focus is on the resonant behavior of the circuit, a commonly used 

parameter 	, which is called the quality factor, is introduced into the analysis. By 

definition,  

	 � � �l�N�1	�u|N�.w>�Nw��	~|s�N	.t��t~wu�.																																																										+3.9) 
The quality factor of a series RLC circuit is given as 	 � ��/[�  [3]. Therefore, the quality 

factor of the input circuit at resonant frequency �� is described as 

	 � �����/9������� 																																																																																													+3.10) 
where ���� � �� + ��[�n� ��. Making use of Eq. (3.7) and Eq. (3.8), the quality factor of the 

input circuit at resonant frequency �� has the form of  
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	 � 1������9��� �	 12����9��� 																																																																		+3.11) 
The quality factor of a parallel RLC circuit is given as 	 � ���/[ [3]. Therefore, the 

quality factor of the output circuit at resonant frequency �� is described as 

	��� � ����9�����																																																																																							+3.12) 
where ���� is the parasitic output resistance and 9��� is the capacitance of the output 

load. The resonant frequency �� can be expressed in terms of the output capacitance and 

conductance as 

�� � 1�����9��� 																																																																																												+3.13) 
An inductance value of 10 nH and a quality factor of 5 have been used for the output 

circuit [18]. 

The definition of noise factor from the previous chapter was given in Eq. (2.23) as 

{ � u|uw}	|cu~cu	l|t��	~|s�N|cu~cu	l|t��	.c�	u|	tl~cu	�|cN��																																																												 
In order to find the expression of the noise factor and noise figure, two steps are 

required. First, all four noise sources need to be identified using thermal noise theory 

analysis. Second, the contributions of all four noise sources to the output noise power 

must be computed by using small-signal analysis. 

Considering the thermal noise in resistors given by Eq.(2.2), the contributions due 

to resistor �� and ���� are given by 

#�,�����E � 4() 1�� ∆&																																																																																										+3.14) 
#�,�����n�� � 4() 1���� ∆&																																																																																			+3.15) 
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The channel thermal noise mean square value and the induced gate noise mean square 

value are given according to Eq. (2.7) and Eq. (2.9). Therefore 

#�,����� � 4()��<������∆&																																																																																+3.16) 
#�,����� � 4()��<�����∆&																																																																																	+3.17) 

The significant differences of Eqs. (3.16) and (3.17) from Eqs. (2.7) and (2.9) are that 

short-channel effects have been taken into account in the expressions in Eqs. (3.16) and  

(3.17). The parameters ��<��� and ��<��� are extracted from the noise analysis of short-

channel models [30, 38]. Additionally, the conductance of ��� and �� are also 

formulated with the contribution of short-channel effects taken into account, which will 

be discussed in a later section. 

With the noise sources calculated, transfer functions using small-signal analysis 

may be used to find the total output noise power. Once the output noise power is known, 

the noise figure can be readily expressed. The calculation of the output noise power is 

based on the small-signal circuit in Figure 3.2. Detailed derivations can be found in 

Appendix D. In small-signal noise analyses, #�̅,�E is the source resistance thermal noise, #�̅,� is the channel thermal noise, #�̅,� is the induced gate noise, and #�̅,�n�� is the output 

resistance thermal noise. The contributions of these four noise sources to the output noise 

are denoted by #�̅,�,�E, #�̅,�,�, #�̅,�,� and #�̅,�,�n��, respectively. 

For example, when the output noise due to the input source resistance noise is 

calculated, other noise sources are removed. The resulting small-signal circuit with only 

the input source resistance noise is shown in Figure 3.4. The share of the output noise 

current due to the input source resistance noise can be expressed as, 

#�̅,�,�E � ���2��9��� #�̅,�E 																																																																																	+3.18) 
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Figure 3.4: Small-signal circuit of the calculation of output noise due to input source 

resistance noise 

Following a similar procedure, the contributions of the other three noise sources to the 

output noise current are 

#�̅,�,� � −12 #�̅,� 																																																																																														+3.19) 
#�̅,�,� � �����9��� 1 − �����9����2����9��� #�̅,�																																																											+3.20) 
#�̅,�,�n�� � #�̅,�n��																																																																																												+3.21) 

There is one more component in the output noise current, which is the 

contribution due to the correlation between the drain current (#�̅,�) and the induced gate 

current (#�̅,�). Calculating the correlation is straightforward because these two noise 

currents share a common thermal noise origin. The correlation coefficient � is defined by 

Eq. (2.11). The output noise due to the correlation can be represented as [18] 

#�$�,�,V��� U]�%�� � ���2��9���S#�$�,� ∙ #�$�,�																																																		+3.22) 
Therefore, the noise factor of the LNA can be rewritten as 

{ � #�$�,�,�E + #�$�,�,� + #�$�,�,� + #�$�,�,V��� U]�%�� + #�$�,�,�n��#�$�,�,�E 													+3.23) 
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By using Eq. (3.14)-(3.22), Eq. (2.10) and Eq. (3.11), the noise factor at resonance is 

obtained as (see Appendix E) 

{ � 1 + O� ���� + ��� X[KE[�n�Y� X	� + O�Y � OP�BQ + ��� X[KE[�n�YS�∙��� + O�n����� ��	�  

					+3.24) 
As is shown in Eq. (3.24), the transconductance �� and the output conductance ��� are the two main model-dependent parameters. The detailed derivations and 

modeling of the transconductance and the output conductance are described in the next 

section. Such simple models were constructed by curve fitting monomial expressions to 

the output conductance ��� and the transconductance �� data generated from the 

theoretical equations of short-channel CMOS transistors. These analytical solutions take 

into consideration velocity saturation and channel-length modulation, which are the 

predominant short-channel effects. 

3.2.2 Monomial Expressions of �� for Short-channel CMOS Devices 

The drain current models and analytical solutions are adapted from Yuan Taur 

and Tak H. Ning [11]. In their analytical solutions for drain current, velocity saturation 

and channel-length modulation were taken into account for both triode and saturation 

regions. A piecewise-continuous velocity saturation model was developed for the drain 

currents in the triode and saturation regions,  

2���%�� � 8 WW9�: j
� k ∙ 34�� − 4�<54�� − X��Y 4���1 + +8 WW4��)/+2>�]��) 																												+3.25) 
2��]� � 8 WW9�: j
� k 34�� − 4�<5�/+2�)1 + 8 WW34�� − 4�<5/+2�>�]��) ∙ +1 + �4��) 

																																																																																																																							+3.26) 
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where 

8 WW � 8�1 + �34�� − 4�<5																																																																													+3.27) 
� � ��u�: 																																																																																																												+3.28) 

The parameter 8 WW in the drain current of Eq. (3.25) and Eq. (3.26) is the effective 

mobility, which can be estimated as a function of the overdrive voltage as in Eq. (3.27) 

[3, 22]. The parameter 8� is the low field mobility, and � is the vertical field mobility 

degradation factor in V-1. The parameter u�: is the oxide thickness and the value of the 

fitting parameter �� is typically 5 to 20 ÅV-1. The parameter 9�: is the oxide capacitance 

per unit area, 
 is the channel width, � is the channel length, 4�� − 4�< is the overdrive 

voltage,	4�� is the drain-to-source voltage, and >�]� is the saturation velocity of carriers. 

Additionally, the channel-length modulation � is also taken into consideration. The 

parameter � can be calculated as 

� � 1 + SεE ¡¢£�Ψ¤9�: 																																																																																										+3.29) 
Ψ¥ � j()¦ k ln+�] l%⁄ )																																																																																	+3.30) 

where �] is the channel doping concentration. The parameter l% is intrinsic carrier 

concentration, and its typical value is 1.5×1010 cm-3 for silicon at room temperature [39].  

After the analytical solutions for the drain current are obtained, the 

transconductance ��can be readily calculated. The transconductance is defined as 

�� � ©ª2��]�ª4�� «¬® 																																																																																												+3.31) 
Making use of the drain current in Eq. (3.26), the transconductance for short-channel 

MOSFETs has the following equivalent form (see Appendix F) of 
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�� 			� 9�:8�
>�]� ∙ +1 + �	4��) ∙ 
															X4�>�]��34�� − 4�<5 + +2�>�]��� + 8�)34�� − 4�<5�YX2�>�]�� + +2�>�]��� + 8�)34�� − 4�<5Y� 				+3.32) 

The monomial expression of the transconductance is based on the analytical 

solution in Eq. (3.32). A simple model with monomial expressions has been obtained to 

estimate the transconductance (��). 

�� � ¯��°g
°d2��°m 																																																																																						+3.33) 
where �� is transconductance (S), � is the channel length (m), 
 is the channel width 

(m), and 2�� is the drain current(A). 

In Eq. (3.23), ¯�, ¯O, ¯�, and ¯M are constants estimated from curve fitting. Such 

curve fitting of a nonlinear equation with multiple input variables is technically 

challenging and is not likely to be implemented by routine functions available from 

numerical software (e.g. MATLAB). Therefore, a logarithm transformation can be 

performed to convert the Eq. (3.33) into a simpler form: 

log	+��) � log+¯�) + ¯O ∙ log+�) + ¯� ∙ log+
) + ¯M ∙ log+2��)				+3.34) 
By replacing the old variables (��, �, 
, 2��) with new variables (��± , �±, 
±, 2��± ), the 

following relationships are defined, 

��± � log+��), �± � log+�), 
± � log+
),2��± � log+2��)																																																																					+3.35) 
As well as replacing the old constants (¯�, ¯O, ¯�, ¯M) with new constants (¯�± , ¯O± , ¯�± , ¯M± 	), the following relationships are defined, 

¯�± � log	+¯�), ¯O± � ¯O, ¯�± � ¯�,	¯M± � ¯M																																																																																										+3.36) 
The aforementioned equation becomes 
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��± � ¯�± + ¯O± �± + ¯�±
± + ¯M± �2��± 																																																										+3.37) 
Multiple linear regression analyses, which is a routine function available in MATLAB, 

can be performed to implement the curve fitting by using this format. In this way, the 

curve fitting of a monomial expression for the device transconductance is accomplished 

(see Appendix G for details). 

3.2.3 Monomial Expressions of the �²³ for Short-channel CMOS Transistors 

The analytical solution for the output conductance is derived in this subsection. 

