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Abstract A relatively new consideration in proton ther-
apy planning is the requirement that the mix of patients
treated from different categories satisfy desired mix
percentages. Deviations from these percentages and their
impacts on operational capabilities are of particular in-
terest to healthcare planners. In this study, we inves-
tigate intelligent ways of admitting patients to a pro-
ton therapy facility that maximize the total expected
number of treatment sessions (fractions) delivered to
patients in a planning period with stochastic patient ar-
rivals and penalize the deviation from the patient mix
restrictions. We propose a Markov Decision Process
(MDP) model that provides very useful insights in de-
termining the best patient admission policies in the case
of an unexpected opening in the facility (i.e., no-shows,
appointment cancellations, etc.). In order to overcome
the curse of dimensionality for larger and more real-
istic instances, we propose an aggregate MDP model
that is able to approximate optimal patient admission
policies using the fixed weight aggregation technique.
Our models are applicable to healthcare treatment fa-
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cilities throughout the United States, but are motivated
by collaboration with the University of Florida Proton
Therapy Institute (UFPTI).

Keywords Patient admission policy · proton therapy ·
Markov decision process · state aggregation

1 Introduction

Proton therapy is a relatively new and fast growing
form of radiation therapy for cancer patients. Its strength
relies on its ability to transform higher doses of radia-
tion to cancer cells with more accuracy than the tra-
ditional X-ray radiation techniques. Thus, the healthy
tissue surrounding the cancer cells and vital organs are
protected as the right doses of radiation is applied to the
target cells. Due to the effectiveness and limited avail-
ability of proton therapy, the demand for this form of
treatment is extremely high in relationship to the avail-
able capacity. Moreover, it is an expensive treatment
procedure to deliver. According to the study by Goitein
et al. [20], the cost-per-fraction in proton therapy is
more than twice the cost-per-fraction of X-ray therapy.
A portion of these high costs can be attributed to the
small number of proton therapy facilities in the coun-
try. An equally important driver of cost is the meticu-
lous process that must be followed to successfully de-
liver this form of treatment. In fact, in radiation ther-
apy, a treatment protocol consists not only of a pre-
scribed total delivered dose to so-called targets, but
must also specify treatment times, sequences, and fre-
quencies (fractionation schedule). It is known that dose
fractionation contributes to the preservation of healthy
tissue throughout the treatment (see, e.g., Yamada et al.
[42]). However, a shorter fractionation schedule pro-
vides a more economical use of the radiation therapy
facilities while still improving, albeit marginally, a pa-
tient’s quality of life (see, e.g., Shelley et al. [39]). Be-
cause of these important tradeoffs, achieving the most
efficient patient admission policies is a growing area
of interest to healthcare professionals. Although proton
therapy and other healthcare planning and scheduling
problems share common properties (treatment continu-
ity, capacity, staff/physician requirements, etc.), patient
admission planning in proton therapy differs by aim-
ing to accommodate patients from different categories
without assigning them any priority weights related to
stage of their disease. Instead, categories represent dif-
ferent patient types (i.e., chest/abdomen, prostate, brain
cancer patients). Each one of these types has different
treatment time and number of fractions to be delivered
by a gantry. A Gantry is a device used for rotating the
radiation delivery apparatus around the patient during



the treatment so that the body can be treated from dif-
ferent angles.

Stochastic patient arrivals and appointment cancel-
lations (no-shows) are the most common sources of un-
certainty in patient scheduling and admission planning
problems. All other studies [26, 36] assume that the
issue of treatment session cancellations is less signifi-
cant in proton therapy treatment planning than in other
healthcare applications. Due to the large demand for
this therapy, it has been assumed that any appointment
cancellations or no shows can be instantaneously re-
placed by the patients waiting in the line. Hence, these
studies tackle the proton therapy patient scheduling and
admission planning problem by formulating (mixed)
integer linear programs. Gedik [17] proposes a bicri-
teria integer programming model that obtains capacity
planning strategies for a proton therapy facility with
several operational restrictions. Since it is very diffi-
cult to satisfy an integer number of patients in light
of the mix requirements in addition to several other
challenging constraints, they relax the integrality re-
strictions on the decision variables and solve the bi-
criteria problem under several operational settings in
order to assess the tradeoffs between maximizing the
total treatment sessions and minimizing the total devi-
ation from the patient mix requirements. Men [26] and
Salari et al. [36] propose a rolling horizon based dy-
namic algorithm that provides near-optimal solutions
to a very similar integer programming model designed
for patient allocations to a proton therapy facility that
aims to maximize the total number of treated patients.
Several other researchers utilize the integer program-
ming approaches in providing efficient solutions for
emerging healthcare problems. Agnetis et al. [3] and
Agnetis et al. [2] develop integer programming mod-
els in order to support decision makers in a hospital
in making fast operating room planning and schedul-
ing decisions. On the other hand, Ciavotta et al. [11]
and Ciavotta et al. [10] investigate intelligent solutions
for operations scheduling of activities in pharmaceu-
tical manufacturing plants and other healthcare oper-
ations where the problem has multiple objectives and
is solved by rollout algorithms. As the costs associated
with building proton therapy facility decrease due to
advancing technology, handling stochastic patient ar-
rivals will be vital in the near future to keep the utiliza-
tion of the resources at their maximum levels. Thus,
we propose a Markov decision process (MDP) model
that accounts for gantry capacity and patient mix re-
quirements as well as stochastic patient arrivals to a
proton therapy facility. Even though this is a powerful
way of handling stochasticity associated with patient
arrivals, it takes quite amount of computational efforts

to solve this multi-category patient admission planning
problem due to the exponentially growing state space.
Therefore, this study also proposes an approximate ag-
gregate MDP model to overcome this special type of
curse of dimensionality. The aggregate MDP model
clusters original states into subgroups that results in
a more tractable state space. Of course, the aggregate
MDP provides only approximate optimal patient ad-
mission policies. Thus, we also assess the trade-off be-
tween the traditional and aggregated models in terms
of solution time and quality.

Patient mix optimization, the requirement that the
mix of patients treated satisfy desired percentages, is
a relatively new consideration in proton therapy plan-
ning. These percentages are determined by the deci-
sion managers before each planning horizon in order
to be used for the upcoming resource allocation prob-
lems. From a managerial perspective, patient mix pref-
erences can address how to plan resources with respect
to the needs of different patient types and, from a clin-
ical perspective, they refer to the conditions of patients
that are being treated in the facility and the difficulty
level of associated treatments [6]. Hence, a well planned
patient mix preferences in a facility can help decision
makers improve the efficiency of resources and health
care providers position their treatment capabilities with
the projected treatment types required by patients. Di-
agnosis Related Groups (DRGs) is a very similar con-
cept that has been used by health care providers to
classify patient groups based on patient types (i.e. case
mix, patient mix) and their treatment costs incurred by
hospitals [6]. DRGs play an important role in Medi-
care’s hospital reimbursement system, whereas a hos-
pital’s case mix or patient mix preferences determine
the costs of all the services provided for different pa-
tient types.

