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Abstract
In radiotherapy, treatment needs to be delivered in time. Long waiting times can 
result in patient anxiety and growth of tumors. They are often caused by inefficient 
use of radiotherapy equipment, the linear accelerators (LINACs). However, making 
an efficient schedule is very challenging, especially when we have multiple types of 
patients, having different service requirements and waiting time constraints. More-
over, in radiotherapy a patient needs to go through a LINAC multiple times over 
multiple days, to complete the treatment. In this paper we model the radiotherapy 
treatment process as a queueing system with multiple queues, and we propose a new 
class of scheduling policies that are simple, flexible and fair to patients. Numeri-
cal experiments show that our new policy outperforms the commonly used policies. 
We also extend the policy to an adaptive one to deal with unknown and fluctuat-
ing arrival rates. Our adaptive policy turns out to be quite efficient in absorbing the 
effects caused by these changes. Due to the complexity of our problem, we select 
the parameters of the policies through simulation-based optimization heuristics. Our 
work may also have important implications for managers in other service systems 
such as call centers.
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based heuristic

 * Siqiao Li 
 aprilsiqiao@sjtu.edu.cn; l.s.q.li@vu.nl

 Ger Koole 
 ger.koole@vu.nl

 Xiaolan Xie 
 xie@emse.fr

1 Shanghai Jiao Tong University, Shanghai, China
2 Vrije Universiteit Amsterdam, Amsterdam, Netherlands
3 Ecole des Mines de Saint-Étienne, Saint-Etienne, France

http://orcid.org/0000-0002-4576-8342
http://crossmark.crossref.org/dialog/?doi=10.1007/s10696-019-09373-4&domain=pdf


155

1 3

An adaptive priority policy for radiotherapy scheduling  

1 Introduction

According to the World Health Report Organization (2017), about 8.8 million 
people died from cancer in 2015 and the annual number of new cases in the 
world-wide reached 14.1 million. It is estimated that these numbers will increase 
by 70% in the next 20 years. As one of the main treatment methods for cancer, 
radiotherapy uses different levels of radiation (e.g., X-rays) to kill tumors. It is 
the leading treatment for several cancer types (e.g., head and neck cancer). It also 
can be combined with other therapies such as surgery and chemotherapy to fur-
ther reduce and remove tumors. Indeed, about 40% of all cancer patients receive 
radiotherapy as part of their treatment.

Increasing demand for radiotherapy force hospital managers to face the chal-
lenge of how to deliver in-time treatment to patients for the lowest possible costs. 
It has been shown in Chen et al. (2008) and other papers that long waiting times 
can lead to patient anxiety and unexpected growths of tumors which have a nega-
tive impact on clinical outcomes. In fact, a waiting time target (WTT) measured 
in days is often assigned to each patient type. It can be interpreted as the patient’s 
longest acceptable waiting time. The main costs are the Linear Accelerators 
(LINACs). Therefore, the focus is on how to schedule multiple types of patients 
on a limited number of LINACs so as to meet various WTT requirements.

Let us first take a closer look at the radiotherapy process. Before a refer-
ral patient receives treatment on a LINAC (the so-called treatment phase), he/
she needs to go through consultation, examination, tumor location, and simula-
tion, which altogether are called the pre-treatment phase. At the end of the pre-
treatment phase, a diagnosis-based treatment protocol is proposed for this patient 
whose status then becomes “ready to treat”. The waiting time we consider is the 
time between the “ready to treat” date and the real start date of treatment. Indeed, 
the treatment phase is usually the bottleneck in the whole cancer-treatment pro-
cess Legrain et al. (2015).

In the treatment phase, patients have a typical “re-entrance” behavior. This 
behavior is due to the fact that healthy cells around tumors need to be pro-
tected as much as possible during irradiation. Therefore, the total needed dosage 
of a patient is not delivered once and for all, but via multiple equal fractions. 
Once a patient starts the treatment, he/she needs to receive a fixed small dos-
age of rays (i.e., a fraction) every day from a LINAC until all needed fractions 
are carried out. Except for a routine break in the weekend, interruptions are not 
recommended during the whole treatment. Every fraction occupies a fixed time 
slot (e.g., 15 min) of a LINAC. We neglect the slight difference in fraction dura-
tions between patients since we could average it at the scheduling level. This “re-
entrance” behavior leads to a very challenging scheduling problem because once 
we schedule a patient for a time slot, the same time slot will be occupied in the 
following days until he/she departs. The system is even more difficult to analyze if 
we consider multiple types of patients. However, in reality, radiotherapy patients 
are categorized by the number of fractions and the WTT requirements according 
to tumor position, treatment intent, growth level, and urgency degree. A small 
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example with two patient types is shown in Table 1, which can help to understand 
the heterogeneity of patients. The “Arrival Rate” column represents the average 
daily workloads, which can be very different. Patients within the same patient 
type have the same number of fractions, shown in the “Number of fractions” col-
umn. Note that we only consider identical LINACs here, because LINACs are 
becoming more and more advanced nowadays and are capable to treat almost all 
types of patients.

Due to the complexity of the system, no analytical results exist for such a sys-
tem. This also explains why related work is limited and why most of the work 
gave myopic solutions or case-oriented solutions that cannot be applied to a more 
general case. In this paper, one of the contributions is solving the patient schedul-
ing problem by proposing a class of “routing policies” that can automatically help 
managers to decide which patient to treat next once a time slot becomes available. 
This decision can be made several days ahead because the number of fractions a 
patient needs is prescribed in the treatment protocol before the treatment starts.

We model the treatment process as a queueing system with multi-server and 
multi-type queues. This is based on the “slot server” framework we proposed in 
Li et al. (2015), where time slots of a LINAC are considered as servers in paral-
lel. Therefore, the number of fractions is nothing more than a patient’s service 
time, the days he/she occupies the time slot. The patients who find all time slots 
are occupied will wait in their queues (based on patient types). This queueing 
model gives us the insight that we can solve the patient scheduling problem by 
deciding which queue to treat first. Hence we propose a “routing policy” to auto-
matically assign the patient to the “right” time slot on a LINAC, based on the cur-
rent system state, considering different WTT requirements. The fairness between 
patient types is also considered in the objective function.

A standard way to optimize routing policies is Dynamic Programming (DP). 
However, the problem is intractable in case of a large number of patient types. 
Although some approximation methods can be used, they are computationally 
very demanding, give little insight and are usually too complex to implement. 
Furthermore, this only works for the homogeneous arrival rate case. We propose 
a new type of policy, called the Highest Waiting Index First (HWIF) policy, which 
only needs to update the Waiting Index (WI) of each patient type and choose the 
queue with the highest WI to treat next. The WI is simply the sum of the longest 
waiting time in the queue and a certain priority factor. The priority factor of each 
queue is calculated by a simulation-based heuristic that optimizes the long-run 
performance of the system. The policy is efficient, simple and easy to understand.