By definition, ��� is the channel conductance at zero drain bias [23]. In long-channel 

MOSFETs, ��� is equal to the transconductance �� in the saturation region. Detailed 

derivations can be found in Appendix F. The derivation for short-channel MOSFETs is 

different from the procedure for long-channel MOSFETs. The channel conductance �� is 

defined by 

�� � ©ª2���%�� ª4�� ´¬µ® 																																																																																								+3.38) 
where 2���%��  is the short-channel triode region drain current in Eq. (3.25).Therefore, the 

output conductance has the form of 

�� � 8 WW9�: X¶� Y ·34�� − 4�<5 − �4�� − X��Y ¸H¹¹�TE£�� 4��� º+1 + +8 WW4��)/+2>�]��))� 																		+3.39) 
Then the channel conductance at zero bias condition is given by 

��� � ©��|DBE?� 

								� 8 WW9�: j
� k4��																																																																															+3.40) 
where 4�� is the overdrive voltage, which is equal to 34�� − 4�<5. Details can be found in 

Appendix F. 

A simple model with monomial expressions has also been obtained to estimate the 

output conductance for short-channel CMOS transistors with the same previous 
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procedure. Similarly, the output conductance ��� can also be interpreted as a function of 

channel width, channel length, and the channel current in saturation by applying the 

MATLAB curve fitting procedure to the following monomial form, 

��� � ¼��¥g
¥d2��¥m 																																																																																				+3.41) 
where ��� is output conductance at zero bias (S), � is the channel length (m), 
 is the 

channel width (m), and 2�� is the drain current (A). The parameters ¼�, ¼O, ¼�, and ¼M are 

constants. The MATLAB script for the curve fitting of the output conductance can be 

found in Appendix G. 

3.2.4 Dimensional Constraints 

Minimum and maximum sizes on the transistors are due to lithography limitations 

and layout area concerns, respectively. Therefore, the dimensional constraints can be 

expressed as 

��%� ≤ �% ≤ ��]: 																																																																																									+3.42) 

�%� ≤ 
% ≤ 
�]:																																																																																						+3.43) 

Here, the range of � is set to be relatively small, which is close to the minimum feature 

size of the targeted CMOS technology. The range of 
 is set to be from 1 µm to 100 µm, 

which is adequate for channel width requirement. 

3.2.5 Input Impedance 

To maximize the power delivery to the output load of an LNA, input impedance 

matching is required to match the real part of the input impedance (i.e. 50 Ω). The 

imaginary part of the impedance is eliminated and only the real part of the impedance is 

present. 

In Eq.(3.4), the input impedance of the LNA is given by 

�%� � ��39 + 9��5 �� + � ��+�� + ��) − 1�39 + 9��5� 
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Therefore, the impedance matching constraints at the resonant frequency can be 

obtained as 

� � �� � 1����� ∙ 9��� 																																																																																	+3.44) 
�� � ��9��� �� � 50	Ω																																																																																					+3.45) 

3.2.6 Power Dissipation Constraint 

Power consumption is very important in wireless communication systems, such as 

cell phones and other portable devices. For low-noise amplifiers, the power dissipation 

may be excessive while noise may be minimized. Power dissipation in the LNA can be 

expressed as 

¾¿ � 4¿¿ ∙ 2��																																																																																																	+3.46) 
where 4¿¿ is the power supply voltage and 2�� is the channel current through �O in this 

design. Note that bias circuit current is ignored in this power dissipation approximation. 

Therefore, the constraint for power dissipation can be expressed as 

¾¿ ≤ ¾¿�]: 																																																																																																					+3.47) 
where ¾¿�]: is chosen according the design specifications. 

3.2.7 Other Constraints 

An additional capacitor 9  is added to the inductive degeneration LNA circuit as 

mentioned previously. This capacitor is in parallel to the intrinsic gate capacitance 9�� of 

transistor �O. Since the sum of 9  and 9�� is always greater than 9��, a limitation on the 

ratio between 9�� and the sum of 9  and 9�� is given by 

9��9 + 9�� � 9��9��� ≤ 1																																																																																						+3.48) 
The intrinsic gate capacitance 9�� in saturation is assumed to be: 
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9�� � 239�:
�																																																																																															+3.49) 
In summary, the formulation of geometric programming optimization for short-

channel CMOS LNA design has been derived in this chapter. The objective function of 

the GP optimization is to minimize the noise figure with design constraints, such as 

device dimensions, input impedance matching, power dissipation and model-dependent 

parameters (�� and ���). Once the formulation is available, the simulation and trade-off 

analyses are ready to be performed, which will be discussed in the next chapter. 
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Chapter Four 

Application of Geometric Programming to 90 nm and 180 nm CMOS 

LNAs 

 

In this chapter, geometric programming is applied to the design of short-channel 

(90 nm and 180 nm) CMOS LNAs with common-source inductive degeneration. First, 

objective functions and design constraints are expressed in the form of either posynomial 

functions or monomial functions. Specifically, GP-compatible monomial functions of 

transconductance and output conductance are obtained for 90 nm and 180 nm CMOS 

transistors. Next, a MATLAB-based software package for geometric programming, 

CVX, is used to solve the optimal design of CMOS LNAs. Then, the calculated optimal 

design parameters are compared with simulations of a numerical simulation tool ADS for 

electronic circuit design. Finally, tradeoff analyses are performed to examine various 

design parameters such as input circuit quality factors, noise figure, drain current, and 

operating frequency.  

4.1 Extraction of À, Á, and Â 

As mentioned in the previous chapter, the power spectral density functions for the 

channel thermal noise and the induced gate noise are given by the following equations, 

�%� � 4()��<������ 

�%� � 4()��<����� 

where ��<��� is the white noise factor, ��<��� is the induced gate noise factor, and ��� is 

the output conductance at zero bias condition (4�� � 0). The conductance �� is given in 

Chapter Two as 

�� � ω�9���5���  
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where the intrinsic gate capacitance of transistor 9�� � �M9�:
�. 

Values of white noise factor � obtained from experimental measurements and 

theoretical analyses given in the literature [30, 38] are shown in Figure 4.1.In Figure 

4.1(a), the value of � is close to the 2/3 for channel lengths greater than 1 µm and 

exhibits an expected increase as channel length decreases due to short-channel effects and 

increased  thermal noise due to parasitic resistances from gate, bulk and source [40]. For 

longer channel lengths, � increases due to the non-quasi-static effect. The non-quasi-

static effect occurs when higher frequency and longer gate lengths are present [41]. In 

Figure 4.1(b), the modeled �/�U��� and the experimental results as a function of gate 

lengths are shown. 

 
(a) 

 
(b) 

Figure 4.1: Experimental (markers) and model prediction (solid lines) results of the white 

noise factor from (a) Scholten et al. [30] and (b) Jeon et al. [38] 
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Based on their published results, the white noise factor � is assumed to be 

independent of the operating frequencies for moderate frequencies (for example, up to 

10GHz), and it is not very sensitive to bias conditions. A comparison between Scholten’s 

and Jeon’s experimental results and Deen’s analytical solution (Eq. (2.18)) for � has been 

made, as shown in Figure 4.2. A very similar trend is observed among the three curves. 

 

Figure 4.2: White noise factor � versus gate length 

The induced gate noise factor � and correlation coefficient � are adapted from 

[30, 38]. As shown in Figure 4.3, a significant increase was found for the induced gate 

noise parameter � due to the contribution from the gate resistance, which consists of the 

resistance of the vias, the effective resistance of the silicide and the contact resistance 

between silicide and polysilicon. The value of � is close to 4/3 for long-channel devices, 

but it is more than twice as large for 180 nm devices. Therefore, a significant increase is 

expected for shorter devices, e.g., 90 nm devices. The magnitude of the correlation 

coefficient is 0.395 for long-channel devices [23], and it decreases due to larger � and � 

when channel length gets smaller (see Appendix B). Similarly, � and the correlation 

coefficient � are not dependent on the operating frequencies for moderate frequencies (for 

example, under 10 GHz), and their variations with bias conditions for strong inversion 

are not significant. 

 



44 

 

Figure 4.3: Beta factor versus gate channel length [30] 

Estimations of white noise factor and the induced gate noise factor at 90 nm gate 

length have been made based on the experimental results and model predictions from [30, 

38], as shown in Table 4.1. The value of � has been measured for 180 nm devices [30], 

and it equals 0.2 used for the 180 nm model used in this study. The same value has been 

subsequently estimated for the 90 nm case. The values of the three parameters used in the 

noise analyses are listed in Table 4.1. 

Table 4.1 Noise parameters for the noise analyses for 90 nm and 180 nm CMOS 

processes  

Parameters 90 nm design 180 nm design 

White noise factor (γ) 1.2 1.05 

Induced gate noise factor (�) 7.5 3.8 

Correlation coefficient (�) 0.2 0.2 

In order to determine the sensitivity to γ and � on calculation of the minimum 

noise figure, the effect of varying these parameters was analyzed, as shown in Figures 4.4 

and 4.5. When a ±10% variation is applied to γ, a small percentage of variation (around 

4%) occurs to the minimum noise figure. Similarly, less than 4% variation occurs on the 

minimum noise figure when a ±10% change is applied to �. This gives confidence to the 
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assumption that the parameters γ and � can be modeled as constants for a given 

technology node. 

 
(a) 

 
(b) 

Figure 4.4: (a) Variation of γ factor on minimum noise figure, (b) Variation of β factor 
on minimum noise figure 

4.2 Formulation of GP-compatible Objective Functions and Design Constraints 

The process-dependent parameters for calculating the transconductance (��) and 

output conductance (���) from analytical solutions are shown in Table 4.2. These 

parameters for the 90 nm and 180 nm technology nodes are adapted from BSIM3 SPICE 

models (see Appendix H for details). BSIM3 is the industry-standard MOSFET model for 
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deep-submicron digital and analog circuit designs from the BSIM Group at the University 

of California at Berkeley. The geometry ranges specified for these devices for the 

monomial fitting are given in Table 4.3. Additionally, the bias conditions are chosen to 

ensure the transistors operate in the saturation regions, e.g., 4�� ≥ 4�� shown in Table 

4.3. The vertical field mobility degradation factor � and the channel-length modulation 

parameter λ have been extracted from the I-V curves generated from SPICE simulations 

using the aforementioned BSIM3 model parameters (see Appendix I). The calculation of 

the body effect coefficient � can be found in Appendix F. After monomial expressions 

for transconductance and output conductance have been determined, the geometric 

program can be formulated. The objective function and design constraints have been 

listed as either posynomial or monomial functions. 