Petrovic et al. [29] highlight the fact that the ra-
diotherapy patient admission planning problem is very
complex since it accounts for several constraints such
as large number of patients and patient categories, ma-
chine and doctor availability. Furthermore, several ob-
jectives including but not limited to minimizing the
average waiting time, the number of patients who do
not meet waiting time targets, machine idle time, over-
time slots, costs and so on might need to be considered
while dealing with this problem. For instance, Petrovic
et al. [30] investigate the best patient admission pol-
icy to a radiation therapy center that minimizes both
the average waiting time and average tardiness of pa-
tients. Gedik [18] illustrates the impacts of patient mix
preferences on the capacity of a proton therapy facil-
ity by comparing the two objectives: (i) total treated
number of patients and (ii) total deviations from patient
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mix levels. In the presence of several operational con-
straints and deterministic patient arrivals, the tradeoff
between these two objectives is quantified by identi-
fying the efficient frontiers. The patient/case mix op-
timization studies analyzed in Section 2 aim to find
the most suitable patient mix levels such that the maxi-
mum benefit is achieved. On the other hand, the UFPTI
focuses on patient scheduling where the patient mix
levels are taken as an input and the impacts of their
interactions with the other operational constraints are
demonstrated on the facility capacity. Hence, we for-
mulate the objective function in order to maximize the
total number of fractions delivered to all patient cate-
gories and at the same time, minimize the deviations
from the predetermined patient mix levels for each pa-
tient type. In terms of constraints, only two important
restrictions that play the most crucial roles in determin-
ing the best patient admission strategy are taken into
account in our model: (i) gantry capacities and (ii) pa-
tient mix restrictions. Other operational level restric-
tions such as anesthesia surveillance, gantry special-
ization and snout change times can easily be adopted
by the models introduced here with some additional
changes.

The rest of this study is organized as follows. Sec-
tion 2 describes how stochastic patient arrival and ad-
mission planning in healthcare facilities have been han-
dled by MDP models in the literature. Then, two MDP
models, exact and aggregate, are introduced in Sec-
tion 3. Section 4 demonstrates the performance of these
models, and finally, Section 5 briefly highlights the con-
tributions of this study and discusses future research
directions.

2 Literature Review

Adan and Vissers [1] categorize patient admissions into
two groups: non-scheduled and scheduled. Non-scheduled
admissions are unplanned and might be due to emer-
gency cases whereas scheduled patients are planned
and selected from a waiting list created as the service
is being requested. In most of the studies (e.g., Bow-
ers and Mould [8], Cayirli et al. [9], Pham and Klink-
ert [31]), scheduled (elective) cases are considered in
order to reduce potential uncertainties associated with
patient attributes (i.e., patient type, financial gain, re-
source allocation per patient, etc.). Some other studies
assume that the treatment time for an outpatient is con-
stant for the sake of simplicity [12]. In the context of
this study, we assume that proton therapy patients are
elective outpatients who do not need to spend the night
at the facility.

Conforti et al. [13] compare the two most common
types of daily basis radiation therapy patient admis-
sion planning strategies: (i) block system and (ii) non-
block system. In a block system, a workday is com-
posed of a fixed number of blocks/time slots with the
same duration. On the other hand, in the non-block
scheduling, different time intervals are reserved for dif-
ferent patients based on the type of the treatments. Fur-
thermore, patients in the non-block system are usu-
ally admitted on a first-come first-served basis unless
the individual cases are not restricted by strict earliest
and/or latest start constraints. In the same study, after
highlighting the fact that the block scheduling strategy
is more commonly used than its counterpart in many
radiation therapy centers, a patient scheduling model
which accounts for non-block scheduling rules is de-
veloped for a short planning period (a week). In real-
ity, non-block appointment system is conceptually su-
perior to the block appointment system since the for-
mer is able to represent the whole workload. This is
because, during a workday, accumulation of the idle
time leftover from a time slot can be used to treat other
patients who have not been admitted yet.

Despite of its advantages, the non-block schedul-
ing appointment strategy is not considered very often
in the literature due to the extra limitations/constraints
it adds to the treatment planning problem. On the other
hand, block scheduling is commonly encountered [12,
23, 19, 28, 40], since it simplifies most of the concepts
that are hard to be taken into account in a radiation
therapy patient scheduling problem. Although proton
therapy treatment session durations may vary for dif-
ferent patient groups, we assume that the strategic level
proton therapy patient admission planning problem has
a block appointment system since our objective is to
investigate the impacts of mix restrictions on patient
admission planning decisions from a strategic point of
view. In addition, the block appointment system sim-
plifies patient admission decisions to a certain extent in
an environment with stochastic arrivals. In such a sys-
tem, a group of patients can be assigned to time slots
in such a way that each of them can concurrently be re-
ceiving treatments. Figure 1 demonstrates a basic block
patient allocation schema for a configuration of three
gantries and three time slots in a given day. For each
time slot, the number of patients assigned to a time slot
cannot be greater than the number of gantries available
in that time slot in the system. Note that the daily treat-
ment times of all gantries are identically distributed to
time slots of a day as demonstrated in Figure 1. There-
fore, the total number of patients that can be treated in
all gantries in a day would be equivalent to,Q, the total
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number of time slots allocated to all gantries in a given
day (i.e., Q =9 in Figure 1).

A more recent contribution that is directly related
to proton therapy patient admission planning corresponds
to the work of Nunes et al. [28]. They present an MDP
model in order to control the patient admissions from
different specialties on a periodic basis. Patient flows
from m distinct specialties are assumed to be contin-
uous. In order to measure the resource consumption,
they adopt the treatment pattern methodology, which
is first proposed by Kapadia et al. [22]. It is assumed
that a patient could follow n different treatment pat-
terns until he is discharged. In this study, state space of
the hospital is defined as the number of patients from
all specialties following different treatment patterns.
The number of patients to be admitted to the hospital
in each specialty for the next decision period is con-
sidered as the action space. Finally, the stochastic dy-
namics of the study is described as the probability of
one patient’s transition from a treatment pattern to all
others.

