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Abstract

This research proposes novel solution techniques for two real world problems. We first consider

a patient scheduling problem in a proton therapy facility with deterministic patient arrivals. In or-

der to assess the impacts of several operational constraints, we propose single and multi-criteria

linear programming models. In addition, we ensure that the strategic patient mix restrictions pre-

determined by the decision makers are also enforced within the planning horizon. We study the

mathematical structures of the single criteria model with strict patient mix restrictions and derive

analytical equations for the optimal solutions under several operational restrictions. These efforts

lead to a set of rule of thumbs that can be utilized to assess the impacts of several input parame-

ters and patient mix levels on the capacity utilization without solving optimization problems. The

necessary and sufficient conditions to analytically generate exact efficient frontiers of the bicrite-

ria problem without any additional side constraint are also explored. In a follow up study, we in-

vestigate the solution techniques for the same patient scheduling problem with stochastic patient

arrivals. We propose two Markov Decision Process (MDP) models that are capable of tackling

the stochasticity.

The second problem of interest is a variant of the parallel machine scheduling problem. We

propose constraint programming (CP) and logic-based Benders decomposition algorithms in or-

der to make the best decisions for scheduling nonidentical jobs with time windows and sequence

dependent setup times on dissimilar parallel machines in a fixed planning horizon. This problem

is formulated with (i) maximizing total profit and (ii) minimizing makespan objectives. We con-

duct several sensitivity analysis to test the quality and robustness of the solutions on a real life

case study.
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1. INTRODUCTION

This dissertation considers class of problems that seek best scheduling decisions for various con-

siderations and applications with and without uncertainty. In general, scheduling problems have

been widely studied over recent decades. In this research, we contribute to this field by consid-

ering newly emerged problems in different environments with several variants. We first study

patient scheduling problem in a proton therapy facility with deterministic demand. We propose

a single and multi-criteria linear programming models in order to capture the impacts of several

operational restrictions and then study the problem structures to analytically derive optimal so-

lutions in the case of certain input parameters. Secondly, we relax the deterministic patient ar-

rival assumption in proton therapy facility and propose mathematical models that are capable of

dealing with stochasticity. Thirdly, we deal with a different variant of well-known parallel ma-

chine scheduling problem that seeks to optimize nonidentical project assignments to dissimilar

machines. We develop several exact solution methods for this complex problem in both mathe-

matical programming and constraint programming contexts.

Recently, proton therapy has emerged as a new and fast growing form of radiation ther-

apy for cancer patients. Currently, the demand for this form of treatment is increasing at a very

high speed due to the effectiveness of the proton therapy even though the available capacity is

highly limited (14 in use and 10 are under construction in the U.S.), mostly because it is a very

expensive treatment procedure to deliver. Goitein and Jermann (2003) demonstrated that the cost-

per-fraction in proton therapy is more than two times the cost-per-fraction of X-ray therapy. As

a consequence, decision makers seek to improve the utilization of the resources to successfully

deliver this treatment to as many people as they can. In fact, in radiation therapy, a treatment

protocol consists not only of a prescribed total delivered dose to so-called targets, but must also

specify treatment times, sequences, and frequencies (fractionation schedule). It is known that

dose fractionation contributes to the preservation of healthy tissue throughout the treatment (see,

e.g.,Yamada et al. (1999)) and a shorter fractionation schedule provides a more economical use of

1



the radiation therapy facilities while still improving, albeit marginally, a patient’s quality of life

(see, e.g., Shelley et al. (2000)). Under these factors, Chapters 2 and 3 of this research are dedi-

cated to investigate the optimal strategies of allocating resources to the patients and quantify the

trade-offs between different objectives in proton therapy facilities.