Table 4.2 Parameters for calculation of �� and ��� for 90 nm and 180 nm CMOS 

processes  

Parameters 90 nm 180 nm 

Electron mobility µ� 0.0179 m2/V 0.0288 m2/V 

Electron velocity saturation >�]� 1.10×105 m/s 9.18×105 m/s 

Oxide capacitance per unit area 9�: 0.014 F/m2 0.00857 F/m2 

Body effect coefficient � 1.21 1.18 

Vertical field mobility degradation factor � 0.3 V-1 0.2 V-1 

Channel-length modulation parameter λ 0.4 V-1 0.3 V-1 

Table 4.3 Ranges of devices geometry and bias conditions for calculation of �� and ��� 

for 90 nm and 180 nm CMOS processes 

Parameters 90 nm 180 nm 

Gate length � 0.09	µm ≤ � ≤ 0.45	µm 0.18	µm ≤ � ≤ 0.9	µm 

Gate width 
 1	µm ≤ 
 ≤ 100	µm 1	µm ≤ 
 ≤ 100	µm 

Overdrive voltage 4�� 0.1	V ≤ 4�� ≤ 0.4	V 0.1	V ≤ 4�� ≤ 0.5	V 

Drain to source voltage 4�� 0.5	V ≤ 4�� ≤ 1.0	V 0.6	V ≤ 4�� ≤ 1.2	V 
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During the calculation of the noise figure for short-channel CMOS LNAs, the 

monomial expressions of transconductance (��) and output conductance (���) were 

obtained by curve fitting one series of data for �� and one series of data for ��� from the 

analytical solutions (see Eq. 3.34 and Eq. 3.38) using MATLAB scripts (see Appendix 

G). As mentioned in the previous chapter, monomial expressions of transconductance 

(��) and output conductance (���) are  

�� � ¯��°g
°d2��°m 			; 									��� � ¼��¥g
¥d2��¥m 									 
The fitting parameters that were determined from the above process are listed in Table 

4.4 for both the 90 nm and 180 nm CMOS processes used in this study. 

Table 4.4 Fitting parameters of monomial expressions of �� and ��� for 90 nm and 180 

nm CMOS processes  

Parameters 90 nm 180 nm ¯� 0.0423 0.0463 ¯O -0.4578 -0.4489 ¯� 0.5275 0.5311 

¯M 0.4725 0.4689 ¼� 0.0091 0.0096 

¼O -0.5637 -0.5595 ¼� 0.5305 0.5194 ¼M 0.4695 0.4806 

The accuracy of the curve fitting has been examined by comparing the estimated 

transconductance (��) and output conductance (���) from the monomial expressions 

with calculated values from the analytical solutions. The curve fitting results for 180 nm 

are given in Appendix J. 

The curve fitting results for 90 nm are shown in Figures 4.5 and 4.6. The 

coefficient of determination (R2 value) for the transconductance curve fitting is 0.9999, 

indicating that the regression fits extremely well with the data compared with the 
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analytical solutions in Eq. (3.34). The maximum relative error from curving fitting is 

about 2.56% (Figure 4.5(a)). Furthermore, 98.2% of the curve fitting data has a relative 

error less than 1.0% (Figure 4.5(b)). 

 

Figure 4.5: (a) Histogram of relative error for curve fitting of �� for 90 nm, (b) 

Cumulative density function of relative error for curve fitting of �� for 90 nm. 

The coefficient of determination for the output conductance is 1.0, suggesting that 

the curve fitting is close to perfect. The accuracy of curve fitting is shown in Figure 4.6 

(a) with a maximum relative error of 0.97%. Moreover, among this curve fitting data, 

99.99% of the points have a relative error of less than 0.96% (Figure 4.6 (b)). 
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Figure 4.6: (a) Histogram of relative error for curve fitting of ��� for 90 nm, (b) 

Cumulative density function of relative error for curve fitting of ��� for 90 nm. 

The objective function and design constraints are expressed as either posynomial 

function or monomial function which is compatible with geometric programming. 

The objective function is to minimize Noise Factor F 

{ � 1 + O� ���� + ��� X[KE[�n�Y� X	� + O�Y � OP�BQ + ��� X[KE[�n�YS�∙��� + O�n����� ��	� 						 
	+4.1) 

Subject to constraints: � � �W ]��� 	�%Ç  1	µm ≤ 
 ≤ 100	µm 
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9��/9��� ≤ 1 329��/+9�:
�) � 1 +����)9��� � 50	Ω																																																																																																	+4.2) 
2�� · 4¿¿ ≤ ¾¿�]:				 �� � ¯��°g
°d2��°m 		 
��� � ¼��¥g
¥d2��¥m  

where �W ]��� 	�%Ç � 90 nm, 4¿¿ � 2 V and ¾¿�]: � 1 mW for the 90 nm process and �W ]��� 	�%Ç � 180 nm, 4¿¿ � 3 V and ¾¿�]: � 1.5 mW for the 180 nm process. 

4.3 A MATLAB-based Software Package for Geometric Programming 

To solve the problem summarized in the previous section, CVX, a package for 

specifying and solving geometric programming problems [42], was used. CVX uses 

MATLAB as a modeling language for convex optimization and employs standard 

MATLAB expression syntax to specify objective functions and design constraints. 

Convex optimization is a special class of mathematical optimization problems including 

least-squares and linear programming problems. The support of CVX for geometric 

programming is implemented through a special GP mode. Although geometric programs 

are not convex, a certain transformation (i.e., log transformation) can be applied to 

geometric programs to translate them into a solvable convex form. Afterwards, the 

numerical results can be transferred back to the original problem. 

The CVX package has been downloaded from http://cvxr.com/cvx/download/ and 

installed in an environment of MATLAB 7.6.0 (R2008a) on a Windows 7 Operating 

System with an Intel Core i3 CPU at 3.13 GHz and 4 GB memory. 

A MATLAB script (see Appendix K) was written to implement the geometric 

programming of objective functions and design constraints as mentioned in the previous 

section. 
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4.4 GP Optimization Design Results 

The optimal design of CMOS LNAs has been realized by using the CVX 

software. The average execution time was about 1.45 seconds on a 3.23 GHz PC with 4 

GB memory. The resulting optimal design parameters are shown in Table 4.5. In 

particular, for the 90 nm gate length, the optimal gate width is 22.17 µm, and the 

corresponding minimum noise figure is 0.6076 dB. The optimal gate width is 27 µm, and 

the corresponding minimum noise figure is 0.8229 dB for the 180 nm case. 

Table 4.5 Optimal design results for low-noise amplifier when input circuit quality factor 	=4 and output circuit quality factor 	���=5 

Parameters 90 nm 180 nm 

Output conductance (���)  0.0082 S 0.0063 S 

Transconductance (��)  0.0069 S 0.0052 S 

Gate width (
)  22.172 µm 27.006 µm 

Gate length (�) 90 nm 180 nm ¾ factor ( ¾ � 9��/9���) 0.1128 0.1681 

Gate intrinsic capacitance (9��) 18.696 fF 27.87 Ff 

Additional capacitance (9 ) 0.147 pF 0.13792 pF 

Source inductor (��) 1.2063 nH 1.5828 nH 

Gate inductor (��) 25.32 nH 24.943 nH 

Drain current (2��) 0.5 mA 0.5 mA 

Minimum noise figure ({�%�) 0.6076 dB 0.8229 dB 

The results from the optimal design using geometric programming have been 

compared with results from Agilent’s Advanced Design System (ADS) software, a 

numerical simulation tool used for RF design. The schematic used for the ADS 

simulation for the 90 nm case is shown in Figure 4.7. A current mirror is implemented to 

bias transistor �O with 0.5 mA. The power supply is set to 2 V and the values of ��, �� 
and 9  are determined by constraints used in the GP optimization. The output parallel 

RLC values are calculated by the output circuit quality factor, which is given as 5 in this 

study. 



52 

 

Figure 4.7: Schematic of a CMOS LNA for 90 nm process 

Comparison results are shown in Figure 4.8 and 4.9. For the 90 nm design, ADS 

simulations indicate that the minimum noise figure is 0.2799 dB for a gate width of 27 

µm, while the optimal width from the optimization of geometric programming is 22.172 

µm with a minimum noise figure of 0.6076 dB. For the 180 nm design, a minimum noise 

figure of 0.7708 dB was obtained for a gate width of 20 µm, while the optimal width 

from the optimization of geometric programming is 27.006 µm with a minimum noise 

figure of 0.8229 dB. As shown in Figure 4.8 and 4.9, the minimum noise figures from 

numerical simulation are smaller than the minimum noise figures from GP results. These 

discrepancies are caused by the lack of implementation the excess thermal noise in 

BSIM3 MOSFET models. The 90 nm design displays relatively larger difference than the 

180 nm design, which has confirmed that the excess noise is more significant in shorter 

channel devices. Such results have suggested that GP is an efficient method to guide the 

design of short-channel CMOS LNAs.  
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Figure 4.8: Variation of noise figure with different gate width for 90 nm design when 	=4 

 

Figure 4.9: Variation of noise figure with different gate width for 180 nm design when 	=4 

Optimal results from multiple geometric programming simulations have been 

obtained by varying the input circuit quality factor. The influence of input circuit quality 

factor on the minimum noise figure has been demonstrated (Figures 4.10 and 4.11). Same 

drain current of 0.5 mA has been used for both 90 nm and 180 nm designs for the 

analyses in Figures 4.10 and 4.11. Minimum noise figure and the corresponding optimal 

gate width are achieved with different input circuit quality factor.  
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Figure 4.10: (a) Variation of minimum noise figure with different quality factors for 90 

nm design, (b) Variation of optimal width with different quality factors for 90 nm design 

 

Figure 4.11: (a) Variation of minimum noise figure with different quality factors for 180 

nm design, (b) Variation of optimal width with different quality factors for 180 nm 

design 
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There is an inverse relationship between input circuit quality factor and minimum 

noise figure. When the qualify factor increases from 2 to 8, the minimum noise figure 

decreases from 1 dB to 0.39 dB for the 90 nm design and the minimum noise figure 

decreases from 1.28 dB to 0.56 dB. 

The input circuit quality factor not only affects the minimum noise figure, but also 

contributes to the optimal width of the low-noise amplifiers. When the qualify factor 

varies from 2 to 8, the optimal width changes more than 10 times from 74.6 µm to 6.7 

µm for 90 nm design and the optimal width changes from 87.5 µm to 8.5 µm. The 

considerable change in optimal width suggests that input circuit quality factor is a major 

contributor to optimal width during the design of low-noise amplifiers. 

4.5 Trade-off Analyses 

Trade-off analyses have been performed for both the 90 nm and 180 nm designs. 

The impacts of the channel width, input circuit quality factor, drain current, and operation 

frequency on the noise figures are considered. The trade-off analyses in Figure 4.13, 4.14, 

4.17 and 4.18 are under power constraint with a drain current of 0.5 mA. Since very 

similar trends have been observed for both 90 nm and 180 nm designs, the trade-off 

analyses for 180 nm are given in Appendix L. 