One of the first MDP approaches developed for hos-
pital admission planning is proposed by Kolesar [24]
who transform the MDP model into a linear program to
obtain results. Another important finding of this study
is that simultaneous reservations for different services
are modeled over a planning horizon. Gocgun et al.
[19] develop a finite horizon MDP to model a patient
scheduling problem that is commonly seen in provid-
ing computed tomography (CT) service. They assume
that there are only four patient types who demand the
CT service during a work day period. The MDP model
in their study aims to maximize the total profit obtained
by scheduling different patient types for the available
time slot of a CT machine during the work day. Differ-
ent from most of the patient planning and scheduling
models, they adopt each available time slot for each
CT machine as a stage. Similar to the study conducted
by Nunes et al. [28], the number of patients from dif-
ferent types constitutes the state space and the actions
are denoted by the number of admitted patients from
different types for the next service slot. They compare
the optimal solutions obtained from their model with
simple heuristic rules (first-come first-served (FCFS),
randomized, etc.) typically employed to admit patients
in real life. Even though their model finds better values
in terms of total profit, FCFS heuristic provides better
values in terms of the average number of patients not
scanned by the end of the day.

3 Solution Methodology

3.1 Markov Decision Process (MDP) Model

In light of the insights developed by Nunes et al. [28],
Kapadia et al. [22], Gocgun et al. [19], we model our
strategic patient mix optimization model as an MDP.
Based on the block appointment schema in Figure 1,
the finite state and action space of our problem can be
modeled as in equations (1) and (2). sktq represents the
number of patients being treated from category k in
service slot q between decision instants t − 1 and t.
Thus, the state space S comprises all possible states.
Furthermore, akq represents the number of patients in
each category that will be admitted for treatment in ser-
vice slot q in the next period.

S =


s1t,q=1

s2t,q=1
...

s
|K|
t,q=1

 ,


s1t,q=2

s2t,q=2
...

s
|K|
t,q=2

 , . . . ,


s1t,q=Q
s2t,q=Q

...
s
|K|
t,q=Q

 (1)

Ast =


a1q=1

a2q=1
...

a
|K|
q=1

 ,


a1q=2

a2q=2
...

a
|K|
q=2

 , . . . ,


a1q=Q
a2q=Q

...
a
|K|
q=Q

 (2)

In addition to the number of current patients receiv-
ing treatments and newly accepted patients from each
category, we also need to account for the ones whose
treatment ends on each day. From each patient type k
on day t, it is known that there will be akt−nk num-
ber of discharges, which is the number of patients from
type k accepted on day t−nk given that a patient from
category k must receive fractions during nk consec-
utive days. Incorporating the discharged patients into
the state definitions would increase the complexity and
degrade the tractability of the model. Therefore, a use-
ful assumption is made in order to avoid this foreseen
difficulty. Accordingly, discharges are assumed to be
handled after accepting new patients to each category.
Hence, transition from one state to another includes
only the newly accepted patients and the ones that are
receiving their treatments.

In the case of identical gantries, we can modify the
gantry-time slot representation of a single day as in
Figure 2. Accordingly, state space and action space can
be defined in a more compact way as in equations (3)
and (4). Based on the representation in Figure 2, both
time slots and the gantries are assumed to be identical
on a given day. Moreover, for the same proton therapy
patient planning problem with deterministic patient ar-
rivals, Gedik [18] has identified that if the daily gantry
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Fig. 1: Block appointment system

capacity depends only on gantry type not time period,
an optimal solution exists in which they start and treat
the same number of patients in category k on each day
t and in each gantry g. In other words, this implies that
the optimal solution of the patient admission planning
problem enforces patient types to hold the desired pa-
tient mix restrictions on daily basis. In order to repre-
sent this, sk is defined as the total number of type k
patients receiving treatments in all time slots and ak is
defined as the accepted number of patients from cate-
gory k to all time slots.

S =


s1q=1 + . . .+ s1q=Q
s2q=1 + . . .+ s2q=Q

...
s
|K|
q=1 + . . .+ s

|K|
q=Q

 =


s1

s2

...
s|K|

 (3)

As =


a1q=1 + . . .+ a1q=Q
a2q=1 + . . .+ a2q=Q

...
a
|K|
q=1 + . . .+ a

|K|
q=Q

 =


a1

a2

...
a|K|

 (4)

Due to the problem definition, patient mix ratios
(dk) for each category k ∈ K must be satisfied and
the maximum number of fractions must be treated over
a planning period. In order to assess the impacts of
these constraints, we represent patient mix preferences
in the optimality equations. One procedure is to assign
a penalty for those patient types that fail to conform to
the desired patient mix levels. To implement this proce-
dure, we must keep track of the total number of patients
treated (after the actions are taken), and then compare
both the actual and desired patient mix levels. Let J be
the total number of patients from all types being treated
in the facility.

J =
∑
k∈K

{sk + ak} (5)

Then, the desired (Dk) and actual (Hk) patient mix of
patient type k can be calculated as follows.

Dk = dkJ (6)

Hk = sk + ak (7)

Hence, deviation from patient mix constraint for each
category k is |Hk−Dk|. Then, a reward function (r(s, a))
for each state and action can be constructed as follows:

r(s, a) =
∑
k∈K

aknkfk −
∑
k∈K

(wk|Hk −Dk|) a ∈ As

(8)

where fk is the number of fractions required by pa-
tient type k per day and nk is the consecutive num-
ber of days a patient type k needs to receive treatment.
Therefore, the first term in the reward function is the
total number of fractions obtained by starting ak pa-
tients from each patient type k ∈ K. The second term
penalizes the deviation of each type k from the desired
patient mix level by wk. It is important to note that the
deviation is measured in terms of number of patients,
but the first term is in terms of fractions. Finally, it is
clear to see that the objective seeks to maximize the
total reward.

Let v(s) be the total expected reward obtained for
state s. Assuming that the state and action spaces are fi-
nite and the horizon length is infinite, a value iteration
algorithm finds a stationary ε-optimal policy and ap-
proximation to value function (9) for each state s with
a discount factor of β.

v(s) = max
a∈As
{r(s, a) + β

∑
j∈S

pj|s,av(j)} (9)

We note that pj|s,a is the transition probability from
state s to j under action a. The stochastic dynamic of
the problem, patient arrivals, can be modeled as Pois-
son arrivals. Hence, let N(k) be the number of patient
types k request treatment on a specific day in the proton
therapy facility. Then, N(k) ∼ Poisson(αk). Assum-
ing that the arrivals are independent from each other,
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Fig. 2: Modified block appointment system for identical gantries

we can estimate the probability of patient arrivals as
follows:

P (N(1) = x1, N(2) = x2, . . . , N(|K|) = x|K|)

=
e−α1αx1

1

x1!

e−α2αx2
2

x2!
, . . . ,

e−α|K|α
x|K|
|K|

x|K|!

(10)

where xk as the number of patients of type k requesting
treatment.