Table 1  Heterogeneity of 
radiotherapy patients

Patients Cancer type Arrival rate Number of 
fractions

WTT (days)

P1 Prostate 1.43 33 20
P2 Lung 0.18 2 5
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Next we consider the situation of non-homogeneous arrival rates, which is hardly 
considered in the healthcare systems literature. Although the cancer incidence rates 
in an area might not change much, the arrival rates of radiotherapy patients of a 
cancer center often do. Typical reasons are changes in treatment, changes in patient 
preferences, the opening or closing of competing centers in the neighborhood, etc. 
Indeed, as is often the case in healthcare processes, fluctuations induced in the pro-
cess are often bigger than those generated by external events. From discussions with 
practitioners, we learned that radiotherapy is no exception. The arrival rate of each 
patient type may not change in the same pattern. Some patient types may remain 
relatively constant arrival rates while some others change. Moreover, the chang-
ing patterns are usually unknown and difficult to forecast based on the historical 
data. We hence extend our policy to an adaptive one, called the Adaptive Highest 
Waiting Index First (AHWIF). The priority factors are adjusted adaptively to absorb 
the effects caused by the changes in arrival rates. The construction of the adaptive 
policy is explained in Sect. 5. Again, the policy is efficient and easily understand-
able. In our numerical experiments, the impact of not using an adaptive policy under 
changing arrival rates will be illustrated by comparing the two types of policies 
under various scenarios.

2  Related literature

In this section, we first give a brief literature review on the patient scheduling prob-
lem in radiotherapy. Then some literature from other fields related to our model and 
methods are discussed.

Petrovic and Leite-Rocha (2008) proposed two simple heuristic algorithms to 
schedule patients forward from the first feasible start date (ASAP algorithm) or 
backward from the last feasible start date (due date) in order to minimize the total 
number of patients whose waiting times are longer than their WTTs. Conforti et al. 
(2008) constructed a series of deterministic integer programming models to sched-
ule patients in a given waiting list in order to maximize the number of scheduled 
patients without breaching WTTs. Burke et al. (2011) also constructed a determin-
istic mathematical model with multiple hierarchical objectives. None of the above 
models is stochastic, and the optimization is made only based on current patients.

An exception is the work of Saure et al. (2012), in which the treatment process 
is modeled as a Markov Decision Process (MDP) to decide the optimal threshold 
of the patients that can be scheduled for each patient type per day. Their objective 
function involves the overall weighted waiting time. Due to the curse of dimension-
ality, the MDP model cannot be solved directly so that they employed the Approxi-
mate Dynamic Programming (ADP) approach. Legrain et al. (2015) also consider 
the uncertainty of arrivals. They developed a hybrid method combining a stochastic 
programming and an online optimization algorithm to maximize the utilization of 
resources.

The studies of routing algorithms in the healthcare field are quite limited, mostly 
around the dynamic bed allocation problem. However, the trade-off in the bed allo-
cation problem is between refused admissions and overall occupation of beds, which 
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leads to a different model. The studies closest to ours actually can be found in call 
centers, which also have multi-type queues with different waiting time targets.

Leveraging on queueing theory, some asymptotically optimal routing policies 
are studied mostly in a heavy-traffic regime, when agent occupancies converge to 
100%, see for example Gurvich and Whitt (2010); Ward and Armony (2013); Tez-
can and Dai (2010). Their routing policies cannot be used for radiotherapy planning 
because they fail in cases with queues having low volumes and their objective does 
not involve WTTs.

A more relevant paper is Chan et al. (2014). In this paper, a routing policy, which 
is also index-based, was proposed. They defined the index function as an affine com-
bination of customer waiting times and agent idle times, of which the coefficients 
are chosen to maximize the service level of the call center. The performance of the 
proposed policy is excellent in the simulation model. However, the results are very 
difficult to interpret.

An adaptive policy was put forward in the work of Legros et al. (2015), which 
considered a call center having single-skill inbound calls and an infinite amount of 
emails. They adaptively changed the number of agents reserved for calls to deal with 
the non-homogeneous arrival rates of calls. The structure of their adaptive policy 
resembles ours, but their problem setting is quite different.

The remainder is organized as follows. In Sect. 1, we define our model. In Sect. 4, 
we give the structures of various policies involved in the paper. In Sect. 5, we explain 
the method that we have used to decide the priority factors in the HWIF policy. In 
Sect. 6, the construction of the AHWIF policy is introduced. In Sect. 7, we discuss 
the results of several numerical experiments. Because there are no closed-form solu-
tions for complex systems with different policies, all performance evaluations in our 
paper are carried out by simulation. A conclusion follows in Sect. 8.

3  Model

We model the treatment phase of radiotherapy as a queueing system with I queues 
and c identical slot servers in parallel. For simplicity, we use I  to denote the set of 
patient types. Each queue is dedicated to a patient type. The patients within the same 
queue are treated in a First Come First Serve (FCFS) manner and will not leave the 
queue until they get treatment. This is due to the fact that the rates of no-show, aban-
donment, and cancellation are very low in radiotherapy.

Note that the arrivals in our model are the patients who become ready to treat. In 
reality, the pre-treatment phase usually needs at least 1 day to finish (the exceptions 
are emergency cases which are less than 1%), hence we can assume in the model that 
the new arrivals and also the newly released slot servers are observed at the beginning 
of the day. Afterward, the routing decisions are made for the idle slot servers, if any, 
according to some given policy � . This assumption will not affect the evaluation of the 
performance since we measure by days. From a practical point of view, the assump-
tion also fits the way the planners work. We use Ai,n to represent the arrival date of 
patient n of type i, and Si,n(�) to represent the date that the patient starts treatment (i.e., 



159

1 3

An adaptive priority policy for radiotherapy scheduling  

is assigned to an idle server). Then the access time (i.e., waiting time) of the patient is 
Si,n − Ai,n.

The arrival rate of patient type i is assumed to follow a Poisson distribution with a 
mean �i . In the non-homogeneous situation, the arrival rates may change over time. As 
we discussed in the previous section, the changes in the arrival rates can be triggered by 
different events. In radiotherapy, instead of seasonality, we focus more on trend (i.e., a 
gradual change) and leap (i.e., a sudden change) which can be caused by new policies 
of doctors/ hospitals or adding LINAC resources. Service times are deterministic for 
each patient type, denoted by �i , which are equal to the number of fractions needed. 
The WTT of a patient type is denoted by �i.

Only work-conserving policies are considered in this paper, which implies that we 
do not allow servers to remain idle as long as there is any patient waiting. Although 
non-work-conserving policies can perform better in some specific situations, in the 
healthcare system, work-conserving policies are preferable because managers want to 
make the best use of the expensive equipment. Moreover, keeping capacity idle is not 
fair to the patients currently waiting in the queue. It only makes sense when we have 
emergency patients. However, less than 1% of radiotherapy patients are emergency 
patients who usually have very short service time (1–2 days). The capacity of LINACs 
is somewhat flexible so that we can always treat them using overtime.

3.1  Performance measures

In this subsection, we explain two important performance measures we have used to 
evaluate the system: the expected tardiness of each patient type and the service level.

The tardiness of a patient either is 0, which implies he/she started treat-
ment within the required WTT or is the part of the waiting time that exceeds the 
required WTT. For every scheduled patient, his/her tardiness is calculated as 
Ti,n(�) = max {Si,n(�) − Ai,n − �i, 0} . When we have a stable system with homogene-
ous arrival rates, the expected tardiness of type i patients under policy � can be meas-
ured by

By setting N large enough, this value can be well approximated in our simulation 
model. In the non-homogeneous situation, the system is no longer stable. We pay 
attention to the transient performance. The expected tardiness over a given time 
period d (e.g., 1 year) is given by

This value is estimated by averaging the results of numerous simulation runs. Note 
that Nd is the number of patients that have started treatment during the d days.

(1)�[Ti(�)] = lim
N→∞

∑N

n=1
Ti,n(�)

N
.

