981 research outputs found

    Computer vision beyond the visible : image understanding through language

    Get PDF
    In the past decade, deep neural networks have revolutionized computer vision. High performing deep neural architectures trained for visual recognition tasks have pushed the field towards methods relying on learned image representations instead of hand-crafted ones, in the seek of designing end-to-end learning methods to solve challenging tasks, ranging from long-lasting ones such as image classification to newly emerging tasks like image captioning. As this thesis is framed in the context of the rapid evolution of computer vision, we present contributions that are aligned with three major changes in paradigm that the field has recently experienced, namely 1) the power of re-utilizing deep features from pre-trained neural networks for different tasks, 2) the advantage of formulating problems with end-to-end solutions given enough training data, and 3) the growing interest of describing visual data with natural language rather than pre-defined categorical label spaces, which can in turn enable visual understanding beyond scene recognition. The first part of the thesis is dedicated to the problem of visual instance search, where we particularly focus on obtaining meaningful and discriminative image representations which allow efficient and effective retrieval of similar images given a visual query. Contributions in this part of the thesis involve the construction of sparse Bag-of-Words image representations from convolutional features from a pre-trained image classification neural network, and an analysis of the advantages of fine-tuning a pre-trained object detection network using query images as training data. The second part of the thesis presents contributions to the problem of image-to-set prediction, understood as the task of predicting a variable-sized collection of unordered elements for an input image. We conduct a thorough analysis of current methods for multi-label image classification, which are able to solve the task in an end-to-end manner by simultaneously estimating both the label distribution and the set cardinality. Further, we extend the analysis of set prediction methods to semantic instance segmentation, and present an end-to-end recurrent model that is able to predict sets of objects (binary masks and categorical labels) in a sequential manner. Finally, the third part of the dissertation takes insights learned in the previous two parts in order to present deep learning solutions to connect images with natural language in the context of cooking recipes and food images. First, we propose a retrieval-based solution in which the written recipe and the image are encoded into compact representations that allow the retrieval of one given the other. Second, as an alternative to the retrieval approach, we propose a generative model to predict recipes directly from food images, which first predicts ingredients as sets and subsequently generates the rest of the recipe one word at a time by conditioning both on the image and the predicted ingredients.En l'última dècada, les xarxes neuronals profundes han revolucionat el camp de la visió per computador. Els resultats favorables obtinguts amb arquitectures neuronals profundes entrenades per resoldre tasques de reconeixement visual han causat un canvi de paradigma cap al disseny de mètodes basats en representacions d'imatges apreses de manera automàtica, deixant enrere les tècniques tradicionals basades en l'enginyeria de representacions. Aquest canvi ha permès l'aparició de tècniques basades en l'aprenentatge d'extrem a extrem (end-to-end), capaces de resoldre de manera efectiva molts dels problemes tradicionals de la visió per computador (e.g. classificació d'imatges o detecció d'objectes), així com nous problemes emergents com la descripció textual d'imatges (image captioning). Donat el context de la ràpida evolució de la visió per computador en el qual aquesta tesi s'emmarca, presentem contribucions alineades amb tres dels canvis més importants que la visió per computador ha experimentat recentment: 1) la reutilització de representacions extretes de models neuronals pre-entrenades per a tasques auxiliars, 2) els avantatges de formular els problemes amb solucions end-to-end entrenades amb grans bases de dades, i 3) el creixent interès en utilitzar llenguatge natural en lloc de conjunts d'etiquetes categòriques pre-definits per descriure el contingut visual de les imatges, facilitant així l'extracció d'informació visual més enllà del reconeixement de l'escena i els elements que la composen La primera part de la tesi està dedicada al problema de la cerca d'imatges (image retrieval), centrada especialment en l'obtenció de representacions visuals significatives i discriminatòries que permetin la recuperació eficient i efectiva d'imatges donada una consulta formulada amb una imatge d'exemple. Les contribucions en aquesta part de la tesi inclouen la construcció de representacions Bag-of-Words a partir de descriptors locals obtinguts d'una xarxa neuronal entrenada per classificació, així com un estudi dels avantatges d'utilitzar xarxes neuronals per a detecció d'objectes entrenades utilitzant les imatges d'exemple, amb l'objectiu de millorar les capacitats discriminatòries de les representacions obtingudes. La segona part de la tesi presenta contribucions al problema de predicció de conjunts a partir d'imatges (image to set prediction), entès com la tasca de predir una col·lecció no ordenada d'elements de longitud variable donada una imatge d'entrada. En aquest context, presentem una anàlisi exhaustiva dels mètodes actuals per a la classificació multi-etiqueta d'imatges, que són capaços de resoldre la tasca de manera integral calculant simultàniament la distribució probabilística sobre etiquetes i la cardinalitat del conjunt. Seguidament, estenem l'anàlisi dels mètodes de predicció de conjunts a la segmentació d'instàncies semàntiques, presentant un model recurrent capaç de predir conjunts d'objectes (representats per màscares binàries i etiquetes categòriques) de manera seqüencial. Finalment, la tercera part de la tesi estén els coneixements apresos en les dues parts anteriors per presentar solucions d'aprenentatge profund per connectar imatges amb llenguatge natural en el context de receptes de cuina i imatges de plats cuinats. En primer lloc, proposem una solució basada en algoritmes de cerca, on la recepta escrita i la imatge es codifiquen amb representacions compactes que permeten la recuperació d'una donada l'altra. En segon lloc, com a alternativa a la solució basada en algoritmes de cerca, proposem un model generatiu capaç de predir receptes (compostes pels seus ingredients, predits com a conjunts, i instruccions) directament a partir d'imatges de menjar.Postprint (published version

