23 research outputs found

    Organizing Multidisciplinary Care for Children with Neuromuscular Diseases

    Get PDF
    The Academic Medical Center (AMC) in Amsterdam, The Netherlands, recently opened the `Children's Muscle Center Amsterdam' (CMCA). The CMCA diagnoses and treats children with neuromuscular diseases. These patients require care from a variety of clinicians. Through the establishment of the CMCA, children and their parents will generally visit the hospital only once a year, while previously they visited on average six times a year. This is a major improvement, because the hospital visits are both physically and psychologically demanding for the patients. This article describes how quantitative modelling supports the design and operations of the CMCA. First, an integer linear program is presented that selects which patients to invite for a treatment day and schedules the required combination of consultations, examinations and treatments on one day. Second, the integer linear program is used as input to a simulation to study to estimate the capacity of the CMCA, expressed in the distribution of the number patients that can be seen on one diagnosis day. Finally, a queueing model is formulated to predict the access time distributions based upon the simulation outcomes under various demand scenarios

    Integral multidisciplinary rehabilitation treatment planning

    Get PDF
    This paper presents a methodology to plan treatments for rehabilitation outpatients. These patients require a series of treatments by therapists from various disciplines. In current practice, when treatments are planned, a lack of coordination between the different disciplines, along with a failure to plan the entire treatment plan at once, often occurs. This situation jeopardizes both the quality of care and the logistical performance. The multidisciplinary nature of the rehabilitation process complicates planning and control. An integral treatment planning methodology, based on an integer linear programming (ILP) formulation, ensures continuity of the rehabilitation process while simultaneously controlling seven performance indicators including access times, combination appointments, and therapist utilization. We apply our approach to the rehabilitation outpatient clinic of the Academic Medical Center (AMC) in Amsterdam, the Netherlands. Based on the results of this case, we are convinced that our approach can be valuable for decision-making support in resource capacity planning and control at many rehabilitation outpatient clinics. The developed model will be part of the new hospital information system of the AMC

    A survey of health care models that encompass multiple departments

    Get PDF
    In this survey we review quantitative health care models to illustrate the extent to which they encompass multiple hospital departments. The paper provides general overviews of the relationships that exists between major hospital departments and describes how these relationships are accounted for by researchers. We find the atomistic view of hospitals often taken by researchers is partially due to the ambiguity of patient care trajectories. To this end clinical pathways literature is reviewed to illustrate its potential for clarifying patient flows and for providing a holistic hospital perspective

    An analytical approach for improving patient-centric delivery of dialysis services

    Get PDF
    In this paper, we report on the development of an analytical model and a decision support tool for meeting the complex challenge of scheduling dialysis patients. The tool has two optimization objectives: First, waiting times for the start of the dialysis after the patients’ arrivals must be minimized. Second, the minimization of lateness after the scheduled finish time, which is relevant for transport services, are pursued. We model the problem as a mathematical program considering clinical pathways, a limited number of nurses managing the patients, and dialysis stations. Furthermore, information about patients' drop-off and pick-up time windows at/from the dialysis unit are considered. We develop a platform in Microsoft Excel and implement the analytical model using an Open Source optimization solver. A case study from a dialysis unit in the UK shows that a user can compute a schedule efficiently and the results provide useful information for patients, caregivers, clinicians and transport services

    An analytical approach for improving patient-centric delivery of dialysis services

    Get PDF
    In this paper, we report on the development of an analytical model and a decision support tool for meeting the complex challenge of scheduling dialysis patients. The tool has two optimization objectives: First, waiting times for the start of the dialysis after the patients’ arrivals must be minimized. Second, the minimization of lateness after the scheduled finish time, which is relevant for transport services, are pursued. We model the problem as a mathematical program considering clinical pathways, a limited number of nurses managing the patients, and dialysis stations. Furthermore, information about patients' drop-off and pick-up time windows at/from the dialysis unit are considered. We develop a platform in Microsoft Excel and implement the analytical model using an Open Source optimization solver. A case study from a dialysis unit in the UK shows that a user can compute a schedule efficiently and the results provide useful information for patients, caregivers, clinicians and transport services

    Strategic Level Proton Therapy Patient Admission Planning: A Markov Decision Process Modeling Approach

    Get PDF
    A relatively new consideration in proton therapy planning is the requirement that the mix of patients treated from different categories satisfy desired mix percentages. Deviations from these percentages and their impacts on operational capabilities are of particular interest to healthcare planners. In this study, we investigate intelligent ways of admitting patients to a proton therapy facility that maximize the total expected number of treatment sessions (fractions) delivered to patients in a planning period with stochastic patient arrivals and penalize the deviation from the patient mix restrictions. We propose a Markov Decision Process (MDP) model that provides very useful insights in determining the best patient admission policies in the case of an unexpected opening in the facility (i.e., no-shows, appointment cancellations, etc.). In order to overcome the curse of dimensionality for larger and more realistic instances, we propose an aggregate MDP model that is able to approximate optimal patient admission policies using the worded weight aggregation technique. Our models are applicable to healthcare treatment facilities throughout the United States, but are motivated by collaboration with the University of Florida Proton Therapy Institute (UFPTI)

    An adaptive priority policy for radiotherapy scheduling

    Get PDF
    In radiotherapy, treatment needs to be delivered in time. Long waiting times can result in patient anxiety and growth of tumors. They are often caused by inefficient use of radiotherapy equipment, the linear accelerators (LINACs). However, making an efficient schedule is very challenging, especially when we have multiple types of patients, having different service requirements and waiting time constraints. Moreover, in radiotherapy a patient needs to go through a LINAC multiple times over multiple days, to complete the treatment. In this paper we model the radiotherapy treatment process as a queueing system with multiple queues, and we propose a new class of scheduling policies that are simple, flexible and fair to patients. Numerical experiments show that our new policy outperforms the commonly used policies. We also extend the policy to an adaptive one to deal with unknown and fluctuating arrival rates. Our adaptive policy turns out to be quite efficient in absorbing the effects caused by these changes. Due to the complexity of our problem, we select the parameters of the policies through simulation-based optimization heuristics. Our work may also have important implications for managers in other service systems such as call centers

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Large-Scale Solution Approaches for Healthcare and Supply Chain Scheduling

    Get PDF
    This research proposes novel solution techniques for two real world problems. We first consider a patient scheduling problem in a proton therapy facility with deterministic patient arrivals. In order to assess the impacts of several operational constraints, we propose single and multi-criteria linear programming models. In addition, we ensure that the strategic patient mix restrictions predetermined by the decision makers are also enforced within the planning horizon. We study the mathematical structures of the single criteria model with strict patient mix restrictions and derive analytical equations for the optimal solutions under several operational restrictions. These efforts lead to a set of rule of thumbs that can be utilized to assess the impacts of several input parameters and patient mix levels on the capacity utilization without solving optimization problems. The necessary and sufficient conditions to analytically generate exact efficient frontiers of the bicriteria problem without any additional side constraint are also explored. In a follow up study, we investigate the solution techniques for the same patient scheduling problem with stochastic patient arrivals. We propose two Markov Decision Process (MDP) models that are capable of tackling the stochasticity. The second problem of interest is a variant of the parallel machine scheduling problem. We propose constraint programming (CP) and logic-based Benders decomposition algorithms in order to make the best decisions for scheduling nonidentical jobs with time windows and sequence dependent setup times on dissimilar parallel machines in a fixed planning horizon. This problem is formulated with (i) maximizing total profit and (ii) minimizing makespan objectives. We conduct several sensitivity analysis to test the quality and robustness of the solutions on a real life case study
    corecore