(2)�[Ti(�, d)] = �

�
∑Nd

n=1
Ti,n(�)

Nd

�

.
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The service level is defined as SLi(�) = ℙ{Si,n − Ai,n ≤ �i}. We only consider it 
as an additional performance measure since it can be more intuitive for some man-
agers than the tardiness. It is not part of our objective function due to its drawback: 
there is no incentive to treat patients once they waited longer than their WTT.

The service level for the homogeneous and non-homogeneous situations can be 
calculated by

and

respectively.

3.2  Objective function

Our paper aims at scheduling patients on LINACs more efficiently so as to meet the 
WTT requirements. Therefore, an objective function should represent how good the 
requirements are met. Later, the parameters (priority factors) in the WI-based pol-
icy are optimized according to the objective function. In the objective function, we 
consider patients’ expected tardiness and assign a penalty weight pi to each patient 
type. This is because the same length of tardiness should be penalized more for the 
patients having a shorter WTT. An intuitive setting is pi = 1∕�i . Furthermore, we 
also want to consider the fairness between patient types. In other words, we don’t 
want to sacrifice the performance of any patient type for the overall performance. 
As a result, the objective function is set to minimize the maximal weighted tardiness 
among all patient types, which can be defined as follows:

In prior studies, a (weighted) average of the tardiness/waiting time of all patient 
types is usually used as the objective function, which hides the different perfor-
mances among patient types so that fairness cannot be considered. Instead of consid-
ering it as our objective function, we use it to show the overall performance which 
is useful information for managers. To distinguish with the objective function G(�) , 
we use To(�) to represent the overall tardiness, defined as:

Note that To(�) is not used to set any parameters. In numerical experiments, we will 
see the WI-based policy outperforms other benchmark policies in terms of both the 

(3)SLi(�) = lim
N→∞

∑N

n=1
�(Si,n − Ai,n ≤ �i))

N
,

(4)SLi(�, d) = �

�
∑Nd

n=1
�((Si,n − Ai,n) ≤ �i))

Nd

�

,

(5)G(�) = max
I

(pi ⋅ �[Ti(�)]).

(6)To(�) =

I
�

i=1

�

�i
∑I

i=1
�i

⋅ pi ⋅ �[Ti(�)]

�

,
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objective G(�) and the overall performance To(�) . The expected tardiness and ser-
vice level of each patient type are shown as well to understand more about fairness. 
In the non-homogeneous situation, we replace �[Ti(�)] by �[Ti(�, d)] so that G(�) 
becomes G(�, d) and To(�) becomes To(�, d).

4  Routing policies

In this section, we want to explain the structure of the WI-based policy. The WI of 
each patient type is the sum of the current longest waiting time in the queue and 
the priority factor. Interestingly, the benchmark policies which are commonly used 
in practice are special cases of the WI-based policy. Our WI-based policy is more 
flexible since the priority factors in the WI function are optimized for each given 
scenario. The algorithm we used to optimize the factors will be introduced in the 
next section. Here we only focus on the structures and how they are implemented. 
The abbreviations in the parentheses will be used later in the results of numerical 
experiments.

4.1  Global FCFS (GF)

In this simple and intuitive policy, all patient types are treated equally, so that the 
decisions are made only based on waiting times, independent of patient types. This 
policy can be easily implemented via a single FCFS queue: at the beginning of a 
day, we first update the queue by adding the new arrivals and then each idle server 
will pick the patient from the head of the queue to treat. In fact, it has poor per-
formance when there are multi-type queues with different priorities (i.e., WTTs). 
However, we regard it as the basic benchmark policy since it is still often used in 
healthcare systems.

4.2  Static priority (SP)

In this policy, the routing decisions are made based on a static priority list of patient 
types. At the beginning of a day, we first add new arrivals to their corresponding 
queues. Then the assignment is done in the order of the priority. In our problem, 
some patient types may have the same priority levels. Within these patient types, we 
use the GF policy. According to the way we determine the static priority list, four 
different SP policies are considered. They are defined as follows.

Shortest WTT First (SWF): In healthcare systems, the static priority list is nor-
mally determined based on the urgency degree (i.e., WTTs). In the SWF policy, the 
patient type with the shortest WTT has the highest priority level.

Shortest Service First (SSF): This policy comes from the classic scheduling pol-
icy in which the patient type that needs the shortest service time has the highest 
priority level.
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Shortest WTT & Service First (SWSF): This policy is an extension of the SWF pol-
icy. The static priority list is first determined based on WTT. Then the patient types 
with the same WTT will be further ordered with respect to their service times.

Shortest Service & WTT First (SSWF): This policy is an extension of the SSF policy. 
The static priority list is first determined based on the service time. Then the patient 
types that need the same service time are further ordered according to their WTTs.

Table 2 shows the priorities of three patients under different SP policies. Note that 
the smaller the number is, the higher the priority.

4.3  Earliest due date (EDD)

This policy is often used in manufacturing systems, where products need to be deliv-
ered before some due date fixed in the contract. However, in our problem, we only 
focus on the date a patient starts treatment. Therefore, a patient’s due date is defined 
as the arrival date plus the WTT. To implement this policy, an idle server will scan the 
patient at the head of each queue and pick the one with the earliest due date to treat. If 
all patients’ due dates are the same, the server will pick the one with the shortest WTT. 
Compared to the SWF policy which always gives the shorter WTT patients higher pri-
ority, the EDD policy is more flexible. It can mitigate the imbalance between patient 
types caused by different priorities. For instance, consider two patients P1 and P2 from 
Table 2 both waiting in the queue. P1 has waited only 1 day but P2 has already waited 
10 days. If there is only one idle server, under the SWF policy, the server will pick P1 
ignoring the fact that P2 cannot wait any longer. However, under the EDD policy, P2 
will be picked because his/her due date is earlier (4 days earlier than P1).

4.4  Highest waiting index first (HWIF)

In WI-based policies, routing decisions are made according to the current waiting index 
(WI) of each queue. We let Xi denote the WI of patient type i, which is defined as:

W
f

i
 is the current longest waiting time of queue i, which is the waiting time of the 

first patient in queue i. If the queue is empty, we let Wf

i
= −∞ . �i is a priority factor 

assigned to queue i. Under the HWIF policy, an idle server will scan the patient at 
the head of each queue and pick the one with the highest WI to treat. In case of a tie, 
the server will pick the one with the largest �i.

(7)Xi = W
f

i
+ �i.

Table 2  Comparison of the SP 
policies

WTT (days) Service 
time (days)

SWF SSF SWSF SSWF

P1 5 16 1 2 1 2
P2 10 16 2 2 3 3
P3 10 2 2 1 2 1
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The essential idea underlying the structure of our WI is that using the Wf

i
 to indi-

cate the current urgency of queue i and making an adjustment by adding a priority 
factor �i so as to consider various WTT requirements. On average, the larger the �i 
is, the less the patient of type i needs to wait to start treatment. For example, we 
again consider two patients P1 and P2 from Table 2 both waiting at the head of each 
queue. We assume 𝛾1 > 𝛾2, 𝛾1 − 𝛾2 = 3 , then P2 can start the treatment first if he/she 
has waited 4 days longer than P1 has.