In Chapter 2, we introduce a patient scheduling problem which seeks to maximize the to-

tal number of fractions and total deviation from the patient mix restrictions in a planning horizon

within the facility. Patient mix restrictions are specified by the managers of the facility in order

to simplify and ease the resource allocation to the patients. Therefore, patients are categorized

into several groups based on the similarities and differences of the treatment procedures offered

in the facility. We study the optimal solution structure and derive analytical expressions for the

single and multiple criteria models with different side constraints involved. Several practical rule

of thumbs are derived to assess the impacts of the amount of available resources and patient mix

restrictions. Our work on generating efficient frontiers for the bicriteria patient scheduling prob-

lem can be generalized to other planning and scheduling problems with any kind of entity mix

restrictions.

Patient scheduling problem in proton therapy facilities with stochastic patient arrivals is

studied in Chapter 3. We propose a Markov Decision Process (MDP) model to capture the opti-

mal decision policies when the facility is operating at different states. The MDP model focuses

on finding the best actions to be taken when the state of the facility (available capacity and the

current number of patients from each group) is known. It provides the best immediate actions un-

der uncertain demand. Due to the curse of dimensionality embedded in this multi-category model

formulation, another MDP model is created through state aggregation technique. We show that

the aggregate MDP model provides good approximate optimal patient admission policies and it

takes significantly less computational time to tackle larger patient scheduling problem instances.

Chapter 4 introduces a variant of parallel machine scheduling problem that is commonly

seen in supply chain scheduling. In this problem, projects and machines are assumed to be non-

identical and dissimilar, respectively. Furthermore, projects may have several time restrictions

2



and machines may require sequence dependent setup times after they finish processing a project

and before starting on the next one. This problem is modeled both in inter programming (IP) and

constraint programming (CP) contexts. Real life problem instances prepared in collaboration

with the U.S. Army Corps of Engineers (USACE) are used during our experiments. Logic-based

Benders decomposition algorithms are proposed in order to solve the problem to optimality and

measure the quality of the solutions obtained by IP and CP models.

3
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2. STRATEGIC LEVEL PATIENT SCHEDULING MATHEMATICAL MODELING
IN A PROTON THERAPY FACILITY

Ridvan Gedik Chase Rainwater Edwin Romeijn

2.1 Introduction

Maximizing utilization of resources in proton therapy facilities has become one of the first priori-

ties of healthcare planners in order to meet exponentially growing demand for this technology. It

is a challenging task since several operational restrictions and their possible impacts on the facil-

ity capacity must be taken into account simultaneously. In this study, we aim to provide efficient

solutions for capacity planning problems in a proton therapy facility and investigate the impact of

various limitations as highlighted in Gedik (2011). These are (i) strategic patient mix constraints,

(ii) physician availability, (iii) operating hours, (iv) availability of treatment gantries, (v) gantry

specialization and (vi) gantry switching flexibility.

Patient mix optimization, requirement that the mix of patients treated satisfy desired per-

centages, is a relatively new consideration in proton therapy planning. These percentages are

determined by the decision managers before each planning horizon in order to be used for the

upcoming resource allocation problems. Diagnosis Related Groups (DRGs) is a very similar con-

cept that has been used by health care providers to classify patient groups based on patient types

(i.e. case mix, patient mix) and their treatment costs incurred by hospitals (Averill et al., 1998).

DRGs play an important role in Medicare’s hospital reimbursement system, whereas a hospital’s

case mix or patient mix preferences determine the costs of all the services provided for different

patient types. From a managerial perspective, case mix preferences can address how to plan re-

sources with respect to the needs of different patient types and, from a clinical perspective, they

refer to the conditions of patients that are being treated in the hospital and the difficulty level of

associated treatments (Averill et al., 1998). Hence, a well planned patient mix preferences in a

facility can improve the efficiency of resources (i.e. physicians, machines) and help health care

providers position their treatment capabilities with the projected treatment types required by pa-
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tients.