A Numerical Example

This section demonstrates the performance of the MDP
model over a numerical example in terms of best pa-
tient admission policy and convergence graphs for each
state. Moreover, since the best patient admission poli-
cies may not always be optimal due to some other op-
erational restrictions, second and third best actions are
also reported. Before explaining these findings, the tran-
sition probability matrix, action and state space are il-
lustrated in Figure 3 and 4. For this illustration the total
patient capacity (Q) is equal to 4.

The reason behind the limited and decreasing order
action space as the number of patients in the facility in-
creases is due to the assumption that discharges are per-
formed after accepting new patients. When the capac-
ity (the absorbing “FULL” state) is reached, we assume
that the MDP model is terminated. First column in Fig-
ure 3 lists all possible states for this problem. Note that
the first number in each state represents the number of
patients in the facility from the first category and the
second number stands for the number of patients in the
facility from the second category. Actions are the pos-
sible combinations of accepting patients to the facility
from these two types. The last action of each state in
Figure 3 groups all combinations that might lead to the
full state under a single action. Similarly, the probabil-
ity of reaching the full state is calculated by subtracting
the probabilities of all other arrival combinations from
one.

Figure 4 demonstrates the relationships between the
new arrivals and actions in more detail. The transition
probabilities only depend on the total patients in the

facility (current and admitted by actions) prior to re-
ceipt of new arrivals. They are the same for any s and a
which have the same value for s+a and are functions of
s+a only. Baseline input parameters are seen in Table
1. For the sake of simplicity, the desired mix percent-
ages (dk) and the number of treatment sessions (fk) are
assumed to be identical for the two patient types. The
number of consecutive days required for type k over
the planning period (nk) and number of daily fractions
required for type k (fk) are the actual numbers of the
two categories obtained from the University of Florida
Proton Therapy Institute (UFPTI). Arrival rates (αk)
and penalty terms (wk) are selected arbitrarily.

Figure 5 demonstrates the convergence of value func-
tion for each state obtained by solving the optimality
equations 9 with the input parameters in Table 1 via a
value iteration algorithm. This figure depicts that the
value function of the state (0,0) dominates the value
function of all other states. This is because, the fewer
the number of patients in the facility, the more spots
that can be filled with new patients which ultimately
leads to a larger total expected fractions. Transitioning
to the full state is the best action for the last five states
as seen in Figure 5. Acceptance preferences (best, sec-
ond and third best actions) change as the number of ac-
cepted patients directly impacts the actual and desired
total mix ratios. This is illustrated for each state in Ta-
ble 2. For instance, the best action is to accept two and
one patient from the first and second category, respec-
tively, for the state (0,0). On the other hand, accepting
one patient from the first category becomes more af-
fordable and the best action as the penalty terms de-
crease for the state (0,2). Similar conclusions can be
made for each state.

3.2 An Aggregate MDP Model

The MDP model in the previous section provides strate-
gic level optimal patient admission policies when the
time horizon is assumed to be in steady state. Despite
the useful practical insights it provides for the deci-
sion makers, it becomes intractable as the problem pa-
rameters increase. The state space of the MDP model
grows exponentially in the order ofQ and |K| (see Sec-
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Fig. 3: State space and action space when Q = 4

Fig. 4: Probability transition matrix when Q = 4

Table 1: Input parameters

nk fk wk dk αk

k=1 40 1 8 50% 0.5
k=2 30 1 6 50% 0.4

Table 2: Best, second best and third best actions

State
Action (0,0) (0,1) (1,0) (0,2) (1,1) (2,0) (0,3) (1,2) (2,1) (3,0) Full

Best (2,1) (2,0) (1,1) (1,0) (1,0) (0,1) >1 >1 >1 >1 >0
Second Best (3,0) (1,1) (2,0) >2 (0,1) (1,0) (0,0) (0,0) (0,0) (0,0) >0
Third Best (1,2) (1,0) (0,2) (0,1) >2 >2 (0,0) (0,0) (0,0) (0,0) >0

tion 4).Thus, this section introduces a state aggregation
technique that is proposed to overcome the exponen-

tially growing states and actions (curse of dimension-
ality) associated with the MDP formulation.
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Fig. 5: v(s) convergence

In order to reduce the complexity associated with
a large state space, researchers have focused on ap-
plying aggregation techniques in which the main idea
is clustering original states into aggregate subgroups.
These aggregate subgroups are treated as newly cre-
ated states in the aggregate MDP. As a consequence,
the reduced number of states will directly decrease the
size of the probability transition matrix since the num-
ber of entries in this matrix is the square of the number
of states. Using this approach, the original MDP can be
represented by a potentially exponentially smaller ap-
proximate MDP. Since the ultimate approximate model
preserves the Markovian property, any MDP algorithm
can be used to solve the aggregate MDP.

State aggregation is referred to as state abstraction
in the studies within the artificial intelligence domain.
Dearden and Boutilier [15] provide a very concise dis-
cussion regarding the differences between state abstrac-
tion (or aggregation) and other compact MDP repre-
sentation techniques. They propose an MDP model for
the decision-theoretic planning (DTP) problem, another
version of optimal stochastic control problem, and de-
velop an abstract MDP model with exponentially fewer
states which allow them to obtain approximate optimal
solutions. The key idea behind their abstraction policy
is to use action and reward structure to judge whether
a variable (state) should be included in the aggregate
MDP or not. The selection criteria of a state is based
on the eligibility of capturing important behaviors of
the original MDP (i.e., set of possible actions, amount
of reward). Although there may be several states re-
moved from the original MDP, the ultimate policy from
their aggregate MDP remains executable for the orig-

inal MDP. In other words, the optimal policy for the
aggregate problem is the approximate optimal solution
for the original problem. This is a very important fea-
ture of a good practical state aggregation algorithm and
one of the main objectives of this study is to generate
approximate optimal patient admission policies.

Dean et al. [14] introduce a ε-homogeneity tech-
nique that is employed to partition the very large state
space of MDPs. They specifically study approximate
optimal solutions for bounded MDPs in which upper
and lower bounds on the transition probabilities and re-
wards are given as input parameters. Li et al. [25] pro-
pose a unified treatment of state abstraction for MDPs
with large state space by analyzing five different state
aggregation techniques and assess their functionalities
in planning and learning problems. Moreover, an in-
sightful case study is offered to measure the tradeoff
between minimizing curse of dimensionality through
different state abstraction and minimizing information
loss. Other applications of state abstraction techniques
in reinforcement learning can be found in Dietterich
[16], Sutton et al. [41] and Andre and Russell [5].