In the homogeneous situation, the arrival rates are assumed constant and given 
(e.g., estimated using historical data). Therefore, in any given scenario, we can 
determine �i for each patient type i so as to minimize the objective function (5). Once 
the priority factors are determined, the HWIF policy can be easily implemented to 
schedule patients. Managers just need to update the current WI of each queue every 
time they have made a routing decision. However, due to the complexity of the sys-
tem, we cannot derive a closed-form solution of �i . Instead, the calculation of �i is 
carried out by a simulation-based algorithm, which will be discussed in Sect. 4. We 
find that �i is influenced by the configuration of all patient types’ workloads (i.e., 
service time and arrival rates) and WTT requirements. This also explains why we 
need to adjust �i adaptively when we have non-homogeneous arrival rates because 
the configuration of patient types’ workloads will change.

We already mentioned that the benchmark policies mentioned above fit in the 
framework of the WI. Their �i and Xi = W

f

i
+ �i are shown in Table 3, where M is 

a large number (e.g., 1000); ��
i
= max

I
{�i − �j} ; ��

i
= max

I
{�i − �j} and �∗

i
 rep-

resents the optimal �i that minimized the objective function (5). This property also 
makes the explanation of �∗

i
 (e.g., to managers) much easier.

5  Determination of the priority factors

In this section, we introduce the approaches used to determine the priority factors �i 
in the HWIF policy. As we mentioned, the priority factors should be calculated to 
minimize the objective function G(�) . We use � to represent a solution. Firstly, two 
properties of � need to be considered.

(1) Due to the structure of the HWIF policy, an idle server will choose the patient 
with the highest WI to treat. Therefore, the routing decisions are actually affected 
by the relative differences of �i between patient types. It implies that we only 
need to optimize I − 1 dimensions of the decision vector � because we can always 
fix a certain �i (e.g., to 0).

Table 3  Special cases of the HWIF policy

HWIF GF SWF SSF SWSF SSWF EDD

�i �∗
i

0 �′
i
M �′

i
M (��

i
M + ��

i
)M (��

i
M + ��

i
)M �′

i

Xi W
f

i
+ �∗

i
W

f

i
�′
i

�′
i

��
i
M + ��

i
��
i
M + ��

i W
f

i
+ ��

i
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(2) Since the waiting time Wf

i
 is counted in days, it makes little sense to set �i as a 

fraction. Hence �i is considered to be integer.

The objective value under any given � is evaluated via simulation. Then a simula-
tion-based optimization (SIMOPT) method can be employed to derive the optimal 
or near optimal solution. However, general-purpose SIMOPT methods are slow. To 
increase speed and accuracy we have developed heuristics. In Sect. 5.1, six scenar-
ios with only two patient types are analyzed. The gained numerical insights play an 
important role in developing the heuristic algorithm which is explained in Sect. 5.2. 
Later, the insights also help us to construct the adaptive policy.

5.1  Numerical insights

Due to the properties of � , when we consider a scenario with 2 patient 
types, the solution can be simplified to one integer variable: �� = �2 − �1 . 
To understand how �� affects the objective value, we evaluate G(��) for any 
�� ∈ [−max(�1 + �1,�2 + �2), max(�1 + �1,�2 + �2)] with brute force, where 
G(��) is the objective value under the HWIF policy with ��.

Table 4 lists the scenarios considered. To compare the results of various scenar-
ios, the number of servers c is set to achieve similar traffic loads, shown in column 
� , so that the influence caused by different traffic loads can be eliminated. The last 
two columns give the optimal solution ��∗ and the value of the objective function 
G(��∗).

In Fig.  1, we show the weighted tardiness p1�(T1(��)) , p2�(T2(��)) and also 
To(��) of Scenario 1–4. The points are only connected to show the trend clearly. 
As we mentioned in Sect. 4.4, other benchmark policies can be regarded as special 
cases of the HWIF policy. In the plots, the performances under the GF policy and 
the EDD policy can be easily shown. Two vertical dashed lines with different colors 
are used to point out the corresponding �� (GF: �� = 0 , EDD: �� = �1 − �2 = −5 ). 
The corresponding performances are the values of the intersections of the three lines 
and the dashed lines.

The following numerical insights are gained through the analysis of various 
scenarios.

Table 4  Scenarios of model with 2 patient types

Scenarios (�1∕�1∕�1) (�2∕�2∕�2) c � (%) ��∗ G(��∗)

S1 5 / 5 / 1.2 5 / 10 / 1.2 13 92.30 − 6 0.0125
S2 20 / 5 / 0.12 10 / 10 / 1.2 16 96 − 7 0.02
S3 20 / 5 / 1.2 10 / 10 / 0.12 26 96.90 − 14 1.28
S4 5 / 5 / 0.12 20 / 10 / 1.2 26 94.50 − 10 0.13
S5 20 / 5 / 1.2 18 / 10 / 0.12 28 92.30 − 7 0.24
S6 20 / 5 / 1.2 5 / 10 / 0.12 26 92.30 − 11 0.47
S7 20 / 10 / 0.12 5 / 10 / 1.2 10 93.30 0 0.01
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Observation 1: The expected weighted tardiness of patient type i is non-
increasing in �i.

Indeed, in Fig. 1, we find that the expected weighted tardiness of patient type 
1 (patient type 2) in all scenarios decreases as �� decrease (increase). However, 
we only can prove this property in 2 specific situations: identical service times or 
c = 1.

Theorem 1 If patients have identical service times then the expected weighted tar-
diness of patient type i is non-increasing in �i.

Proof For a given � consider an arbitrary sample path Ai,n of the arrivals. Because 
the service times are constant and deterministic this fully determines the WI and 
the order and times in which the patients are treated. Now suppose we increase �i . 
Because the policies are work-conserving the number of patients treated is the same 
for any time, only the order can change. For any type i patient, due to the form of 
the WI, patients that are later in the order will never get a WI higher than the type 
i patient. Thus all type i patients keep their position or move to an earlier position. 
Therefore they are all treated at the same time or earlier.   ◻

Theorem 2 If there is only 1 server in the system then the expected weighted tardi-
ness of patient type i is non-increasing in �i.

Proof Consider again an arbitrary sample path Ai,n of the arrivals. Because the 
policies are work-conserving, the amount of work done in the system is the same 
under any policy. Using the same argument as for Theorem 1 we conclude that type 
i patients can only move forward and therefore their waiting times can only get 
shorter.   ◻
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Fig. 1  Comparison of scenarios with 2 patient types: Scenario 1–Scenario 4
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Unfortunately, it is impossible to use the sample path method above to give a 
proof for the situation with both unequal service times and multiple servers. A 
counterexample can be easily found, see Fig. 2. On day 3, server 2 becomes idle 
so that a routing decision needs to be made. In the queues, there are 3 patients: 
P1, P2, and P3 who have waited 1 day, 2 days and 0 days respectively. P1 belongs 
to patient type 1 with �1 = 2 and the other two patients are from patient type 2 
with �2 = 3 . On day 3, X1 = 1 + �1 and X2 = 2 + �2.

In the first case, we assume �1 = 3, �2 = 1 so that X1 = 4,X2 = 3 . Hence P1 
is picked first to start the treatment. On day 4, server 1 becomes idle, then P2 
will start the treatment. Since P1 will occupy server 2 for 2 days, P3 will start 
the treatment on day 5. However, in the second case, we increase �2 and let 
�1 = �2 = 3 , which leads to X1 = 4,X2 = 5 . Hence this time, the routing decisions 
are P2 → P1 → P3. One sees that P3 will start the treatment on day 6, which is 
even later than he/she does in the first case.

Observation 2: The rate at which the expected weighted tardiness changes with 
�i is different for each patient type. The minimum of the objective function G(�) is 
obtained when all piTi(�) are similar.