4.5.1 Effect of Input Circuit Quality Factor on the Design of LNAs 

As shown in the optimal design results, the influence of the input circuit quality 

factor on noise figure is very significant. The choice for a reasonable value for the input 

circuit quality factor becomes very important. It has been observed by Shaeffer and Lee 

[30] that when the power dissipation and the device geometry are fixed, the best noise 

performance will be achieved at a certain input circuit quality factor, which is typically 

close to 4.5 and within the range from 3.5 to 5.5. This analysis was carried out for a      

0.6 µm CMOS technology. They also speculate that  an increase of this optimal quality 

factor is expected for shorter devices [3, 29]. This study appears to corroborate this 

conclusion. For example, when the gate width equals 20 µm and channel length is 90 nm, 

a series of tradeoff curves have been plotted, which has confirmed that there is an optimal 

value for input circuit quality factor, and that the optimal quality factors display a small 

increase which is in the range from 4 to 6, as shown in Figure 4.12 for 90 nm designs. 
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Figure 4.12: Effect of input circuit quality factor on noise figure at different dc drain 

current (
=20 µm, �=90 nm) 

Tradeoff analyses have also shown the influence of the input circuit quality factor 

on the relationship of the noise figure and the gate width (Figure 4.13).  

 

Figure 4.13: Effect of channel width on the noise figure at different input circuit quality 

factors 
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The selection of the input circuit quality factor is based on the previous discussion 

of the optimal values, which are 4, 5 and 6 for this trade-off analysis. The noise figure 

varies with different channel widths for a fixed input circuit quality factor. When an 

optimal width is present, a minimum noise figure is achieved. This result is consistent 

with the previous results from Figures 4.10 and 4.11. Furthermore, such results can be 

visualized with 3-D plots in Figure 4.14, showing how the input circuit quality factor and 

channel width affect the noise figure during the design of the low-noise amplifiers. 

Minimum noise figure can be achieved when either input circuit quality factor or channel 

width is fixed.  

 

Figure 4.14: Effect of input circuit quality factor and channel width on the noise figure in 

3D 
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offers a small noise figure at relatively low power consumption. Such results can also be 

easily visualized from 3D plot (Figure 4.16). 

 

Figure 4.15: Effect of channel width on the noise figure at different drain currents 

 

Figure 4.16: Effect of drain current and channel width on the noise figure in 3D 
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frequency is fixed at 2.4 GHz. Therefore, the influence of operational frequency on the 

noise figure is limited. 

 

Figure 4.17: Effect of channel width on the noise figure at different frequencies 

 

Figure 4.18: Effect of operational frequency and channel width on the noise figure in 3D 
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variations of noise figure due to design parameters are observed and confirmed with 

literatures. For example, a minimum noise figure is achievable at the optimal channel 

width under given power dissipation and input circuit quality factor. The input circuit 

quality factor has great influences on not only the minimum noise figure but also the 

optimal width. Based on the trade-off analyses, there seems to be an optimal solution in 

the LNA design, i.e. a drain current in the range of 0.5 mA to 1 mA with an input circuit 

quality factor around 5.       
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Chapter Five 

Conclusions and Future Work 

 

In summary, this study has implemented geometric programming to obtain the 

globally optimal design of short-channel RF CMOS LNAs.  First, a framework for noise 

modeling of short-channel devices has been established by taking consideration of short-

channel effects including velocity saturation and channel-length modulation.  Then, such 

a noise model forms the basis for the objective function of geometric programming to 

minimize the noise figure of CMOS LNAs.  In addition, the minimization of noise figure 

is subjected to design constraints such as input circuit quality factor, power consumption 

and input impedance match.  Finally, geometric programming has been applied to 90nm 

and 180nm CMOS LNAs to estimate optimal channel width and noise figure. A 

minimum noise figure is achievable at the optimal channel width when power dissipation 

is given. An inverse relationship between noise figure and input circuit quality factor has 

been observed. Such results are consistent with numerical simulation from computer 

aided design of the circuits. The relationship of noise figure and channel width at a given 

power dissipation and input circuit quality factor are consistent with numerical simulation 

from computer aided design of the circuits. Therefore, geometric programming offers an 

efficient method to guide the optimal design of short-channel CMOS LNAs.  With the 

continuous downscaling of CMOS technologies and constant reduction of turnaround 

time for designing LNAs nowadays, the geometric programming method provides a high 

performance advantage over traditional methods for designing CMOS LNAs. 

Future work may focus on the enhancement of noise modeling for short-channel 

CMOS LNAs.  For example, the noise contributions from the passive devices, such as the 

gate inductor (��) and the source inductor (��) should be taken into consideration for the 

noise analysis of the CMOS LNAs, and the substrate noise source should be included in 

future work. Additionally, application of GP optimization for other topologies, such as 

the shunt-series feedback amplifier, could be included in future work. 
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Appendix A 

This appendix shows how channel thermal noise power spectral density can be 

expressed as a white noise gamma formula for long-channel devices.   

The power spectral density of channel thermal noise �%� is given in Eq. (2.5) as 

�%B � 4()��2�C ��+4) ∙ .4DBE
�  

where 2� is the drain current, � is the gate length and �+4) is the local output 

conductivity. For long-channel devices, the drain current in saturation is  

2� � 128�9�:
� 4��� 																																																																																																						+¯. 1) 
where the overdrive voltage 4�� � 4�� − 4�<. 

With the gradual channel approximation, the local output conductance at position 0 can be expressed as 

�+4+0)) � 8�9�:
X4�� − 4�< − 4+0)Y																																																																+¯. 2) 
where 4+0) is the difference in electron quasi-Fermi potential in the inversion layer and 

the hole quasi-Fermi potential in the bulk at position 0. 

Therefore, �%� for long-channel can be rewritten as using 4�� � 4�� (no channel-

length modulation in saturation region) 

�%B � 4()�� XO�8�9�: ¶� 4��� YC 38�9�:
+4�� − 4)5� ∙ .4DnB
� 			 

� 4()+8�9�:
)��� XO�8�9�: ¶� 4��� YC +4�� − 4)� ∙ .4DnB
�  

� 4() 28�9�:
�4��� ∙ ©13 +4�� − 4)M´�DnB 



67 

� 4() ∙ 23 8�9�:
� 4��																																																																																										+¯. 3) 
where 

¸Q[nÉ¶� 4�� is the expression of ��� (see Appendix F). Therefore, the power 

spectral density of channel thermal noise can be written as 

�%B � 4() ∙ �U������																																																																																																				+¯. 4) 
where the white noise gamma factor �U��� equals 2/3 for long-channel devices. 
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Appendix B 

The calculation of correlation coefficient � is described in this appendix. Since the 

induced gate noise is correlated with the drain thermal noise, the correlation coefficient is 

defined as [23] 

� � #�� ∙ #��∗����������
S#������� ∙ #�������																																																																																																	+¼. 1) 

where #�� ∙ #��∗���������� is the spectrum of the crosscorrelation of the drain thermal noise and the 

induced gate noise,  #�,����� is the spectrum of the drain thermal noise and #�,����� is the 

spectrum of the induced gate noise. In long-channel, they are given as [23] 

#�� ∙ #��∗���������� � 4() ∙ 19 ��+9�:
�) ∙ ∆&																																																											+¼. 2) 
#�,����� � 4()�U������∆&																																																																																		+¼. 3) 
#�,����� � 4()�U�����∆&																																																																																				+¼. 4) 

where  

�� � ω�9���5��� 																																																																																																						+¼. 5) 
9�� � 239�:
�																																																																																																+¼. 6) 

By substitution of Eq. (B.2)- (B.6) into Eq. (B.1), the correlation coefficient � for long-

channel can be calculated as 

� � 4() ∙ OÊ ��+9�:
�) ∙ ∆&
S4()�U��� ωd[KEdP�BQ ∆& ∙ 4()�U������∆& 
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� OÊ ��MSOP�U��� ∙ �U��� 

� 1
6SOP�U��� ∙ �U��� �																																																																																			+¼. 7) 

Substituting �U��� and �U��� with their corresponding long-channel values of 4/3 and 2/3, 

yields 

� � 1
6SOP ∙ �M ∙ �M � � 0.395�																																																																													+¼. 8) 
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Appendix C 

The calculation of the input impedance is needed to specify the impedance 

matching requirements for LNAs design. The equivalent circuit for calculating the input 

impedance of the LNA is shown in Figure C-1. 

 

Figure C-1: Equivalent circuit of input impedance calculation 

After applying a test voltage 4� and calculating the current 2�, the input impedance 

can be determined by 

�%� � 4�2�  

� 2� j���� + OËÌ+[HÍ[KE)k + 32� + ��4��5����2� 																													+9. 1) 
where 

>�� � 2� 1��+9 + 9��)																																																																																		+9. 2) 
Therefore, the input impedance can be expressed as 
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�%� � 2� j���� + OËÌ+[HÍ[KE)k + y2� + �� j2� OËÌ+[HÍ[KE)kz ����2�  

� y���� + 1��+9 + 9��)z + Î1 + �� y 1��+9 + 9��)zÏ ���� 
� 1��39 + 9��5 + ��+�� + ��) + ��39 + 9��5 �� 
� ��39 + 9��5 �� + � ��+�� + ��) − 1�39 + 9��5�																									+9. 3) 

At the resonant frequency ��, the input impedance should be purely resistive and 

equals the source resistance for the maximum power delivery.  

��39 + 9��5 �� � ��9��� �� � ��																																																																							+9. 5) 
The imaginary term of the input impedance equal to zero yields, 

�+�� + ��) � 1�39 + 9��5																																																																									+9. 6) 
The equations required to obtain an input impedance match at the resonant frequency are, 

��9��� �� � �� 

�� � 1S+�� + ��)39 + 9��5 �
1����� ∙ 9��� 																																												+9. 7) 
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Appendix D 

This appendix gives the detailed derivations for calculating the contributions of 

the output noise current due to the input noise sources. Four noise sources, which are 

input source resistance noise, channel thermal noise, induced gate noise and output 

resistance noise, will be discussed in the following sections. 

D.1 Contribution of Input Source Resistance 

The contribution of output noise current due to the noise current of input source 

resistance #�̅,�,�E can be obtained using the following small-signal circuit. 