Despite its popularity and dominance in artificial
intelligence field, especially reinforcement learning ap-
plication area, state aggregation has a very strong com-
petitor in operation research field. Researchers in oper-
ations research have recently started exploring a differ-
ent version of tackling curse of dimensionality through
approximate dynamic programming (ADP) techniques.
As opposed to clustering states in state aggregation,
ADP focuses on stepping forward in time and selecting
states with good approximate dynamic value functions
to obtain approximately optimal policies [33]. This tech-
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nique has been successfully implemented on numer-
ous challenging problems including multidimensional
knapsack [7], transportation & logistics [35], resource
allocation [34] and capacity allocation [38, 37]. For
further details on different aspects of ADP techniques,
we refer the reader to Powell [32].

3.3 State Aggregation

Recall that S = {s1, s2, . . . , s|K|} is the state space of
the original MDP model where sk is defined as the to-
tal number of type k patients within the facility. We let{
S1, S2, . . . , S|K|, S|K|+1, S|K|+2

}
partition S where

∪|K|+2
k=1 Sk = S and Sk ∩ Sm = ∅ if k 6= m and

k,m ∈ K = {1, 2, . . . , |K|,|K|+ 1, |K|+ 2}. K is
the set of states in the aggregate MDP. S|K|+2 repre-
sents the full state in the aggregate MDP. If s1 = s2 =
. . . = s|K| holds, that is the number of patients from
all patients are the same, in an original MDP state, then
it is assigned to the S|K|+1 aggregate state. We assign
an original MDP state {s1, s2, . . . , s|K|} to aggregate
state Sk if sk > sm for all m ∈ K and m 6= k (pa-
tient type k has the unique largest number of patients).
If there is more than one patient types which have the
identical maximum amount of patients, then we ran-
domly pick the aggregate state among those states. For
example, if sk = sm > sn for all n ∈ K and n 6= k 6=
m in {s1, s2, . . . , s|K|}, then we randomly assign this
original state to either Sk or Sm with equal probability.

For each k ∈ K, we define Ak as ∪s∈SkAs. That
is, Ak is the set of actions available from state k ∈ K in
the aggregate MDP. We use the fixed-weight aggrega-
tion technique that is proposed by Heyman and Sobel
[21]. Accordingly, for each k,m ∈ K and a ∈ Ak, we
let γkm and ρak be a transition probability and single-
state immediate reward in the aggregate MDP as de-
fined in equations (11) and (12), respectively,

γkm =
∑
s∈Sk

λks
∑
j∈Sm

psj (11)

ρak =
∑
s∈Sk

λksr(s, a) (12)

where λks ≥ 0 and
∑
s∈Sk λ

k
s = 1 for each k ∈ K and

s ∈ Sk. In (11),
∑
j∈Sm psj is the aggregate probabil-

ity of transitioning from state s to aggregate state Sm
which makes γkm the weighted average of these tran-
sition probabilities where λks is the weights for s ∈ Sk.
Intuitively, λks assesses the contribution of state s to
the aggregate state Sk and can be any valid weighting
function [25]. It is easy to see that γkm are the transi-

tion probabilities in the aggregate MDP:∑
m∈K

γkm =
∑
m∈K

∑
s∈Sk

λks
∑
j∈Sm

psj

=
∑
s∈Sk

λks
∑
m∈K

∑
j∈Sm

psj

=
∑
s∈Sk

λks
∑
j∈S

psj = 1

Similarly, ρak is the weighted average of r(s, a) as de-
fined in (8).

3.4 Fixed Policy Evaluation

Heyman and Sobel [21] prove that the output of the
fixed aggregation transformation technique is indeed
an MDP model with fewer states. This enables us to use
the same value iteration algorithm to solve the aggre-
gate model. The policy obtained by solving the aggre-
gate model is executable for the original MDP model
since the set of aggregate actions for each aggregate
group is inherited from the original states (Ak=∪s∈SkAs).
Of course, solutions for both original and aggregate
MDP may not be identical. Thus, we need a fixed pol-
icy evaluation technique to assess the quality of the ag-
gregate MDP policy with respect to the optimal policy.
In other words, a disaggregating method is required to
substitute the policy for the aggregate MDP model into
the original MDP.

The optimal policy for infinite horizon MDP model
is always stationary. That is, the optimal stationary pol-
icy (π∗) for an infinite horizon discounted MDP model
does not change with time and remains identical once
it is obtained. Given a policy π, we define Vπ(s) as the
value of policy π at state s, Rπ(s) as the immediate re-
ward and Pπ(s, j) as the probability transition matrix.
Let Vπ and Rπ be n dimensional column vectors and
P be an n×nmatrix. Note that for any given policy π,
Rπ and P will be known which will make the solution
of the following set of linear equations (13) possible
with respect to the only unknown variable Vπ .

Vπ =Rπ + βPπVπ

Rπ =(I − βP )Vπ

Vπ =(I − βP )−1Rπ (13)

After solving the aggregate MDP model by the value
iteration algorithm, we obtain the approximate optimal
policy π̄. We create another feasible policy δ for the
original MDP model based on π̄ such that

δ(s) =a if s ∈ Sk and π̄(k) = a ∀k ∈ K. (14)

The policy disaggregation (14) suggests using the
same optimal action for the aggregate subgroup Sk for
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all the original states assigned to it (s ∈ Sk). The qual-
ity of the aggregate policy δ and optimal policy π∗ is
measured by solving the set of linear equations in (13).

4 Computational Results

4.1 Problem Parameters and Experimental Design

Several different problem instances are used to test the
tractability and efficiency of the aggregate MDP model.
The problem parameters in Table 3 except for daily ar-
rival rates (αk) were provided by the UFPTI and they
include patient mix levels (dk), number of consecutive
treatment days (nk) and required daily treatment ses-
sions (fk) for ten patient categories. The arrival rates
were calculated by using the expected number of new
incidence of each patient category provided by the Amer-
ican Cancer Society [4]. These values are first adjusted
based on the population of Florida and then normal-
ized to fit into [0, 1]. Finally, the arrival rate of each pa-
tient is obtained by multiplying the normalized value
by four to make the total arrival rate of the patients
equal to the minimum number of time slots available
in the facility.

Although there are multiple treatment regimens for
some type of patients, receiving treatments over a num-
ber of consecutive days is the common property of the
patient groups in the problem instances of this study.
Men [26] and Men et al. [27] also report proton therapy
treatment problem instances with patients who require
treatment sessions over consecutive days.