This observation is based on the comparison of the plots, which show quite 
different ranges of the expected weighted tardiness based on the same range of 
�� . However, the optimal solution always has similar values of piTi(�).

Observation 3: The expected weighted tardiness of each patient type is 
bounded, and the upper/lower bound can be derived by applying the SP policy 
with the lowest/highest priority.

This is because we only consider work-conserving policies. In plot 1 and plot 
2 of Fig. 1 one can see that the weighted tardiness of patient type 1 increases to 
an upper bound. In fact, the weighted tardiness of patient type 1 in plot 3 and plot 
4 also converges to an upper bound but at a much slower rate, outside of the plot.

Observation 4: The EDD policy outperforms the GF policy in all scenarios 
with different WTTs, and is close to the optimal solution.

Under the GF policy, all patient types are treated equally, having the same pri-
ority factors. It leads to poor performance of the patients with a shorter WTT. 
On the contrary, the �i in the EDD policy is set based on the WTTs. Due to its 

day1 day2 day3 day4 day5 day6
server1
server2

decision series 1 P1->P2->P3

day1 day2 day3 day4 day5 day6
server1
server2

decision series 2 P2->P1->P3

P1
P2

P2
P1

P3

P3

Fig. 2  Comparison of scenarios of 2 patient types
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good performance, we choose the EDD policy as the starting point (i.e., the ini-
tial solution) to search for the optimal �∗ in the algorithm.

Observation 5: When patients have identical WTT, we observed that the opti-
mal solution of �∗ is 0 , which implies that there is no difference between applying 
the EDD, GF and HWIF policies. However, for different WTTs, the optimal � is no 
longer 0 and it depends on both the service times and the arrival rates.

An example of having identical WTT is Scenario 7 in Table  4. Although the 
attributes of the patient types are different, the optimal solution gives them the same 
priority factor. This is due to the objective function G(�) : a penalty occurs only if 
the waiting time exceeds the WTT; instead of the weighted average tardiness, the 
maximal tardiness among all patient types is minimized. However, in reality, various 
WTTs need to be considered. Then the optimal solution is no longer 0 . Scenario 5 
and Scenario 6 are compared to show how the service time influences the solution: 
the service time of patient type 2 is different in two scenarios so that the correspond-
ing optimal solution is different as well. Similarly, the arrival rate influence can be 
found by comparing Scenario 2 and Scenario 3.

Observation 6: If we choose the weighted average tardiness To(�) as the objective 
function, we can get very unfair performances between patient types.

In the last plot of Fig. 1, we see that the weighted average tardiness remains small 
while the tardiness of patient type 1 becomes very large. Vice versa, the solution �∗ 
that minimizes G(�) still gives a low To(�) . This is why we think G is the preferred 
objective function: it is fair and also gives a low overall tardiness.

5.2  A hill‑climbing algorithm

Combining the above numerical insights, a hill-Climbing-based local search algo-
rithm is developed. The algorithm needs four input parameters: an initial solution 
�
init , the patient type with the priority factor fixed ifix , a step size � and tolerance e. 

As we mentioned in Observation 4, we choose the priority factors of the EDD policy 
as the initial solution: � init

i
= ��

i
 , see Table 3. Due to the first property of � , we need 

to fix the priority factor of a certain patient type: ifix . To avoid having any negative 
�i in the end, we let ifix = argmin

I
piTi(0) . As we known, � = 0 implies treating all 

patient types equally. Hence for the patient type with the minimal weighted tardiness 
(i.e., the best performance), there is no need to assign any additional priority factor, 
compared to other patient types. Due to the second property of � , the step size � is 
set to 1 and the tolerance e is a very small value (e.g., 0.0001) used to deal with the 
noise in the simulation.

To search for the optimal solution, we first evaluate each patient type’s weighted 
tardiness under the current solution, then we find the patient type with the worst per-
formance imax to improve. In every step, we add 1 to �imax . The procedure continues 
until imax = ifix . During the search, we record the “current top” of the “hill” to com-
pare with the next “top” and keep the better one (i.e., the minimal one). In the end, 
we output the “current top”.
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To verify the algorithm, we first apply the algorithm to the scenarios in Table 4. 
The same optimal solution was found in all scenarios within several minutes. To fur-
ther analyze the efficiency of the algorithm, we apply it in a scenario with 7 patient 
types (PT1-PT7), which are chosen from a real scenario. Figure 3 gives the search 
path of the proposed algorithm, where the red line connects the solutions that have 
been recorded. In Table 5, we show the expected weighted tardiness of each patient 
type, the objective value G(�) , and the �i under each policy. It is obvious that the 
HWIF policy outperforms the other two policies. The detailed information of each 
patient type can be found in Table 6, marked in bold.

6  The construction of the adaptive policy

In this section, we will discuss the adaptive policy, which is developed for the non-
homogeneous situation. As we mentioned, not all arrival rates change in the same 
pattern. Sometimes, the change of the arrival rates can be gradual, which is called a 

Table 5  Results of the local search algorithm

PT1 PT2 PT3 PT4 PT5 PT6 PT7 G(�)

GF 0.1342 0.1337 0.0005 0.0005 0.5488 0.5467 0.005 0.5488
�i 0 0 0 0 0 0 0 –
EDD 0.0046 0.0045 0.0013 0.0012 0.0090 0.0088 0.0012 0.0090
�i 30 30 0 0 35 35 0 –
HWIF 0.0015 0.0015 0.0015 0.0015 0.0014 0.0014 0.0015 0.0015
�i 38 38 0 0 49 49 0 –
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trend. A sudden change can also happen, for example, some patients from a partner 
hospital may be distributed to the hospital because there is a new LINAC. In our 
paper, we call the latter case a leap. According to Observation 5, the changes in 
arrival rates will lead to a different �∗ in the HWIF policy. We could calculate the 
new � for every new situation, but, in reality, the changes are often unknown and dif-
ficult to forecast. Therefore, an adaptive policy is more appropriate.

Our adaptive policy is a generalization of the HWIF policy. It is also easy to use 
and simple to explain. We use the same WI structure. We start with calculating � 
using Algorithm 1 based on historical data. When the arrival rates changes, the � is 
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Fig. 3  Search paths of the algorithm

Table 6  Patient information Patient type Cancer description Urgency situation �
i

�
i

�
i

1 Lung Radical 0.19 5 5
2 Urgent 0.11 4 5
3 Palliative 0.11 1 5
4 Head and neck Radical#1 0.29 20 10
5 Radical#2 0.21 35 10
6 Breast Adjuvant#1 1.43 16 40
7 Adjuvant#2 0.59 20 40
8 Adjuvant#3 0.45 12 40
9 Palliative#1 1.6 1 40
10 Palliative#2 1.36 5 40
11 Non-urgent#1 0.57 10 40
12 Non-urgent#2 0.38 4 40
13 Non-urgent#3 0.18 15 40
14 Prostate Radical#1 0.34 33 40
15 Radical#2 0.44 37 40
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no longer optimal. Hence we need to adjust it to adapt to the changes in the arrival 
rates. Inspired by Observation 1 and the results of the HWIF policy, the idea of the 
AHWIF policy is adding a small factor h to the patient type with the worst perfor-
mance. This is done every day, and the performance is calculated on the basis of the 
last v days.