 

Figure D-1: Small-signal circuit for calculating output noise due to the noise current of 

input source resistance 

At the resonant frequency ��, the current and voltage relationship are given by 

>�� � t� ∙ 1���+9 + 9��)																																																																														+Ð. 1) 
tO + t� + #�̅,�E � 0																																																																																										+Ð. 2) 
tO�� � t� y����� + 1���+9 + 9��)z + tM	�����																																				+Ð. 3) 
tM � t� + ��>�� 																																																																																														+Ð. 4) 
#�̅,�,�E � −��>��																																																																																													+Ð. 5) 
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Using Eq. (D.1, (D.2), and (D.5), current components can be rewritten as 

tO � −���+9 + 9��)>�� − #�̅,�E 																																																																	+Ð. 6) 
t� � ���+9 + 9��)>��																																																																																		+Ð. 7) 
tM � ���+9 + 9��)>�� + ��>��																																																																	+Ð. 8) 

Then, substituting above expressions into Eq. (D.3), yields >�� in terms of #�̅,�E 
>�� � − 12���+9 + 9��) #�̅,�E																																																																						+Ð. 9) 

Therefore,  

#�̅,�,�E � ��2���+9 + 9��) #�̅,�E																																																																			+Ð. 10) 
D.2 Contribution of the Channel Thermal Noise Current 

The contribution of output noise current due to the channel thermal noise current #�̅,�,� can be found using the following small-signal circuit. 

 

Figure D-2: Small-signal circuit for calculating output noise due to channel thermal 

noise current 

At the resonant frequency ��, the current and voltage relationship are given by 
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>�� � tO ∙ 1���+9 + 9��)																																																																												+Ð. 11) 
tO + ��>�� + #�̅,� � t�																																																																																+Ð. 12) 
tO y�� + ����� + 1���+9 + 9��)z + t�	����� � 0																													+Ð. 13) 
#�̅,�,� � −��>�� − #�̅,� 																																																																															+Ð. 14) 

Using Eq. (D.11) and (D.12), tO and t�can be rewritten as 

tO � ���+9 + 9��)>��																																																																																+Ð. 15) 
t� � ���+9 + 9��)>�� + ��>�� + #�̅,� 																																																		+Ð. 16) 

Then, substituting the above expression of tO and t� into Eq. (D.13), yields >�� in terms of t�,� 

>�� � − �����1 − ���+9 + 9��)+�� + ��) + �����+9 + 9��) + ������� #�̅,� 	+Ð. 17) 
Since  

���+9 + 9��)+�� + ��) � 1	 
����+9 + 9��) � ��	 

then,  

>�� � − 12�� #�̅,�																																																																																										+Ð. 18) 
Therefore,  

#�̅,�,� � −12 #�̅,� 																																																																																													+Ð. 19) 
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D.3 Contribution of the Induced Gate Noise Current 

The contribution of output noise current due to the induced gate noise current can 

be found using the following small-signal circuit. 

 

Figure D-3: Small-signal circuit for calculating output noise due to induced gate noise 

current 

At the resonant frequency ��, the current and voltage relationship are given by 

tO + ��>�� � t�																																																																																												+Ð. 20) 
tO + #�̅,� � >�����+9 + 9��)																																																																				+Ð. 21) 
tO3�� + �����5 + >�� + t������ � 0																																																					+Ð. 22) 
#�̅,�,� � −��>��																																																																																												+Ð. 23) 

Using Eq. (D.21) and (D.22), the current components can be rewritten as, 

tO � >�����+9 + 9��)−#�̅,�																																																																						+Ð. 24) 
t� � −3>�����+9 + 9��)−#�̅,�53�� + �����5 + >������� 																								+Ð. 25) 

Solving Eq. (D.24) and (D.25), it yields >�� in terms of #�̅,� 

>�� � �� + ���+�� + ��)1 − ���+9 + 9��)+�� + ��) + �����+9 + 9��) + ������� ∙ #�̅,�			+Ð. 26) 
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Since  

���+9 + 9��)+�� + ��) � 1 

����+9 + 9��) � ��	 
then,  

>�� � 1���+9 + 9��) �����+9 + 9��) − 12�����+9 + 9��) ∙ #�̅,�																																	+Ð. 27) 
Substituting the above expression of >�� into Eq. (D.23), yields  

#�̅,�,� � �����+9 + 9��) 1 − �����+9 + 9��)2�����+9 + 9��) ∙ #�̅,�																														+Ð. 28) 
D.4 Contribution of the Output Resistance 

The contribution of output noise current due to the noise current of the output 

resistance can be obtained using the following small-signal circuit. 

 

Figure D-4: Small-signal circuit for calculating output noise due to the noise current of 

the output resistance 
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At the resonant frequency ��, the current and voltage relationship are given by 

tO + ��>�� � t�																																																																																												+Ð. 29) 
tO y�� + ����� + 1���+9 + 9��)z + t������ � 0																														+Ð. 30) 
>�� � tO 1���+9 + 9��)																																																																														+Ð. 31) 
#�̅,�,�n�� + ��>�� � #�̅,�n��																																																																									+Ð. 32) 

Using Eq. (D.30), the current component t� can be rewritten as 

t� � j�� + ����� + OËÌQ+[HÍ[KE)k−����� tO																																																									+Ð. 33) 
Substituting the above expression of t� into Eq. (D.29), yields tO in the form of 

tO � −������������ + �� + ����� + OËÌQ+[HÍ[KE)
>��																																											 

� �������+9 + 9��)−���+�� + ��)+9 + 9��) + �����+9 + 9��) + 1 >�� 															+Ð. 34) 
Since  

���+9 + 9��)+�� + ��) � 1 

����+9 + 9��) � ��	 
 then, 

tO � �������+9 + 9��)�����+9 + 9��) >��	 
� −���+9 + 9��)>��																																																																												+Ð. 35) 
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Then substituting Eq. (D.35) into Eq. (D.31), yields >��  
>�� � 3−���+9 + 9��)>��5 ∙ 1���+9 + 9��) 

� −>��																																																																																																					+Ð. 36) 
which means >�� � 0. 

Therefore, 

#�̅,�,�n�� � #�̅,�n��																																																																																											+Ð. 37) 
 By observing the small-signal circuit in Figure D-4, no stimulation is present at 

the input circuit. which yields tO � 0 and >�� � 0. Therefore, #�̅,�,�n�� � #�̅,�n��. 
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Appendix E 

Once the contributions of output noise due to the thermal noise sources are 

known, the noise factor is ready to be calculated. The four mean square currents due to 

thermal noise sources have been given in chapter three as follows, 

#�,�����E � 4() 1�� ∆&																																																																																											+/. 1) 
#�,�����n�� � 4() 1���� ∆&																																																																																				+/. 2) 
#�,����� � 4()��<������∆&																																																																																	+/. 3) 
#�,����� � 4()��<�����∆&																																																																																		+/. 4) 

As shown in previous section, the contributions of these four noise sources to the output 

noise current are 

#�̅,�,�E � ���2��9��� #�̅,�E 																																																																																		+/. 5) 
#�̅,�,� � −12 #�̅,� 																																																																																															+/. 6) 
#�̅,�,� � �����9��� 1 − �����9����2����9��� #�̅,�																																																												+/. 7) 
#�̅,�,�n�� � #�̅,�n��																																																																																													+/. 8) 

By definition, the noise factor can be expressed as  

{ � #�$�,�,�E + #�$�,�,� + #�$�,�,� + #�$�,�,V��� U]�%�� + #�$�,�,�n��#�$�,�,�E 														+/. 9) 
The output noise due to the correlation between channel thermal noise and induced gate 

noise can be represented as [18] 

#�$�,�,V��� U]�%�� � ���2��9���S#�$�,� ∙ #�$�,�																																																	+/. 10) 
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where � is the correlation coefficient (see Appendix B). 

Therefore, the noise factor can be calculated as 

{ � 1 + Ñ− O�Ñ� ��<������ + Ñ ��ËÌQ[�n� OoË�EÌQ[�n�Ë��EÌQ[�n� Ñ� ��<�����Ñ ��Ë�ÌQ[�n�Ñ� O�E
+ 

��V�ÌQ[�n����<������ ∙ ��<����� + O�n��Ñ ��Ë�ÌQ[�n�Ñ� O�E
																																							+/. 11) 

where  

�� � ω�9���5��� 																																																																																												 
Then after working through some algebra, the noise factor is formed to be, 

{ � 1 + O� ��<������ + X ��ÌQ[�n�Y� OÍ+�EÌQ[�n�)d+��EÌQ[�n�)d ��<��� ÌQd[KEdP�BQX ���ÌQ[�n�Y� O�E
+ 

��V�ÌQ[�n�S��<������ ∙ ��<��� ÌQd[KEdP�BQ + O�n��X ���ÌQ[�n�Y� O�E
 

� 1 + O� ��<������ + ��� X[KE[�n�Y� X	� + O�Y��<��� OP�BQ��� ��	� + 

[KE[�n� ���S�EÒnÓ�∙�EÒnÓ��� + O�n����� ��	� 																																													+/. 12) 
where the values of ��<���,	��<��� and � are extracted for short-channel devices.  
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Appendix F 

In this appendix, analytical expressions for the output conductance and 

transconductance are discussed for both long-channel devices and short-channel devices.  

F.1 Derivations of �²³ and ��for Long-channel Devices 

For long-channel devices, the well-known expressions of the drain current in both 

triode region and saturation region are given as [43]  

2���%�� � 8�9�:
� j4�� ∙ 4�� − 124��� k																																																				+{. 1) 
2��]� � 128�9�:
� 4��� 																																																																																			+{. 2) 

By definition, the output conductance �� is 

�� � ©ª2���%�� ª4�� ´¬µ® 			 
�		 8�9�:
� j4�� − 12 ∙ 2	4��	k 

� 8�9�:
� +4�� − 4��	)																																																																									+{. 3) 
Therefore, the output conductance at zero bias (i.e. 4�� � 0), can be expressed by, 

��� ©	� ��|¬®?� 

� 8�9�:
� 4��	 
� 8�9�:
� Ô22��]� �
8�9�: 

� Ô2
� 8�9�:2��]�																																																																															+{. 4) 
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The transconductance of a long-channel device in saturation is given as, 

�� � ©ª2��]�ª4�� ´¬µ®  
� 12 8�9�:
� ∙ 24�� 

� 8�9�:
� ∙ 4�� 

� Ô2
� 8�9�:2��]�																																																																																+{. 5) 
For long-channel devices, it is obvious that the output conductance at zero bias ��� has the same form as the transconductance in saturation in terms of 4�� or 2��]�. 