Gedik (2011) propose a bicriteria mathematical programming model that determines the

best patient admission policy for a proton therapy facility maximizing the number of treatment

sessions and minimizing the deviations from the patient mix preferences over a finite planning

horizon. In order to be able to assess the tradeoffs between these two objectives, they generate

efficient frontiers by utilizing a technique entitled Noninferior Set Estimation (NISE) method

developed by Cohon et al. (1979). In this chapter, we study the mathematical structures of this

patient scheduling problem with and without strict patient mix requirements and provide opti-

mal solutions on the best patient admission policies under several side constraints. Moreover,

we develop a polynomial time exact solution algorithm which is capable of generating the ex-

act efficient frontier for so called base patient scheduling problem in Gedik (2011). Our solution

techniques are applicable to all healthcare treatment facilities as this study is motivated by the

collaboration with the University of Florida Proton Therapy Institute (UFPTI) in Jacksonville,

Florida.

The remainder of this chapter is organized as follows. Section 2.2 summarizes previous ef-

forts on solving patient scheduling problems. Section 2.3 introduces the proton therapy patient

scheduling problem in Gedik (2011). Solution structures and analytical derivation of optimal so-

lutions are discussed in Section 2.4 and 2.5. Finally, Section 2.5.6 demonstrates how well the

proposed algorithm performs over the NISE method.

2.2 Literature Review

Healthcare scheduling with a particular focus on operating & emergency room, nurse, physician

and patient planning has been widely studied over the past 50 years. A very detailed review on

operating room planning is proposed by Cardoen et al. (2010) which groups previous work in

terms of mathematical structures and technical features (i.e. patient type & demand, appoint-

ment system). Patients are described in two different groups: (i) elective and (ii) non-elective.

Elective patient is the one whose operation is planned in advance, whereas non-elective patient

6



requires unexpected operation. Inpatient (required overnight stay) and outpatient (discharge on

same day) subgroups are listed under elective patient group as well. In order to reduce uncertain-

ties associated with patient attributes (i.e., patient type, financial gain, resource allocation), many

researchers focus on healthcare planning problems with elective patients (e.g. Bowers and Mould

(2005), Cayirli et al. (2006), Pham and Klinkert (2008), Conforti et al. (2008)).

Based on the patient type classification in Cardoen et al. (2010), patients in our study be-

long to elective outpatient group in comparison to elective inpatient group that is used in several

patient mix optimization problems (see, e.g. Adan and Vissers (2002), Vissers et al. (2005), Adan

et al. (2009)). This is in parallel with the reality because consecutive daily treatment sessions

are prescribed for proton therapy patients and they do not typically spend the night in the facil-

ity. Length of stay and consecutive daily treatment sessions are the two important factors to be

considered in allocating resources in a healthcare facility for inpatient and outpatient groups, re-

spectively.

Maximizing the number of treated patients (see, e.g., Conforti et al. (2010), Ballard and

Kuhl (2006), and Cardoen and Demeulemeester (2008)) and minimizing the waiting times of

patients (see, e.g., Chaabane et al. (2008) and Kaandorp and Koole (2007)) are the two most de-

sired objectives in patient scheduling problems subject to several different constraints. Cardoen

et al. (2010) suggest that these two objectives complement each other since the average num-

ber of patients in the system can be approximately calculated by multiplying the average cycle

time (treatment time and waiting time) by the average throughput of the system (Little’s Law).

Hence, Bosch and Dietz (2000) state that reduced waiting times for the patients implies more ca-

pacity/resource availability and ultimately, an increased number of (new) treated patients. For in-

stance, patient scheduling problem in a radiation therapy clinic is formulated as an integer linear

optimization problem by Conforti et al. (2010) in which the objective is to maximize the number

of new scheduled patients. Weights are determined for each patient group based on the pathologi-

cal conditions that are later used to assess the priority levels for the treatments in waiting lists.