Now let’s focus on how to set the value of v and h. We assume both of them 
are constant. Unfortunately, choosing v and h is very difficult because the rate of 
changes in the arrival rates are unknown. Instead, we propose several combinations 
of v and h and later test them under various scenarios. The numerical experiments 
show that a reasonable combination of v and h already can lead to very good results.

To derive such a combination of v and h, we should understand the relationship 
between the parameters and the performance. Firstly, the longer the v is, the more 
difficult capturing the changes in the system becomes, including both the change in 
arrival rates and the change caused by our adaptive policy. However, if the v is set 
too short, the re-evaluated performance is less reliable because of the high variabil-
ity. Hence we suggest three options: v = 10 , v = 30 , and v = 90 . Secondly, h implies 
the amount of adjustment every time. Different from the step size � = 1 that have 
defined in the local search algorithm, we allow h to be a fraction. Although a frac-
tional increment in �i will not affect the routing decisions immediately due to the 
second property of � , a fractional increment can help avoid too much changes in 
the policy. For example, if we set h = 0.5 , a patient type needs to have the worst 
performance among all patient types continuously for 2 days to get a higher prior-
ity than before (i.e., its �i increased by 1 and others remain the same). Moreover, a 
large h (e.g., h > 1 ) can increase the fluctuation in the performance of each patient 
type. However, a too small h is also not preferred because it cannot properly respond 
to the changes in arrival rates. As a result, three options are considered: h = 0.1 , 
h = 0.5 , and h = 1 . In reality, managers can choose a combination of v and h based 
on the understanding of the system. For instance, if they understand there will be a 
sudden increase in the number of patients referred to their hospital, v = 10 and h = 1 
can be a good option since a quick response to the change is needed. We found that 
the performance of the AHWIF is relatively robust to the choice of v and h.

7  Numerical experiments

7.1  Experimental setting

To test the efficiency of the policies for realistic parameters, a series of numerical 
experiments are conducted based on a scenario with 15 patient types. The informa-
tion about the patient types is provided in Table 6, which is derived from the work of 
Saure et al. (2012). Three different WTTs are assigned to different patient types, and 
the workloads of patient types are asymmetric. We regard the patient types which 
share the same cancer position (e.g., lung, prostate, etc.) as a group. For example, 
the breast group refers to patient type 6-13. The number of slot servers is given as 
104 so the total traffic load equals to 96.68%.
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Our simulation model is built in C++. We set the confidence level to 97%. More-
over, we also use the Common Random Numbers Method to compare different 
policies more efficiently. In the homogeneous situation, we simulated 107 days with 
103 days warm up. In the non-homogeneous situation, the focus is on the weighted 
expected tardiness over d days. We set d = 1000 and run the simulation model 104 
times with different seeds to get a reliable performance. We also run the simulation 
103 days first with homogeneous arrival rates to avoid it starts from an empty system.

7.2  Results under homogeneous arrival rates

We first compare the performance of the HWIF policy with the benchmark poli-
cies mentioned in Sect.  3. The expected weighted tardiness of each patient type, 
pi�(Ti(�)) , the maximal weighted tardiness, G(�) and the weighted average tardi-
ness, To(�) , are shown in Table 7.

From the results, we can easily observe that the HWIF policy outperforms all 
the benchmark policies. Moreover, the HWIF policy provides a very balanced per-
formance. We first look at the overall performance of the system: To(�) . By apply-
ing the HWIF policy, it has been reduced by 98.5% and 44.4%, compared to the 
GF policy and the EDD policy respectively. Among the four different SP policies, 
the SWSF policy gives the best performance. It implies, in our scheduling problem, 
that the WTT constraints are more important than the service time. However, the 
comparison between the SWSF policy and the SWF policy shows that the service 
time should also be taken into consideration. The EDD policy is the top one in the 

Table 7  Weighted tardiness under various policies

Patient Type GF SSF SWF SSWF SWSF EDD HWIF

1 0.5111 0 0 0 0 0.0043 0.0003
2 0.5106 0 0 0 0 0.0044 0.0003
3 0.5109 0 0 0 0 0.0044 0.0003
4 0.1216 0.0019 0 0.0010 0 0.0022 0.0004
5 0.1209 0.0741 0 0.0743 0 0.0022 0.0004
6 0.0005 0 0.0033 0 0 0.0006 0.0005
7 0.0005 0 0 0 0 0.0006 0.0005
8 0.0005 0 0 0 0 0.0006 0.0005
9 0.0005 0 0.0456 0 0 0.0006 0.0005
10 0.0005 0 0.0020 0 0 0.0006 0.0005
11 0.0005 0 0 0 0 0.0006 0.0005
12 0.0005 0 0 0 0 0.0006 0.0005
13 0.0005 0 0 0 0 0.0006 0.0005
14 0.0005 0 0 0 0 0.0006 0.0005
15 0.0005 0.0222 0 0.0223 0.0243 0.0006 0.0005
G(�) 0.5111 0.0741 0.0456 0.0743 0.0243 0.0044 0.0005
To(�) 0.0332 0.0031 0.0098 0.0031 0.0013 0.0009 0.0005
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benchmark policies. Now we focus on the maximal weighted tardiness. Compared 
to the GF policy and the EDD policy, G(�) has been reduced by 99.9% and 88.6%. 
As we mentioned before, we do not want to sacrifice the performance of any patient 
type to achieve a beautiful overall performance. For example, under the SWSF pol-
icy, only the last patient type has a very bad performance. By minimizing G(�) , the 
results are more balanced so that the fairness between patient types is considered.

Since the service level of each patient type SLi(�) can be an important perfor-
mance measure for managers, we show the results in Table 8. Similar to To(�) , we 
also calculated the weighted average service level SLo(�) to show the overall perfor-
mance in terms of the service level. We find the HWIF policy also gives an excellent 
performance. The rank of the policies is almost the same as the one considering tar-
diness. The only difference is that the SWSF becomes the best policy, even slightly 
better than the HWIF policy, if we only look at the overall service level. This is due 
to the fact that the service level only offers the probability of breaching the WTT 
requirements. It cannot tell us how long the patients have waited after the WTT. 
Under the SWSF policy, again the last patient type is sacrificed.

In Fig. 4, the performance of each patient type is compared one by one under the 
EDD policy and the HWIF policy. For any patient type, both performances are bet-
ter when the HWIF policy is implemented. The service levels of patient type PT1-
PT5 are higher than other patient types. This is because no weight is assigned to the 
service level.

Except for the benchmark policies, it is also interesting to compare the pro-
posed HWIF policy with the ones suggested by the previous work. As we men-
tioned before, our experiments are based on the scenario from the work of 
Saure et al. (2012), which also considered radiotherapy scheduling problem and 

Table 8  Service level under various policies

Patient type GF (%) SSF (%) SWF (%) SSWF (%) SWSF (%) EDD (%) HWIF (%)