Different combinations of the number of patient
categories (|K| = 5, 6, . . . , 10) and available time slots
(Q = 4, 5, 6) are used to vary the size of the state
space. Therefore, we group multiple patient types as
shown in Table 4-8 to meet different number of patient
categories in problem instances with |K| = 9, 8, . . . , 5,
respectively. In addition, three different penalty terms
are adopted as follows:

1. wk = dk × 20 ∀k ∈ K
2. wk = nk×fk

4 ∀k ∈ K
3. wk = nk × fk × dk ∀k ∈ K

The first penalty type is used to represent the im-
pact of penalyzing the deviations from the desired pa-
tient mix levels in proportional to the desired percent-
ages whereas the total number of fractions (treatment
sessions) during the entire treatment period is adopted
as the unit of the second penalty type. The influence
of these two factors is combined in the third penalty
type where each unit of deviation is penalyzied by the
weighted number of treatment sessions. Lastly, state

aggregation weights are calculated as in equation (15).

λks =
1

|Sk|
∀k ∈ K, s ∈ Sk (15)

4.2 MDP vs. Aggregate MDP Model

The patient admission planning problem formulations
in Section 3 are modeled in JAVA programming lan-
guage. We assess the quality of the aggregate policy
(δ) and optimal policy (π∗) as described in Section
3.4. Recall that these policies provide the best action
for each state and the total expected rewards obtained
for each state are calculated by solving (13). In order
to compare the values and best actions obtained by
the MDP and aggregate MDP models, we define two
performance indicators: (i) average percent difference
(APD) and (ii) matched action percentage (MAP).

APD = 100×

∑
s∈S

(
|Vπ∗ (s)−Vδ(s)|

max{Vπ∗ (s)−Vδ(s)}

)
|S|

(16)

MAP = 100× Number of same actions across all states in S

Total number of states (|S|)
(17)

APD demonstrates how much, on average, the to-
tal expected reward values obtained by the MDP and
aggregate MDP model deviate from each other across
all states, whereas MAP illustrates the average preci-
sion of the aggregate MDP model in terms of locating
the same actions with the MDP model across all states.
These two measures for the instances with penalty type
1, 2 and 3 are illustrated in Figures 6-8, Figures 9-11
and Figures 12-14, respectively. When the penalty type
2 is used, that is each unit of deviation from the desired
patient mix level for category k is penalized by nkfk

4 ,
APD and MAP levels are consistently decreasing and
increasing, respectively, as the models are exposed to
larger |K| values. This leads us to conclude that behav-
iors of the MDP and aggregate MDP models become
similar as |K|, therefore, the number of states increases
when the penalty 2 is used. We can see the same pat-
tern in APD and MAP values when each unit deviation
from the desired mix level for patient type k is charged
with nkfkdk (penalty type 3). The only instance that
does not comply with this trend under penalty type 3
is when |K| = 6 and Q = 6. Even though the APD
and MAP values improve with larger |K|when penalty
type 1 is in use andQ = 4, we cannot observe the same
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Table 3: (Aggregate) MDP problem parameters when |K| = 10

Patient Category (k ∈ K)
1 2 3 4 5 6 7 8 9 10

dk 65% 15% 7% 3% 3% 2% 1% 1% 2% 1%
nk 40 40 31 31 30 30 30 30 42 12
fk 1 1 2 2 1 1 1 1 1 1
αk 1.65 0.38 0.92 0.19 0.12 0.08 0.15 0.15 0.19 0.15

Table 4: (Aggregate) MDP problem parameters when |K| = 9

Patient Category (k ∈ K)
1 2 3 & 10 4 5 6 7 8 9

dk 65% 15% 8% 3% 3% 2% 1% 1% 2%
nk 40 40 31 31 30 30 30 30 42
fk 1 1 2 2 1 1 1 1 1
αk 1.65 0.38 1.07 0.19 0.12 0.08 0.15 0.15 0.19

Table 5: (Aggregate) MDP problem parameters when |K| = 8

Patient Category (k ∈ K)
1 2 3 & 10 4 5 6 7 & 8 9

dk 65% 15% 8% 3% 3% 2% 2% 2%
nk 40 40 31 31 30 30 30 42
fk 1 1 2 2 1 1 1 1
αk 1.65 0.38 1.07 0.19 0.12 0.08 0.30 0.19

Table 6: (Aggregate) MDP problem parameters when |K| = 7

Patient Category (k ∈ K)
1 2 3 & 10 4 5 & 6 7 & 8 9

dk 65% 15% 8% 3% 5% 2% 2%
nk 40 40 31 31 30 30 42
fk 1 1 2 2 1 1 1
αk 1.65 0.38 1.07 0.19 0.21 0.30 0.19

Table 7: (Aggregate) MDP problem parameters when |K| = 6

Patient Category (k ∈ K)
1 2 3 & 10 4 5,6,7 & 8 9

dk 65% 15% 8% 3% 7% 2%
nk 40 40 31 31 30 42
fk 1 1 2 2 1 1
αk 1.65 0.38 1.07 0.19 0.51 0.19

Table 8: (Aggregate) MDP problem parameters when |K| = 5

Patient Category (k ∈ K)
1 & 2 3 & 10 4 5, 6,7 & 8 9

dk 80% 8% 3% 7% 2%
nk 40 31 31 30 42
fk 1 2 2 1 1
ak 2.03 1.07 0.19 0.51 0.19
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behavior under the same penalty type with Q = 5 and
Q = 6.

We observe that the majority of the contributions
made to MAP levels come from the states in which the
best action is to transition to the full state in both MDP
models. Aggregate MDP model is very good at match-
ing with these type of actions in general. It is not very
competitive in anticipating the best action for the states
that have several good quality actions available. We be-
lieve that part of the reason behind having better APD
and MAP values with penalty types 2 and 3 is because
they apply penalty levels directly proportional to the
immediate reward coefficients (nkfk) which in turn re-
stricts the set of rewarding actions for states. This ulti-
mately produces higher chance for the aggregate MDP
to identify the best action taken by the MDP and ap-
proximate the total expected rewards.