    A Location-Aware Middleware Framework for Collaborative Visual Information Discovery and Retrieval

    Get PDF
    This work addresses the problem of scalable location-aware distributed indexing to enable the leveraging of collaborative effort for the construction and maintenance of world-scale visual maps and models which could support numerous activities including navigation, visual localization, persistent surveillance, structure from motion, and hazard or disaster detection. Current distributed approaches to mapping and modeling fail to incorporate global geospatial addressing and are limited in their functionality to customize search. Our solution is a peer-to-peer middleware framework based on XOR distance routing which employs a Hilbert Space curve addressing scheme in a novel distributed geographic index. This allows for a universal addressing scheme supporting publish and search in dynamic environments while ensuring global availability of the model and scalability with respect to geographic size and number of users. The framework is evaluated using large-scale network simulations and a search application that supports visual navigation in real-world experiments

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Structural learning for large scale image classification

    Get PDF
    To leverage large-scale collaboratively-tagged (loosely-tagged) images for training a large number of classifiers to support large-scale image classification, we need to develop new frameworks to deal with the following issues: (1) spam tags, i.e., tags are not relevant to the semantic of the images; (2) loose object tags, i.e., multiple object tags are loosely given at the image level without their locations in the images; (3) missing object tags, i.e. some object tags are missed due to incomplete tagging; (4) inter-related object classes, i.e., some object classes are visually correlated and their classifiers need to be trained jointly instead of independently; (5) large scale object classes, which requires to limit the computational time complexity for classifier training algorithms as well as the storage spaces for intermediate results. To deal with these issues, we propose a structural learning framework which consists of the following key components: (1) cluster-based junk image filtering to address the issue of spam tags; (2) automatic tag-instance alignment to address the issue of loose object tags; (3) automatic missing object tag prediction; (4) object correlation network for inter-class visual correlation characterization to address the issue of missing tags; (5) large-scale structural learning with object correlation network for enhancing the discrimination power of object classifiers. To obtain enough numbers of labeled training images, our proposed framework leverages the abundant web images and their social tags. To make those web images usable, tag cleansing has to be done to neutralize the noise from user tagging preferences, in particularly junk tags, loose tags and missing tags. Then a discriminative learning algorithm is developed to train a large number of inter-related classifiers for achieving large-scale image classification, e.g., learning a large number of classifiers for categorizing large-scale images into a large number of inter-related object classes and image concepts. A visual concept network is first constructed for organizing enumorus object classes and image concepts according to their inter-concept visual correlations. The visual concept network is further used to: (a) identify inter-related learning tasks for classifier training; (b) determine groups of visually-similar object classes and image concepts; and (c) estimate the learning complexity for classifier training. A large-scale discriminative learning algorithm is developed for supporting multi-class classifier training and achieving accurate inter-group discrimination and effective intra-group separation. Our discriminative learning algorithm can significantly enhance the discrimination power of the classifiers and dramatically reduce the computational cost for large-scale classifier training

    Semantics-Driven Large-Scale 3D Scene Retrieval

    Get PDF
    corecore