F.2 Derivations of �²³ and ��for Short-channel Devices 

However, the drain current for short-channel devices is expressed differently than 

for the long-channel devices. By taken some important short-channel effects into account, 

such as velocity saturation and channel-length modulation, the expressions of the 

analytical drain current model in both the triode region and saturation region are given by 

[11], 

2���%�� � 8 WW9�: j
� k ∙ 34�� − 4�<54�� − X��Y4���1 + +8 WW4��)/+2>�]��) 																												+{. 6) 
2��]� � 8 WW9�: j
� k

3DKEoD�Ò5d��1 + 8 WW34�� − 4�<5/+2�>�]��) ∙ +1 + �4��)			 
+{. 7) 

where [11, 22], 

8 WW � 8�1 + �34�� − 4�<5																																																																														+{. 8) 
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� � ��u�: 																																																																																																														+{. 9) 
� � 1 + SεE ¡¢_Ò�Ψ¤9�: 																																																																																							+{. 10) 
Ψ¥ � j()¦ k ln+�V< l%⁄ )																																																																														+{. 11) 

After applying the quotient rule, the output conductance �� can be expressed as 

�� � ©ª2���%�� ª4�� ´¬µ® 			 
�		 8 WW9�: j
� k ∙ 

ÕX4��4�� − X��Y 4��� Y± ∙ X1 + ¸H¹¹DBE�TE£�� Y − X4��4�� − X��Y4��� Y ∙ X1 + ¸H¹¹DBE�TE£�� Y±X1 + ¸H¹¹DBE�TE£�� Y� Ö 

�		 8 WW9�: j
� k +4�� −�4��) ∙ X1 + ¸H¹¹DBE�TE£�� Y − X4��4�� − X��Y4��� Y ∙ ¸H¹¹�TE£��X1 + ¸H¹¹DBE�TE£�� Y�  

� 8 WW9�: X¶� Y ·4�� −�4�� − X��Y ¸H¹¹�TE£��4��� ºX1 + ¸H¹¹DBE�TE£�� Y� 																																																											+{. 12) 
Therefore, the output conductance at zero bias, which is 4�� � 0, can be expressed by, 

��� � ©��|¬®?� � 8�1 + �4�� 9�:
� 4��																																																			+{. 13) 
By substituting the effective mobility equation into the saturation drain current formula, 

the equation of 2��]� for short-channel devices can be rewritten as in following: 
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2��]� � 8 WW9�: j
� k 34�� − 4�<5�/+2�)1 + 8 WW34�� − 4�<5/+2�>�]��) ∙ +1 + �4��)																	+{. 14) 
The transconductance of a short-channel device in saturation is given as 

�� � ©ª2��]�ª4�� ´¬µ®  
� × 8�1 + �4�� 9�: j
� k 4���/+2�)1 + ¸QOÍ�DnB O��TE£��4�� ∙ +1 + �4��)Ø± 

� 9�:8� j
� k 12� +1 + �4��) ∙ × 4���+1 + �4��) X1 + O��TE£�� ¸QOÍ�DnB 4��YØ
±
 

� 9�:8� j
� k 12� +1 + �4��) ∙ × 4���X1 + �4�� + ¸Q��TE£�� 4��YØ
±
 

� 9�:8� j
� k 12� +1 + �4��)
∙ Õ34���5± X1 + �4�� + ¸Q��TE£��4��Y − 4��� X1 + �4�� + ¸Q��TE£��4��Y±X1 + �4�� + ¸Q��TE£��4��Y� Ö 
� 9�:8�
>�]� ∙ +1 + �	4��) ∙ 34�>�]��4�� + +2�>�]��� + 8�)4���5+2�>�]�� + +2�>�]��� + 8�)4��)� 													+{. 15) 

F.3 Calculations of Body Effect Factor �  

In Eq. (F.10), the body effect factor � is given as [11] 

� � 1 + SεE ¡¢_Ò�Ψ¤9�: 																																																																																								 
where Ψ¥ can be determined by 
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Ψ¥ � j()¦ k ln+�V< l%⁄ )																																																																												 
The parameter �V< is the channel doping concentration obtained from BSIM3 models in 

Appendix H. The parameter l% is intrinsic carrier concentration, and its typical value is 

1.5×1010 cm-3 for silicon at room temperature [39].  

Therefore, the parameter values used in the calculation of � and the values of � 

are listed in Table F-1 for both 90 nm and 180 nm processes. 

Table F-1: Parameters for calculation of the body effect factor � 

Parameters 90 nm 180 nm 

Oxide capacitance per unit area 9�: 0.014 F/m2 0.00857 F/m2 

Channel doping concentration �] 9.7×1017 cm-3 2.3549×1017 cm-3 

Difference between Fermi potential and 
intrinsic potential Ψ¥ 

0.4658 V 0.429 V 

Body effect coefficient � 1.21 1.18 
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Appendix G 

G.1 MATLAB Script for Monomial Curve Fitting of the Transconductance �� 

%convert transconductance function to monomial format 
%The following equation is used in this program 
%output variable or dependent variable: gm 
%design variables or independent variables: L, W, I_ds 
%process constants: u_0,C_ox, v_sat,m,theta 
%constraints: L_min,L_max,W_min,W_max, V_od_min,V_od_max, 

%V_ds_min V_ds_max, 
%gm=u_0*C_ox*W*v_sat*(2*V_od*2*m*v_sat*L+V_od^2*(2*m*v_sat*L*theta+u_0)

)/ 
%  (2*m*v_sat*L+V_od*(2*m*v_sat*L*theta+u_0))^2*(1+V_ds*Lamda) 
%empirical function of monomial format 
%gm=a0*(L^a1)*(W^a2)*(I_ds^a3); 
%convert the aforementioned equation by taking log on both sides 
%log_gm=log_a0+a1*log_L+a2*log_W+a3*log_I_ds 

  
%set up process constants 
u_0=1.7999999E-02; %m^2/VS 
v_sat=1.1000000E+05; %m/s 
m=1.20897; 
theta=0.3; %1/V 
C_ox=14.0538E-03; %F/m^2 
Lamda=0.4 

  
%set up dependent variables 
L_min=0.09E-6;  
L_max=0.45E-6; 
W_min=1E-6; 
W_max=100E-6; 
V_od_min=0.1; 
V_od_max=0.4; 
Vds_min=0.5; 
Vds_max=1; 
 

N=30; 
L=linspace(L_min,L_max,N)'; 
W=linspace(W_min,W_max,N)'; 
V_ds=linspace(Vds_min, Vds_max, N)'; 
V_od=linspace(V_od_min, V_od_max,N)'; 

  
%calculate gm 
%initianize gm 
gm=[]; 
I_ds=[]; 
design_var=[]; 
for(i=1:N) 
    for(j=1:N) 
        for (k=1:N) 
        u_eff(k)=u_0/(1+theta*V_od(k)); 
        V_sat(k)=2*v_sat*L(i)/u_eff(k); 
        V_dssat(k)=V_od(k)/m/(1+V_od(k)/(m*V_sat(k))); 
        I_ds(k)=1/2*u_eff(k)*C_ox*W(j)/L(i)*V_od(k)*V_dssat(k)*... 
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        (1+Lamda*V_ds(k)); 
        I_ds=[I_ds; I_ds(k)]; 
        temp_gm=u_0*C_ox*W(j)*v_sat*(2*V_od(k)*2*m*v_sat*L(i)+ ... 

               V_od(k)^2*(2*m*v_sat*L(i)*theta+u_0))/... 
              (2*m*v_sat*L(i)+V_od(k)*(2*m*v_sat*L(i)*theta+u_0))^2*... 

              (1+V_ds(k)*Lamda); 
        gm = [gm; temp_gm]; 
        design_var=[design_var; [10 L(i) W(j) I_ds(k)]]; 
        end 
    end 
end 

  
%log transformation 
log_gm = log10(gm); 
log_design_var = log10(design_var); 

  
%multiple linear regression y=a0+a1*x1+a2*x2+a3*x3 
y=log_gm; 
X=log_design_var; 
[b bint r rint stats] = regress(y,X); 
a0=10^(b(1)) 
a1=b(2) 
a2=b(3) 
a3=b(4) 

  
stats 

  
%plot of error distribution 
ybar=mean(y) 
sserr=sum(r.*r) 
sstot=sum((y-ybar).*(y-ybar)) 
%coefficient of determination (R-squared) 
r2=1-sserr/sstot 

  
residual=abs((r./y))*100; 
subplot(2,1,1) 
hist_ret=hist(residual, 100); 
hist(residual, 100) 
subplot(2,1,2) 
cdfplot(abs(residual)) 
axis([0 10 0 1]) 
error_max=max(residual) 
error_min=min(residual) 

 

G.2 MATLAB Script for Monomial Curve Fitting of the Output Conductance �²³ 

%convert output conductance function to monomial format 
%The following equation is used in this program 
%output variable or dependent variable: gd0 
%design variables or independent variables: L, W, I_ds 
%process constants: u_0,C_ox, v_sat,m,theta 
%constraints: L_min,L_max,W_min,W_max, V_od_min,V_od_max, 

%V_ds_min, V_ds_max 
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%gd0=u_eff*C_ox*W/L*V_od 
%u_eff=u0/(1+Theta*V_od) 
%Vdssat=V_od*Vsat/(V_od+m*Vsat) 
%Vsat=2*vsat*L/u_eff 
%empirical function of monomial format 
%gdn=a0*(L^a1)*(W^a2)*(I_d^a3); 
%convert the aforementioned equation by taking log on both sides 
%log_gd0=log_a0+a1*log_L+a2*log_W+a3*log_I_ds 

  
%set up process constants 
u_0=1.7999999E-02; %m^2/VS 
v_sat=1.1000000E+05; %m/s 
m=1.20897; 
theta=0.3; %1/V 
C_ox=14.0538E-03; %F/m^2 
Lamda=0.4; 

 
%set up dependent variables 
L_min=0.09E-6;  
L_max=0.45E-6; 
W_min=1E-6; 
W_max=100E-6; 
V_od_min=0.1; 
V_od_max=0.4; 
Vds_min=0.5; 
Vds_max=1; 
 

N=30; 
V_ds=linspace(Vds_min, Vds_max, N)'; 
L=linspace(L_min,L_max,N)'; 
W=linspace(W_min,W_max,N)'; 
V_od=linspace(V_od_min, V_od_max,N)'; 

  
%calculate gd0  
%initianize gd0 
gd0=[]; 
I_ds=[]; 
design_var=[]; 
for(i=1:N) 
    for (j=1:N)  
        for (k=1:N) 
            u_eff(k)=u_0/(1+theta*V_od(k)); 
            V_sat(k)=2*v_sat*L(i)/u_eff(k); 
            V_dssat(k)=V_od(k)/m/(1+V_od(k)/(m*V_sat(k))); 
            I_ds(k)=1/2*u_eff(k)*C_ox*W(j)/L(i)*V_od(k)*V_dssat(k)* ... 