1 64.42 100.00 100.00 100.00 100.00 99.68 99.96
2 64.51 100.00 100.00 100.00 100.00 99.68 99.96
3 64.46 100.00 100.00 100.00 100.00 99.68 99.97
4 83.26 99.31 100.00 99.65 100.00 99.68 99.91
5 83.33 88.98 100.00 88.95 100.00 99.68 99.92
6 99.77 100.00 98.83 100.00 100.00 99.65 99.67
7 99.77 100.00 100.00 100.00 100.00 99.65 99.68
8 99.77 100.00 100.00 100.00 100.00 99.65 99.67
9 99.77 100.00 93.22 100.00 100.00 99.65 99.67
10 99.77 100.00 99.28 100.00 100.00 99.64 99.67
11 99.77 100.00 100.00 100.00 100.00 99.65 99.67
12 99.77 100.00 100.00 100.00 100.00 99.65 99.67
13 99.78 100.00 100.00 100.00 100.00 99.66 99.68
14 99.77 100.00 100.00 100.00 99.99 99.65 99.68
15 99.77 95.20 100.00 95.30 94.91 99.65 99.68
SLo(�) 97.02 99.44 98.36 99.46 99.73 99.65 99.70
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proposed an ADP based policy. Although their problem setting is slightly differ-
ent from ours, a reasonable comparison can be conducted in the following way. 
Their numerical results show that all patient types can start their treatment within 
15 workdays with 111 slots. However, only around 80% of patients from the first 
three patient types can receive the first treatment within 5 workdays. Note that the 
number of slots needed (i.e., 111) is calculated by removing the average number 
of new start patients every day, which can be approximated by the overall arrival 
rate in the steady system, from the original number of slots needed in total (i.e., 
120 slots). This is because they have assumed, different from us, that the first 
treatment of each patient needs one more slot. For comparison, we set the WTT 
of patient type 6–15 to 15 workdays and others remain the same. The results of 
the SL by applying the proposed HWIF policy are shown in Table 9, where one 
can observe that, with only 108 slots, all patients can start their treatment within 

Fig. 4  EDD versus HWIF: weighted tardiness (left), service level (right)

Table 9  Service level 
comparison between HWIF and 
ADP

Patient type WTT HWIF (%) ADP (%)

c = 106 c = 107 c = 108 c = 111

P1 5 99.9 100 100 81
P2 5 99.9 100 100 84
P3 5 99.9 100 100 80
P4 10 99.8 99.9 100 95
P5 10 99.8 99.9 100 94
P6 15 99.6 99.9 100 100
P7 15 99.6 99.9 100 100
P8 15 99.6 99.9 100 100
P9 15 99.6 99.9 100 100
P10 15 99.6 99.9 100 100
P11 15 99.6 99.9 100 100
P12 15 99.6 99.9 100 100
P13 15 99.6 99.9 100 100
P14 15 99.6 99.9 100 100
P15 15 99.6 99.9 100 100
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15 workdays, moreover, patients from patient type 1–3 (4–5) can start within 5 
(10) workdays.

In the end, we want to show the robustness of the proposed HWIF policy by test-
ing it in different environments.

Firstly, we change the extent of similarity and difference between patient types 
in terms of their WTTs, arrival rates and service times respectively to see how the 
variety of patient types affects the results. In specific, for each attribute, we struc-
ture 3 different cases: Same, Low, and High. For example, considering the arrival 
rate, “Same” represents all patient types have the same arrival rate equals to the 
average (i.e., 0.55 in our case); “Low” represents low variety which is achieved 
by reducing(increasing), by 20%, the arrival rates of the patient types which are 
higher(lower) than the average; “High” represents high variety which is achieved 
by increasing(reducing), by 20%, the arrival rates of the patient types which are 
higher(lower) than the average. Again, we let all scenarios have similar traffic loads 
by adjusting the number of slots so that the effect of the system load is small. The 
maximal weighted tardiness in each case is shown in Table 10. One can easily find 
that the HWIF policy outperforms other benchmark policies in all cases. The per-
formance in terms of the overall weighted tardiness gives the same observation, 
which is not shown here for brevity. Another interesting observation is that it is 
more important to use the proposed HWIF policy in cases with high variety, espe-
cially when we have various WTTs. When all patient types have the same WTT, the 
improvement gained by using the HWIF policy is not that obvious. The EDD policy 
also becomes the same as the GF policy. In reality, large hospitals or cancer centers 
often tend to have more variety in patient types which needs advanced scheduling 
policies (e.g., the HWIF policy) more. Moreover, although they have more capacity 
than small institutions, they also have higher arrival rates so that often higher traffic 
loads. Next, we want to discuss the effect of the overall system workload.

In Table 11, we give both the maximal weighted tardiness and the overall tardi-
ness under different traffic loads. With the same patient settings, when we have more 
slot servers, the overall system traffic load is lower. The HWIF policy is still the 
top choice, however, the differences in performance between policies become less 
with the increase of slot servers. In other words, when the capacity is sufficient, the 

Table 10  G(�, d) with different variety of patient types

Arrival rate Service time WTT 

Same Low High Same Low High Same Low High

GF 0.4745 0.5324 0.4569 0.4511 0.6987 0.4280 0.0362 0.4974 1.1256
SSF 0.2178 0.2051 0.3411 0.1041 0.4917 0.1785 1.2638 0.5854 0.1958
SWF 0.0158 0.7276 0.5561 0.0935 1.0444 0.4380 2.2777 1.1617 0.4904
SSWF 0.2093 0.2146 0.3264 0.0924 0.4234 0.1762 1.2300 0.5733 0.1944
SWSF 0.2349 0.2034 0.3313 0.0991 0.4415 0.1896 1.2433 0.5942 0.2005
EDD 0.0072 0.0047 0.0049 0.0030 0.0147 0.0026 0.0362 0.0293 0.0034
HWIF 0.0009 0.0007 0.0002 0.0005 0.0012 0.0002 0.0350 0.0060 0.0001
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improvement could be gained by applying a better policy is small. Although adding 
capacity can easily improve the system performance, however, in reality, the medi-
cal capacity is often costly so that high utilization is often the case. Therefore, it is 
essential to develop effective policies.

7.3  Results under non‑homogeneous arrival rates

Finally, the non-homogeneous situation is considered. Numerical experiments are 
carried out to discuss the efficiency of the AHWIF policy. Especially, we want to 
look into two interesting questions: how much the performance can be improved, by 
implementing the AHWIF policy instead of the HWIF policy in the non-homogene-
ous situation, and how the system performance changes along with the changes in 
arrival rates. The first question is studied by comparing the system performance over 
d = 1000 days. The second question is studied by looking at the system performance 
of every 100 days during the 1000 days. Considering the real situation in radiother-
apy department, 5 changing patterns of arrival rates are designed.

Increasing Trend (IT): We consider a patient group (i.e., the breast group) hav-
ing an increasing trend, which means their arrival rates are increasing slowly over 
several years.

Increasing and Decreasing Trend together (IDT): This pattern is designed to test 
the AHWIF policy the ability to handle an increase and a decrease in arrival rates.

Leap (L): The arrival rate of a patient group increases quickly (or suddenly). It 
can be caused by transferred patients.

Leap caused by additional capacity ( L+ ): A sudden increase in arrival rates can 
also be caused by introducing more capacity. Compared to L, L+ will not increase 
the traffic load � much.

Leap and Drop (LD): This pattern is designed to simulate multiple changes. The 
arrival rate of a patient group increases while another group’s decreases.