Table 10 illustrates the optimal patient admission
policies for three selected states (s̄1, s̄2 and s̄3) out
of 3004 with |K| = 10 and Q = 6. These states
are selected arbitrarily in order to clarify how the pro-
posed models can support managerial decision mak-
ing processes. In the original MDP model, recall that
s̄1 corresponds to the empty state of the proton ther-
apy facility when there is no patient from any cate-
gory in the system. On the other hand, s̄2 represents the
case when only one category 5 and two category 7 pa-
tients are being treated in the facility. In the aggregate
MDP model, s̄1, s̄2 and s̄3 are members of clustered
states S|K|+1=11, S7 and S5, respectively. The neces-
sary characteristics of these patient types can be seen
in Table 3. Both the original and aggregate MDP mod-
els are able to report the top three best actions for each
state based on the values obtained from the value itera-
tion algorithm. For example, when the facility is oper-
ating in state s̄1 under penalty type 1, admitting one pa-
tient from category 3 and four patients from category 4
is the best action obtained by the original MDP model.
On the other hand, the aggregate MDP model reports
this strategy as the second best admission plan and pro-
poses admitting five patients only from category 4 as
the best action. As a reminder, the top three actions re-
ported under the aggregate MDP model corresponds to
a cluster of original states and obtained by the policy
decomposition step in equation (14). This method sug-
gests using the same optimal action for all the original
states assigned to the aggregate state (s ∈ Sk). As an
example, when the facility is operating in empty state
(s̄1) under penalty type 1, admitting five patients from
category 4 is provided as a best action by the aggregate
MDP model. This is also the best action for all other
original states that are members of S11. Even though
the aggregate MDP model cannot achieve the same top

three best actions produced by the original MDP model
for these three states, Figure 17, 18 and 19 demonstrate
that the ultimate value functions generated by these
two models are nearly identical especially for s̄2 and
s̄3 under penalty type 1, 2 and 3, respectively. In other
words, the best actions found via the aggregate MDP
model provide good quality solutions.

We report problem setup times and value iteration
algorithm solution times for both MDP and aggregate
MDP models in Table 11. We ran these test problems
on a Core 2 Quad 2.93 GHz, 4 GB RAM computer.
We see that solving the MDP model takes significantly
more time than solving the aggregate MDP model in all
instances. This is a direct result of including a larger
number of states (|S|) in the MDP compared to the
one (|K| + 2) in the aggregate MDP. However, as the
number of states increases, it takes dramatically more
computation time to set up the aggregate MDP prob-
lem components. We also tested the computational per-
formance of the two models on the problem instances
with very large number of states as seen in Table 9.
The aggregate MDP model is computationally more ef-
ficient than the original MDP model although the setup
time for the larger problems with the aggregate MDP
model is relatively high. These larger experiments are
performed on a computer with two Intel six-core Xeon
X5670 2.93 GHz processors and 24GB of memory.
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Fig. 6: APD and MAP with penalty type 1 and Q = 4
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Fig. 7: APD and MAP with penalty type 1 and Q = 5
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Fig. 8: APD and MAP with penalty type 1 and Q = 6
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Fig. 9: APD and MAP with penalty type 2 and Q = 4
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Fig. 10: APD and MAP with penalty type 2 and Q = 5
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Fig. 11: APD and MAP with penalty type 2 and Q = 6
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Fig. 12: APD and MAP with penalty type 3 and Q = 4
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Fig. 13: APD and MAP with penalty type 3 and Q = 5
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Fig. 14: APD and MAP with penalty type 3 and Q = 6

Table 9: Performance of (aggregate) MDP models on large problem instances

MDP Aggregation
Q |K| Number of states Setup (sec.) Algorithm (sec.) Setup (sec.) Algorithm (sec.)
7 10 8009 56.930 19111.621 128.065 4.709

15 5 11629 - - 3900.989 7.430
8 10 19449 - - 865.857 12.243

17 5 20350 - - 3900.989 7.430
20 5 42505 - - 30607.492 16.096
10 10 92379 - - 32868.907 65.671

Fig. 15: APD Box Plot
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Fig. 16: MAP Box Plot
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Table 10: Add caption

State
s̄1=(0,0,0,0,0,0,0,0,0,0) s̄2=(0,0,0,0,1,0,2,0,0,0) s̄3 =(0,0,0,0,2,0,0,1,1,0)

Penalty Type Action MDP Agg. MDP MDP Agg. MDP MDP Agg. MDP

1
Best (0,0,1,4,0,0,0,0,0,0) (0,0,0,5,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0) >2 (0,0,0,2,0,0,0,0,0,0)

Second Best (0,0,0,5,0,0,0,0,0,0) (0,0,1,4,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0) (0,0,0,1,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0)
Third Best (0,0,2,3,0,0,0,0,0,0) (0,0,2,3,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0) (0,0,1,0,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0)

2
Best (3,0,1,1,0,0,0,0,0,0) (0,0,0,5,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0) >2 (0,0,0,2,0,0,0,0,0,0)

Second Best (2,0,1,2,0,0,0,0,0,0) (0,0,1,4,0,0,0,0,0,0) (1,0,1,0,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0) (0,0,1,0,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0)
Third Best (2,0,2,1,0,0,0,0,0,0) (0,0,2,3,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0) (0,0,0,1,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0)

3
Best (3,0,1,1,0,0,0,0,0,0) (0,0,0,5,0,0,0,0,0,0) (2,0,0,0,0,0,0,0,0,0) (0,0,0,2,0,0,0,0,0,0) >2 (0,0,0,3,0,0,0,0,0,0)

Second Best (3,0,0,2,0,0,0,0,0,0) (0,0,1,4,0,0,0,0,0,0) (1,0,0,1,0,0,0,0,0,0) (0,0,1,1,0,0,0,0,0,0) (1,0,0,0,0,0,0,0,0,0) (0,0,1,2,0,0,0,0,0,0)
Third Best (3,0,2,0,0,0,0,0,0,0) (0,0,2,3,0,0,0,0,0,0) (1,0,1,0,0,0,0,0,0,0) (0,0,2,0,0,0,0,0,0,0) (0,0,0,1,0,0,0,0,0,0) (0,0,2,1,0,0,0,0,0,0)
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5 Conclusions and Future Research Directions

The MDP model proposed in this study is powerful de-
cision mechanisms in the case of an unexpected open-
ing in the facility (i.e., no-shows, appointment cancel-
lations, etc.). It aims to find the best patient admis-
sion decision with the maximum total expected reward
while conforming to the patient mix and capacity re-
strictions. Numerical experiments demonstrate that it
becomes intractable due to exponentially growing state
space as problem parameters increase. Thus, approx-
imate optimal patient admission policies are targeted
via an aggregate MDP model developed by fixed-weight
aggregation technique. Despite its ease of application,
it is capable of providing very good executable approx-
imate policies for the original MDP model which is
also evidenced by small APD and large MAP values.
Moreover, we observe that as the number of patient
categories (|K|) increases, the aggregate MDP model
produces more realistic patient admission policies in
terms of MAP and ADP values. This fact is highlighted
in Figure 15 and 16 where the basic statistical prop-
erties of the aggregate MDP model in terms of APD
and MAP are represented for the entire problem in-
stances clustered by |K|. We also note that the worst
case APD (MAP) values are 21% (69%), 14.1% (79%)
and 14.4% (80%) for the penalty type 1,2, and 3, re-
spectively. Overall, the findings show that the aggre-
gate MDP approach is a viable approach for propos-
ing the desirable patient admission strategies. Thus, the
proposed approach can be embedded in a decision sup-
port system in order to perform sensitivity analysis, or
to address the changes in future plans in the case of
any parameter changes (i.e., patient mix ratio updates).
The final version of this study will be presented to the
UFPTI in order to start clinical testing.