                    (1+Lamda*V_ds(k)); 
            temp_gd0=u_eff(k)*C_ox*W(j)/L(i)*V_od(k); 
            gd0 = [gd0; temp_gd0]; 
            I_ds=[I_ds; I_ds(k)]; 
            design_var=[design_var; [10 L(i) W(j) I_ds(k)]]; 
        end 
     end 
end 

  
%log transformation 
log_gd0 = log10(gd0); 
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log_design_var = log10(design_var); 

  
%multiple linear regression y=a0+a1*x1+a2*x2+a3*x3 
y=log_gd0; 
X=log_design_var; 
[b bint r rint stats] = regress(y,X); 
a0=10^(b(1)) 
a1=b(2) 
a2=b(3) 
a3=b(4) 
stats 

  
%plot of error distribution 
ybar=mean(y) 
sserr=sum(r.*r) 
sstot=sum((y-ybar).*(y-ybar)) 
%coefficient of determination (R-squared) 
r2=1-sserr/sstot 

  
residual=abs((r./y))*100; 
subplot(2,1,1) 
hist(residual, 100) 
hist_ret=hist(residual, 100); 
subplot(2,1,2) 
cdfplot(residual) 
axis([0 10 0 1]) 
error_max=max(residual) 
error_min=min(residual) 
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Appendix H 

H.1 BSIM3 Model Card for 90 nm from Predictive Technology Model 

*Predictive Technology Model Beta Version 
* 90nm NMOS SPICE Parametersv (normal one) 
 
.model CMOSN NMOS 
+Level = 49 
+Lint = 1.5e-08 Tox = 2.5e-09  
+Vth0 = 0.2607 Rdsw = 180  
+lmin=1.0e-7 lmax=1.0e-7 wmin=1.0e-7 wmax=1.0e-4 
+Tref=27.0   version =3.1 
+Xj= 4.0000000E-08       Nch= 9.7000000E+17  
+lln= 1.0000000          lwn= 1.0000000              wln= 0.00 
+wwn= 0.00               ll= 0.00 
+lw= 0.00                lwl= 0.00                   wint= 0.00 
+wl= 0.00                ww= 0.00                    wwl= 0.00 
+Mobmod=  1              binunit= 2                  xl= 0.00 
+xw= 0.00                binflag=  0 
+Dwg= 0.00               Dwb= 0.00  
 
+ACM= 0                  ldif=0.00                   hdif=0.00 
+rsh= 7                  rd= 0                       rs= 0 
+rsc= 0                  rdc= 0 
 
+K1= 0.3950000           K2= 1.0000000E-02           K3= 0.00  
+Dvt0= 1.0000000         Dvt1= 0.4000000             Dvt2= 0.1500000  
+Dvt0w= 0.00             Dvt1w= 0.00                 Dvt2w= 0.00  
+Nlx= 4.8000000E-08      W0= 0.00                    K3b= 0.00  
+Ngate= 5.0000000E+20  
 
+Vsat= 1.1000000E+05     Ua= -6.0000000E-10          Ub= 8.0000000E-19  
+Uc= -2.9999999E-11        
+Prwb= 0.00              Prwg= 0.00                  Wr= 1.0000000  
+U0= 1.7999999E-02       A0= 1.1000000               Keta= 4.0000000E-02  
+A1= 0.00                A2= 1.0000000               Ags= -1.0000000E-02 
+B0= 0.00                B1= 0.00  
 
+Voff= -2.9999999E-02    NFactor= 1.5000000          Cit= 0.00  
+Cdsc= 0.00              Cdscb= 0.00                 Cdscd= 0.00  
+Eta0= 0.1500000         Etab= 0.00                  Dsub= 0.6000000  
 
+Pclm= 0.1000000         Pdiblc1= 1.2000000E-02      Pdiblc2= 7.5000000E-03 
+Pdiblcb= -1.3500000E-02 Drout= 2.0000000            Pscbe1= 8.6600000E+08 
+Pscbe2= 1.0000000E-20   Pvag= -0.2800000            Delta= 1.0000000E-02 
+Alpha0= 0.00            Beta0= 30.0000000  
 
+kt1= -0.3700000         kt2= -4.0000000E-02         At= 5.5000000E+04  
+Ute= -1.4800000         Ua1= 9.5829000E-10          Ub1= -3.3473000E-19 
+Uc1= 0.00               Kt1l= 4.0000000E-09         Prt= 0.00  
 
+Cj= 0.0015             Mj= 0.72                    Pb= 1.25  
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+Cjsw= 2E-10            Mjsw= 0.37                  Php= 0.773 
+Cjgate= 2E-14           Cta= 0                      Ctp= 0 
+Pta= 0                  Ptp= 0                      JS=1.50E-08 
+JSW=2.50E-13            N=1.0                       Xti=3.0 
+Cgdo=3.493E-10          Cgso=3.493E-10              Cgbo=0.0E+00 
+Capmod= 2               NQSMOD= 0                   Elm= 5 
+Xpart= 1                cgsl= 0.582E-10             cgdl= 0.582E-10 
+ckappa= 0.28            cf= 1.177e-10               clc= 1.0000000E-07 
+cle= 0.6000000          Dlc= 2E-08                  Dwc= 0 
 
*Predictive Technology Model Beta Version 
*90nm PMOS SPICE Parametersv (normal one) 
 
.model CMOSP PMOS 
+Level = 49 
+Lint = 1.5e-08 Tox = 2.5e-09  
+Vth0 = -0.303 Rdsw = 300  
+lmin=1.0e-7 lmax=1.0e-7 wmin=1.0e-7 wmax=1.0e-4 
+Tref=27.0   version =3.1 
+Xj= 4.0000000E-08             Nch= 1.0400000E+18  
+lln= 1.0000000                lwn= 0.00                          wln= 0.00 
+wwn= 1.0000000                ll= 0.00                           lw= 0.00 
+lwl= 0.00                     wint= 0.00                         wl= 0.00 
+ww= 0.00                      wwl= 0.00                          Mobmod=  1 
+binunit= 2                    xl= 0.00                           xw= 0.00 
+binflag=  0                   Dwg= 0.00                          Dwb= 0.00 
 
+ACM= 0                        ldif=0.00                          hdif=0.00 
+rsh= 7                        rd= 0                              rs= 0 
+rsc= 0                        rdc= 0 
 
+K1= 0.3910000                 K2= 1.0000000E-02                  K3= 0.00  
+Dvt0= 2.6700001               Dvt1= 0.5300000                    Dvt2= 5.0000000E-02  
+Dvt0w= 0.00                   Dvt1w= 0.00                        Dvt2w= 0.00  
+Nlx= 7.5000000E-08            W0= 0.00                           K3b= 0.00  
+Ngate= 5.0000000E+20  
 
+Vsat= 1.0500000E+05           Ua= -5.0000000E-10                 Ub= 1.5000000E-18 
+Uc= -2.9999999E-11   
+Prwb= 0.00                    Prwg= 0.00                         Wr= 1.0000000  
+U0= 5.5000000E-03             A0= 2.0000000                      Keta= 4.0000000E-02 
+A1= 0.00                      A2= 0.9900000                      Ags= -0.1000000  
+B0= 0.00                      B1= 0.00  
 
+Voff= -7.0000000E-02          NFactor= 1.5000000                 Cit= 0.00  
+Cdsc= 0.00                    Cdscb= 0.00                        Cdscd= 0.00 
+Eta0= 0.2500000               Etab= 0.00                         Dsub= 0.8000000  
 
+Pclm= 0.1000000               Pdiblc1= 1.2000000E-02             Pdiblc2= 7.5000000E-03  
+Pdiblcb= -1.3500000E-02       Drout= 0.9000000                   Pscbe1= 8.6600000E+08  
+Pscbe2= 1.0000000E-20         Pvag= -0.2800000                   Delta= 1.0100000E-02  
+Alpha0= 0.00                  Beta0= 30.0000000  
 
+kt1= -0.3400000               kt2= -5.2700000E-02                At= 0.00  
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+Ute= -1.2300000               Ua1= -8.6300000E-10                Ub1= 2.0000001E-18  
+Uc1= 0.00                     Kt1l= 4.0000000E-09                Prt= 0.00  
 
+Cj= 0.0015                    Mj= 0.7175511                      Pb= 1.24859 
+Cjsw= 2E-10                   Mjsw= 0.3706993                    Php= 0.7731149 
+Cjgate= 2E-14                 Cta= 9.290391E-04                  Ctp= 7.456211E-04 
+Pta= 1.527748E-03             Ptp= 1.56325E-03                   JS=2.50E-08 
+JSW=4.00E-13                  N=1.0                              Xti=3.0 
+Cgdo=3.49E-10                 Cgso=3.49E-10                      Cgbo=0.0E+00        
+Capmod= 2                     NQSMOD= 0                          Elm= 5             
+Xpart= 1                      cgsl= 0.582E-10                    cgdl= 0.582E-10 
+ckappa= 0.28                  cf= 1.177e-10                      clc= 5.4750000E-08  
+cle= 6.4600000                Dlc= 2E-08                         Dwc= 0 
  

H.2 BSIM3 Model Card for 180 nm from MOSIS 

BSIM3 model card for 180 nm process from MOSIS 
T16X SPICE BSIM3 VERSION 3.1 PARAMETERS 
 
*SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8 
 
* DATE: Sep  7/01 
* LOT: T16X                  WAF: 1003 
* Temperature_parameters=Default 
.MODEL CMOSN NMOS (                                LEVEL   = 8 
+VERSION = 3.1            TNOM    = 27             TOX     = 4.1E-9 
+XJ      = 1E-7           NCH     = 2.3549E17      VTH0    = 0.3605538 
+K1      = 0.5777152      K2      = 2.526592E-3    K3      = 2.670152E-3 
+K3B     = 0.5204602      W0      = 1E-7           NLX     = 1.849791E-7 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 1.5818674      DVT1    = 0.4236362      DVT2    = 0.0343793 
+U0      = 288.0282273    UA      = -8.17815E-10   UB      = 1.450475E-18 
+UC      = -8.34941E-12   VSAT    = 9.177422E4     A0      = 1.7971402 
+AGS     = 0.345235       B0      = -8.186223E-9   B1      = -1E-7 
+KETA    = 4.228174E-3    A1      = 2.883004E-4    A2      = 1 
+RDSW    = 111.6421667    PRWG    = 0.5            PRWB    = -0.2 
+WR      = 1              WINT    = 0              LINT    = 1.013238E-8 
+XL      = -2E-8          XW      = -1E-8          DWG     = -2.957794E-9 
+DWB     = -5.481917E-9   VOFF    = -0.0751743     NFACTOR = 2.4279014 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 0.0617276      ETAB    = -0.0550759 
+DSUB    = 0.9913143      PCLM    = 0.8440074      PDIBLC1 = 0.0740648 
+PDIBLC2 = 0.01           PDIBLCB = -0.0967333     DROUT   = 0.5304348 
+PSCBE1  = 7.990582E10    PSCBE2  = 2.575736E-8    PVAG    = 4.31952E-3 
+DELTA   = 0.01           RSH     = 6.5            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 7.27E-10       CGSO    = 7.27E-10       CGBO    = 1E-12 
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+CJ      = 9.84856E-4     PB      = 0.7346381      MJ      = 0.3585837 
+CJSW    = 2.565078E-10   PBSW    = 0.5748835      MJSW    = 0.1326375 
+CJSWG   = 3.3E-10        PBSWG   = 0.5748835      MJSWG   = 0.1326375 
+CF      = 0              PVTH0   = 1.021475E-3    PRDSW   = -5 
+PK2     = -1.325745E-3   WKETA   = 2.715841E-3    LKETA   = -9.467507E-3 
+PU0     = 25.3593802     PUA     = 1.12333E-10    PUB     = 0 
+PVSAT   = 1.773637E3     PETA0   = 1E-4           PKETA   = 2.106287E-3     ) 
* 
.MODEL CMOSP PMOS (                                LEVEL   = 49 
+VERSION = 3.1            TNOM    = 27             TOX     = 4.1E-9 
+XJ      = 1E-7           NCH     = 4.1589E17      VTH0    = -0.4135147 
+K1      = 0.5632651      K2      = 0.0362262      K3      = 0 
+K3B     = 6.6196198      W0      = 1E-6           NLX     = 1.112495E-7 
+DVT0W   = 0              DVT1W   = 0              DVT2W   = 0 
+DVT0    = 0.4495656      DVT1    = 0.2548646      DVT2    = 0.1 
+U0      = 117.9302546    UA      = 1.570536E-9    UB      = 1E-21 
+UC      = -1E-10         VSAT    = 1.759454E5     A0      = 1.6471527 
+AGS     = 0.3672404      B0      = 1.944686E-6    B1      = 4.821068E-6 
+KETA    = 0.0195345      A1      = 0.0975486      A2      = 0.7207385 
+RDSW    = 239.4418333    PRWG    = 0.5            PRWB    = -0.2029631 
+WR      = 1              WINT    = 0              LINT    = 2.100806E-8 
+XL      = -2E-8          XW      = -1E-8          DWG     = -2.681695E-8 
+DWB     = 2.587904E-9    VOFF    = -0.0985781     NFACTOR = 2 
+CIT     = 0              CDSC    = 2.4E-4         CDSCD   = 0 
+CDSCB   = 0              ETA0    = 0.2096608      ETAB    = -0.2204555 
+DSUB    = 1.2864766      PCLM    = 2.5379236      PDIBLC1 = 6.306556E-3 
+PDIBLC2 = 0.0507647      PDIBLCB = -1E-3          DROUT   = 9.98682E-4 
+PSCBE1  = 1.732892E9     PSCBE2  = 5E-10          PVAG    = 14.9794054 
+DELTA   = 0.01           RSH     = 7.2            MOBMOD  = 1 
+PRT     = 0              UTE     = -1.5           KT1     = -0.11 
+KT1L    = 0              KT2     = 0.022          UA1     = 4.31E-9 
+UB1     = -7.61E-18      UC1     = -5.6E-11       AT      = 3.3E4 
+WL      = 0              WLN     = 1              WW      = 0 
+WWN     = 1              WWL     = 0              LL      = 0 
+LLN     = 1              LW      = 0              LWN     = 1 
+LWL     = 0              CAPMOD  = 2              XPART   = 0.5 
+CGDO    = 6.96E-10       CGSO    = 6.96E-10       CGBO    = 1E-12 
+CJ      = 1.20096E-3     PB      = 0.8591867      MJ      = 0.4126569 
+CJSW    = 2.372671E-10   PBSW    = 0.7032518      MJSW    = 0.2835663 
+CJSWG   = 4.22E-10       PBSWG   = 0.7032518      MJSWG   = 0.2835663 
+CF      = 0              PVTH0   = 2.407623E-3    PRDSW   = 11.0156547 
+PK2     = 3.195163E-3    WKETA   = 0.0269547      LKETA   = -4.288507E-3 
+PU0     = -1.9784289     PUA     = -7.9036E-11    PUB     = 1E-21 
+PVSAT   = -50            PETA0   = 1E-4           PKETA   = -2.470159E-3    ) 
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Appendix I 

In Eq. (F.9), a rough estimation for the vertical field degradation factor is given. 

The vertical field degradation factor � and channel-length modulation are extracted from 

SPICE simulation IV curves. Examples are shown in Figure I-1 and I-2. 

 

Figure I-1: Curve fitting for estimation of � 

 

Figure I-2: Curve fitting for estimation of channel-length modulation parameter λ 
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Appendix J 

The curve fitting results are shown in Figure J-1 and J-2 for 180 nm process. The 

coefficients of determination (R2 value) for these two curve fittings are very close to 1 

and more than 97% of curve fitting data have a relative error less than 1.0% for both 

cases. 

 

Figure J-1: (a) Histogram of relative error for curve fitting of �� for 180 nm, (b) 

Cumulative density function of relative error for curve fitting of �� for 180 nm. 
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Figure J-2: (a) Histogram of relative error for curve fitting of ��� for 180 nm, (b) 

Cumulative density function of relative error for curve fitting of ��� for 180 nm. 
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Appendix K 

 

MATLAB Script for GP Optimization 

addpath h:\ut tyler\thesis\cvx 
addpath h:\ut tyler\thesis\cvx\structures 
addpath h:\ut tyler\thesis\cvx\lib 
addpath h:\ut tyler\thesis\cvx\functions 
addpath h:\ut tyler\thesis\cvx\commands 
addpath h:\ut tyler\thesis\cvx\builtins 

  
%%%% Optimized RF CMOS LNA Design Via Geometric Programming 
%%%% 90 nm CMOS process 
tic 
 

Q_in=4; 
Q_out=5; 

  

%Thermal noise factor � and �, coefficient c 
GAMMA_sc=1.2; 
BETA_sc=7.5; 
c_sc=0.2; 
 

%Process parameters 
C_ox=14.0538*10^(-3); 

 
%LNA parameters  

R_s=50; 
L_out=10*10^(-9) 
f_0=2.4*10^9; 
OMEGA_0=2*pi()*f_0; 
R_out=Q_out*OMEGA_0*L_out 
C_out=1/((2*pi()*f_0)^2*L_out) 
L_min=0.09*10^(-6); 
L_max=0.09*10^(-6); 
W_min=1*10^(-6); 
W_max=100*10^(-6); 
C_t=1/(2*Q_in*OMEGA_0*R_s) 
L_t=1/(OMEGA_0^2*C_t) 

Vdd=2; 
 

%Geometric programming 
cvx_begin gp 
    variables W L P C_gs L_s g_m g_d0 I_ds    

minimize 

1+(BETA_sc*(Q_in^2+1/4)*P^2*g_m^2/(5*g_d0)+GAMMA_sc/4*g_d0+... 

sqrt(GAMMA_sc*BETA_sc/20)*c_sc*P*g_m+1/R_out)/(R_s*Q_in^2*g_m^2); 

  
    subject to 
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            L>=L_min; 
            L<=L_max; 
            W>=W_min; 
            W<=W_max; 
            P==C_gs/C_t; 
            P<=1; 
            3/2*C_gs*C_ox^(-1)*W^(-1)*L^(-1)==1; 
            0.02*(g_m/C_t)*L_s==1; 
            I_ds*Vdd<=0.001; 
            g_m==0.0423*L^(-0.4578)*W^(0.5275)*I_ds^0.4725; 
            g_d0==0.0091*L^(-0.5637)*W^(0.5305)*I_ds^0.4695; 
cvx_end 
F=1+(BETA_sc*(Q_in^2+1/4)*P^2*g_m^2/(5*g_d0)+GAMMA_sc/4*g_d0+... 

sqrt(GAMMA_sc*BETA_sc/20)*c_sc*P*g_m+1/R_out)/(R_s*Q_in^2*g_m^2); 
g_d0opt=g_d0 
g_mopt=g_m 
Wopt=W 
Lopt=L 
Popt=P 
C_gs_opt=C_gs 
C_d_opt=C_t-C_gs_opt 
L_s_opt=L_s 
L_g_opt=L_t-L_s_opt 
Ids_opt=I_ds 
Fmin=10*log10(F) 

 
toc 
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Appendix L 

 Same trade-off curves have been plotted for 180 nm LNA design and listed in this 

appendix. 

L.1 Effect of Input Circuit Quality Factor on the Design of LNAs 

For example, when the gate width equals 20 µm and channel length is 180 nm, a series of 

tradeoff curves have been plotted, which has confirmed that there is an optimal value for 

input circuit quality factor, the optimal quality factors display a small increase and the 

range is from 4 to 6 as shown in Figure L-1 for 180 nm design. 

 

Figure L-1: Effect of input circuit quality factor on the noise figure at different dc 

drain current (
=20 µm, �=180 nm) 

L.2 Effect of Input Circuit Quality Factor on the Noise Figure and Gate Width 

Tradeoff analyses have also shown the influence of input circuit quality factor on 

the relationship of the obtained noise figure and the gate width (Figure L-2).  
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Figure L-2: Effect of channel width on the noise figure at different input circuit quality 

factors  

Furthermore, such results can be visualized with 3-D plots in Figure L-3. 

Minimum noise figure can be achieved when either input circuit quality factor or channel 

width is fixed. 

 

Figure L-3: Effect of input circuit quality factor and channel width on the noise figure in 

3D 
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L.3 Effect of Drain Current and Operational Frequency on the Noise Figure   

Drain current appears to have great influence on noise figure when the drain 

current is at a smaller scale less than 1 mA (Figure L-4). However, there is not much 

variation of noise figure when the drain current changes from 1 mA to 4 mA. Such results 

can also be easily visualized from 3D plot (Figure L-5). 

 

Figure L-4: Effect of channel width on the noise figure at different drain currents 

 

Figure L-5: Effect of drain current and channel width on the noise figure in 3D 
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Variation of operational frequency has great influence on the noise figure (Figure 

L-6 and L-7). However, our study focuses on narrowband application. The operating 

frequency is fixed at 2.4 GHz. Therefore, the influence of operational frequency on the 

noise figure is limited. 

 

Figure L-6: Effect of channel width on the noise figure at different frequencies 

 

Figure L-7: Effect of operational frequency and channel width on the noise figure in 3D 
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