In Sect.  6, several pairs of (v,  h) were proposed. We first test different 
parameters and patterns in a toy scenario. Two patient types are considered: 
P1(�1 = 20∕�1 = 5∕�1 = 1.2) and P2(�2 = 10∕�2 = 10∕�2 = 1.2) . We set c = 38 
so � = 94.7% . To understand how the arrival rates change, see Table 13. However, 
in this toy scenario, we assume only the arrival rate of P1 changes, except for the 

Table 11  G(�, d) and T
o
(�, d) 

under different traffic loads
c=103 c=104 c=105

G(�, d) T
o
(�, d) G(�, d) T

o
(�, d) G(�, d) T

o
(�, d)

GF 2.3323 0.2005 0.3558 0.0298 0.1721 0.0100
SSF 1.5886 0.0922 0.1102 0.0056 0.1121 0.0066
SWF 4.8671 1.0433 0.0679 0.0164 0.1344 0.0289
SSWF 1.4289 0.0834 0.1105 0.0054 0.1100 0.0063
SWSF 1.4334 0.0765 0.0509 0.0027 0.0630 0.0034
EDD 0.3600 0.0701 0.0036 0.0035 0.0000 0.0000
HWIF 0.0422 0.0402 0.0033 0.0030 0.0000 0.0000
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pattern LD. The objective value G(�, d) under different settings of (v, h) is shown in 
Table 12, where d = 1000 . The results are not very sensitive to the choice of (v, h). 
In the patterns having leap, a larger h seems to result in slightly better results. In 
contrast, a smaller h suits the patterns having Trend. v = 90 is a little bit long in 
this scenario. Since (v = 10, h = 0.5) works well almost in all patterns, it is used 
in the numerical experiments later for a realistic scenario. Although we agree that 
there may exist a combination of v and h which can lead to a better performance, in 
this paper, we focus more on the improvement that can be gained by applying the 
AHWIF policy instead of the HWIF policy. The numerical experiments show that 
the results with (v = 10, h = 0.5) are already satisfying.

The realistic scenario is constructed in the following way. We consider the arrival 
rates of the breast group and the prostate group are non-homogeneous, while others 
remain the same. For simplicity, we use �b ( �p ) to represent the arrival rates of the 
breast (prostate) group. How the arrival rates change are listed in Table 13, which 
are also shown visually in Fig. 5. Since the arrival rates are now changing with time, 
so is the workload of the system. To show how the changing arrival rates affect the 
system performance, we let the average workload within the considered period to be 
the same as it in the homogeneous situation. The only exception is pattern L+ , which 
suddenly increases the capacity in the system.

We use the output of the local search algorithm as the initial value of �i in the 
AHWIF policy. The results are shown in Table 14, for three different measurements. 
Since the arrival rates are non-homogeneous now, when we evaluate To(�, d) and 
SLo(�, d) , the workload percentage of each patient type is calculated with its average 
arrival rate.

Table 12  G(�, d) under different settings of (v, h)

Scenario v = 10 v = 30 v = 90

h = 0.1 h = 0.5 h = 1 h = 0.1 h = 0.5 h = 1 h = 0.1 h = 0.5 h = 1

IT 0.27 0.25 0.27 0.24 0.27 0.27 0.28 0.29 0.30
IDT 0.23 0.21 0.24 0.22 0.23 0.25 0.24 0.26 0.28
L 15.47 14.02 13.99 15.38 14.06 14.07 15.59 14.35 14.40
L
+ 1.26 1.21 1.23 1.29 1.25 1.26 1.30 1.29 1.30

LD 2.65 2.62 2.61 2.66 2.64 2.64 2.69 2.70 2.70

Table 13  How arrival rates change in each pattern

Patterns Details

IT �b gradually increases by 20% over 1000 days
IDT �b gradually increases by 10% over the first 500 days and then gradually decreases by 10%
L �b suddenly leaps to 120% after 300 days
L+ �b suddenly leaps to 120% after 300 days, and 10 slot servers are added
LD �b suddenly leaps to 120% after 300 days and �p suddenly drops down to 80% after 600 days
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According to the results, we first observe that the system performance in the 
non-homogenous situation is worse than the performance in the homogenous sit-
uation, although the average workload is the same. In other words, we should not 
only look at the average, ignoring the change of arrival rates. We also find that 
the system performance indeed can be improved by using the AHWIF policy. The 
objective value G(�, d) has been reduced by 53%, 28%, 68%, 20%, and 60%, in 
each pattern respectively. The overall performance To(�, d) is also reduced. We 
find that the improvement is more obvious in the pattern of IT, L, and LD. This is 
because the traffic loads in these cases are higher. When the capacity is sufficient, 

(a) (b)

(d)(c)

Fig. 5  Arrival patterns

Table 14  Performance of the AHWIF policy over d = 1000 days

G(�, d) T
o
(�, d) SL

o
(�, d)

HWIF AHWIF HWIF AHWIF HWIF (%) AHWIF (%)

IT 0.0995 0.0469 0.0491 0.0451 84.61 84.74
IDT 0.0165 0.0119 0.0118 0.0113 94.46 94.36
L 0.8878 0.2842 0.2682 0.2322 59.72 59.94
L
+ 0.0005 0.0004 0.0005 0.0004 99.63 99.71

LD 0.2875 0.1164 0.1223 0.1122 67.84 68.00
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the benefits gained by using a better scheduling policy are less. This can be drawn 
by comparing the results in the pattern of L and L+ . It is also inline with the con-
clusion in the previous workload discussion. In the pattern of LD, although the 
overall performance has not been improved too much since the changes are too 
mild, the big decrease in G(�, d) implies the adaptive policy leads to a more bal-
anced performance.

So far, we have looked at the expected tardiness over 1000 days. Now we look 
at the maximal weighted tardiness every 100 days during 1000 days. For brevity, 
we only show the results in the IT and LD patterns, see Fig. 6. In general, under 
the HWIF policy the maximal weighted tardiness increases more quickly. In the 
LD pattern, during day 500 to 800, the value of the maximal tardiness is larger 
under the AHWIF policy than it is under the HWIF policy. It may be caused by 
adjusting too much so that the performance of another patient type becomes the 
worst. A better combination of (h, v) may improve this. In both patterns, the value 
of the maximal tardiness starts to increase quickly around day 500. It is due to the 
traffic load exceeding 100% after day 500. Additionally, a fairness ratio is defined 
to represent the fairness between patient types. The fairness ratio is defined as 
the difference between the maximal and minimal weighted tardiness divided by 

(a) (b)

Fig. 6  maximal weighted tardiness in every 100 days

(a) (b)

Fig. 7  Fairness ratio in every 100 days
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the highest one. Therefore a small fairness ratio value is preferred. As shown in 
Fig. 7, the value of the fairness ratio under the AHWIF policy is getting smaller. 
It implies, by balancing the performances between patient types, the AHWIF pol-
icy is efficient in absorbing the effects caused by the changes in arrival rates.

8  Conclusion

In this paper, we have discussed the scheduling problem for radiotherapy, consid-
ering multi-type patients with various service times and WTT requirements. The 
scheduling problem is solved by proposing a WI-based routing policy (i.e., the 
HWIF policy), which can help managers to decide which queue to treat next on the 
LINACs. The WI is the sum of the waiting time and the priority factor assigned to 
each queue. A simulation-based heuristic is proposed to determine the priority fac-
tors. In the objective function, we choose to minimize the maximal weighted tardi-
ness so that the fairness between patient types can be considered. The HWIF policy 
turns out to be very efficient. We also propose an adaptive policy (i.e., the AHWIF 
policy) to deal with non-homogeneous arrival rates. The adaptive policy is con-
structed by two steps: the re-evaluation of the performance over the last v days and 
adding an adjustment h to the patient type with the worst performance. The results 
under non-homogeneous arrival rates have shown that the AHWIF policy works 
well in balancing the performances between patient types and leads to a better over-
all performance compared to the HWIF policy. In the future research, some variants 
of the adaptive policy can be studied, for example, dynamic v and h can be consid-
ered. Moreover, it would be interesting to test the policies using real data.
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