During the early stages of DRGs implementations, linear programming (LP) mathemati-
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cal models are developed to find the optimal case mix in a hospital by utilizing the well known

product mix problem formulation (Hughes and Soliman (1985), Robbins and Tuntiwongpiboon

(1989)). In these LPs, the objective is to maximize the total profit margins by treating patients

from different DRGs subject to resource availability and demand satisfaction constraints. It is

later shown that case mix preferences play a crucial role in developing a strategic long term plan

for a hospital since these mix levels directly or indirectly impacts type and amount of resources,

income and cost preferences required for a sustainable health care service (Blake and Carter,

2002). Vanberkel et al. (2011) provide a stochastic mathematical model that seeks to obtain the

best patient mix levels, which patient types to treat in the hospital, in order to achieve the maxi-

mum benefit. In this study, patient types are considered as projects as in project sequencing prob-

lem and an approximate solution approach is developed to determine the sequence in which the

patient types should be accepted. Mulholland et al. (2005) formulate an LP model to identify

the the optimal mix of surgical procedures. With the help of this model, they conduct sensitiv-

ity analysis to measure the impacts of different surgery mix levels on financial outcomes. They

observe significant financial improvements by just allowing no more than 15% deviation in pro-

cedure mix without any capacity investments.

The papers discussed above have long term strategic planning periods and most of them

aim to find the optimal case/patient/surgery mix preferences subject to generic capacity & de-

mand constraints. Tactical level patient mix optimization problems are also studied by researchers

(e.g. Adan et al. (2009), Vissers et al. (2005)). However, these problems either account for a

shorter planning period or consider only a specific unit of the facility.

Patient scheduling problem in this study and other healthcare applications have similar as-

pects such as treatment continuity, capacity, staff/physician requirements etc. One of the differ-

ences is that all patient groups are considered to have same urgency levels in our model. There-

fore, we do not assign priority weights to prioritize patients or treatment types. Patients are only

categorized to account for different treatment times and number of fractions to be delivered for

each category. This study also differs from others in the patient mix optimization literature. Pa-
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tient mix levels in other studies are treated as outcomes of the models to maximize the benefits,

whereas they are treated as inputs in this dissertation and their effects in overall capacity utiliza-

tion are quantified in terms of number of treatment sessions.

In healthcare scheduling problems, uncertainty associated with demand is one of the ma-

jor challenges needs to be tackled in order to produce efficient and robust solutions. Canceled

appointments and no-shows are the two other most common sources of uncertainty in patient

scheduling. Due to the long waiting lists for the proton therapy, we assume that the replacement

of any canceled appointment or no-show with a patient on the waiting list can be made instanta-

neously. This enables us to assume deterministic patient arrivals to the facility while building our

models in this chapter. However, this assumption is relaxed in Chapter 2.

The encouraging findings in the previous patient scheduling studies have motivated further

efforts in developing advanced mathematical models for efficient patient scheduling in proton

therapy facilities. Therefore, one of our primary objectives is to illustrate the effects of a given

patient mix restrictions on the capacity of a proton therapy facility. Gedik (2011) point out that it

is very difficult to satisfy the patient mix restrictions precisely. Hence, they propose a bicriteria

mathematical model that seeks to maximize the total treatment sessions and minimize the total

deviation from the desired patient mix levels. Our efforts in this study demonstrate the optimal

solutions for this problem under different scenarios.

2.3 Mathematical Models for the Proton Therapy Patient Scheduling

This section introduces the mathematical models proposed by first Men (2009) and then Gedik

(2011) to solve the patient scheduling problem in proton therapy facilities. The notation (see Ta-

ble 4.1) used in Gedik (2011) is adopted throughout the remainder of this chapter. The baseline

(base) model and all side constraints related to varying operational restrictions are presented in

this section for the reader’s reference.
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Table 2.1: Notation

Sets
T set of days in planning horizon
G set of gantries
K set of patient categories
Ka ∈ K set of patient categories needing anesthesia for treatment
K2 ∈ K set of patient categories needing twice-a-day fractions
TNA ∈ T set of non authorized days to start new patients
TA ∈ T set of authorized days to start new patients