There are several future directions regarding this
study. Note that the gantry capacity constraints are the
only factor that limits the acceptance of new patients in
the MDP model. One important extension of this work
would be incorporating other operational restrictions
such as sequencing of patients, anesthesia surveillance
team availability and assessing the impacts of these on
patient admission policies. For instance, in order to ac-
count for the treatments of patients who need other re-
sources (i.e., technicians or nurses) during their treat-
ment sessions, we need to differentiate the time slots
based on the availability of such resources in gantries.
This would dramatically increase the dimension of both
the state and action spaces, which in turn ultimately
impact the complexity of the problem. Another poten-
tial extension of this work would be accounting for the
waiting patients for this treatment. Since this is another

layer of information that describes the state of the facil-
ity, it should be incorporated in the state space defini-
tion. Finally, a more competitive aggregation technique
that can mimic the behaviors of the MDP model with
several other operational constraints would be another
possible research direction.
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Fig. 17: Value function convergence graph for each selected state with penalty type 1, |K| = 10 and Q = 6

Fig. 18: Value function convergence graph for each selected state with penalty type 2, |K| = 10 and Q = 6

Fig. 19: Value function convergence graph for each selected state with penalty type 3, |K| = 10 and Q = 6
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Table 11: Computational Performance of MDP and Aggregate MDP models

MDP Aggregation MDP Aggregation
Penalty
Type

Q |K| |S| Setup
(sec.)

Algorithm
(sec.)

Setup
(sec.)

Algorithm
(sec.)

Penalty
Type

Q |K| |S| Setup
(sec.)

Algorithm
(sec.)

Setup
(sec.)

Algorithm
(sec.)

1 4 5 57 0.026 1.899 0.097 0.282 1 4 8 166 0.175 6.800 0.403 0.482
2 4 5 57 0.004 1.493 0.068 0.200 2 4 8 166 0.105 7.268 0.340 0.311
3 4 5 57 0.003 1.423 0.046 0.143 3 4 8 166 0.041 7.174 0.269 0.330
1 5 5 127 0.008 5.236 0.160 0.212 1 5 8 496 0.175 64.324 1.224 0.616
2 5 5 127 0.012 5.273 0.144 0.182 2 5 8 496 0.181 64.245 1.292 0.621
3 5 5 127 0.006 5.037 0.122 0.219 3 5 8 496 0.181 64.141 1.265 0.615
1 6 5 253 0.023 22.049 0.277 0.288 1 6 8 1288 1.045 580.842 5.519 1.278
2 6 5 253 0.022 22.465 0.314 0.243 2 6 8 1288 1.082 598.189 5.859 1.304
3 6 5 253 0.022 22.593 0.305 0.268 3 6 8 1288 1.071 577.072 5.730 1.341
1 4 6 85 0.048 3.140 0.167 0.247 1 4 9 221 0.271 11.172 0.683 0.475
2 4 6 85 0.006 2.673 0.075 0.158 2 4 9 221 0.190 11.460 0.309 0.324
3 4 6 85 0.004 2.486 0.089 0.163 3 4 9 221 0.115 11.620 0.357 0.377
1 5 6 211 0.021 12.605 0.257 0.249 1 5 9 716 0.630 130.615 2.172 0.858
2 5 6 211 0.019 12.511 0.247 0.303 2 5 9 716 0.610 129.702 2.199 0.842
3 5 6 211 0.019 12.289 0.282 0.256 3 5 9 716 0.596 131.751 2.181 0.813
1 6 6 463 0.091 69.813 0.952 0.455 1 6 9 2003 3.843 1427.650 11.937 2.154
2 6 6 463 0.091 69.963 0.916 0.452 2 6 9 2003 3.758 1444.031 12.299 2.157
3 6 6 463 0.089 69.728 0.955 0.419 3 6 9 2003 3.658 1446.783 11.780 2.141
1 4 7 121 0.100 4.664 0.246 0.220 1 4 10 287 0.884 18.449 1.082 0.498
2 4 7 121 0.140 4.249 0.184 0.250 2 4 10 287 0.386 18.473 1.060 0.423
3 4 7 121 0.109 4.123 0.146 0.234 3 4 10 287 0.415 18.351 1.197 0.465
1 5 7 331 0.060 26.009 0.535 0.362 1 5 10 1002 2.333 251.040 4.091 1.140
2 5 7 331 0.057 25.929 0.568 0.385 2 5 10 1002 2.358 252.854 4.018 1.211
3 5 7 331 0.058 25.789 0.610 0.426 3 5 10 1002 2.355 253.151 3.911 1.229
1 6 7 793 0.321 207.925 2.287 0.736 1 6 10 3004 13.449 3272.205 26.170 3.473
2 6 7 793 0.321 200.939 2.264 0.721 2 6 10 3004 13.191 3273.545 27.323 3.575
3 6 7 793 0.321 200.400 2.321 0.715 3 6 10 3004 15.575 3214.341 33.887 3.608
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38. Schütz, H.-J. and Kolisch, R. (2012). Approximate

dynamic programming for capacity allocation in the
service industry. European Journal of Operational
Research, 218(1):239–250.

39. Shelley, W., Brundage, M., Hayter, C., Paszat, L.,
Zhou, S., and Mackillop, W. (2000). A shorter
fractionation schedule for postlumpectomy breast
cancer patients. International Journal of Radiation
Oncology, Biology, Physics, 47:1219–1228.

40. Sickinger, S. and Kolisch, R. (2009). The per-
formance of a generalized baileywelch rule for out-
patient appointment scheduling under inpatient and
emergency demand. Health Care Management
Science, 12(4):408–419.

41. Sutton, R. S., Precup, D., and Singh, S. (1999). Be-
tween mdps and semi-mdps: A framework for tem-
poral abstraction in reinforcement learning. Artificial
intelligence, 112(1):181–211.

42. Yamada, Y., Ackerman, I., Franssen, E., Macken-
zie, R. G., and Thomas, G. (1999). Does the
dose fractionation schedule influence local control
of adjuvant radiotherapy for early stage breast can-
cer. International Journal of Radiation Oncology,
Biology, Physics, 44:99–104.

22


	University of New Haven
	Digital Commons @ New Haven
	6-2017

	Strategic Level Proton Therapy Patient Admission Planning: A Markov Decision Process Modeling Approach
	Shengfan Zhang
	Ridvan Gedik
	Chase Rainwater
	Publisher Citation
	Comments


	Introduction
	Literature Review
	Solution Methodology
	Computational Results
	Conclusions and Future Research Directions