Parameters
Ctg time available for treatment on gantry g on day t
nk number of consecutive treatment days for patients in category k
fk number of fractions required on each day of the treatment by a patient in category k
ck duration of a fraction on each day of the treatment by a patient in category k
c̄k setup time for the first fraction on the first day for patients in category k
dk desired fraction of patients in category k treated over the planning horizon
Ag anesthesia team availability per day on gantry g
γ minimal time between two fractions (in minutes)
ηg Available prime hours on authorized days to treat new patients

Decision variables
xtkg number of new patients in category k that start their treatment on day t on gantry g
ytkg number of patients in category k that receive treatment on day t on gantry g
uk deviation from target level dk for patient category k ∈ K

2.3.1 Base Model

Three fundamental restrictions in a proton therapy facility constitute the base model. These re-

strictions are (i) gantry capacity limitations, (ii) patient continuity requirements and (iii) patient

mix specifications. Since one of the objectives of this study is to demonstrate a strategic capac-

ity analysis of the proton therapy facility, we would like to prevent end of study effects by as-

suming that the facility is operating in steady-state. Hence, while modeling an integer program-

ming model, we consider the planning period to be cyclic with a period length of T days. An-

other work around for the end of study effects is to assume an infinite horizon length which ap-

parently yields in infinite number of constraints and variables when the same integer program is

employed. In Section 2.4.1.1, we discuss how finite horizon model (B) can be reformulated as an

infinite horizon model without having infinite number of decision variables and constraints.
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maximize
1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

fkytkg

subject to (B)

nk

∑
n=1

x[t−n+1],kg = ytkg t ∈ T ; k ∈ K; g ∈ G (2.1)

K

∑
k=1

c̄kxtkg +
K

∑
k=1

ck fkytkg ≤Ctg t ∈ T ; g ∈ G (2.2)

T

∑
t=1

∑
g∈G

xtkg = dk

T

∑
t=1

K

∑
k′=1

∑
g∈G

xtk′g k ∈ K (2.3)

xtkg,ytkg ≥ 0 t ∈ T ; k ∈ K; g ∈ G

The objective function seeks to maximize the average number of fractions treated across the plan-

ning period, while attempting to adhere to a specified mixture of patient categories treated (2.3).

Treatment continuity and capacity limitations are enforced by constraints (2.1) and (2.2), respec-

tively. Constraints (2.1) assure that appropriate relationship between two decision variables our

problem exists; number of fractions and number of patients. By this way, delivering fractions

over a number of consecutive (week)days is guaranteed.

2.3.2 Bicriteria Base Model

Constraints (2.3) restrict total number of patients treated from type k to be equivalent to multi-

plication of desired percentage dk of patient type k and total number of patients accepted to the

facility across all patient categories. Being able to monitor the behavior of optimal total fraction

level as patient types deviate from their desired percentage levels provides significant information

for decision makers in deciding how to allocate facility resources (i.e. gantry hours, anesthesia

teams etc.) in case of several other operational side constraints. As a consequence, we propose a
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bicriteria base model (BB) that seeks to maximize the average number of total fractions delivered

and minimize the total deviations from patient mix level.

maximize

{
1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

fkytkg,−
K

∑
k=1

uk

}
subject to (BB)

(2.1)

(2.2)

T

∑
t=1

∑
g∈G

xtkg ≥ dk

T

∑
t=1

K

∑
k′=1

∑
g∈G

xtk′g−uk k ∈ K (2.4)

T

∑
t=1

∑
g∈G

xtkg ≤ dk

T

∑
t=1

K

∑
k′=1

∑
g∈G

xtk′g +uk k ∈ K (2.5)

uk ≥ 0 k ∈ K

xtkg,ytkg ≥ 0 t ∈ T ; k ∈ K; g ∈ G

Strict patient mix constraints are partitioned into two different sets of constraints. Constraints

(2.4) and (2.5) allow the model to treat patients below and above their target levels that are quan-

tified by introducing uk (deviation level for category k) decision variables.

2.3.3 Side Constraints

This section shows how the operational restrictions are modeled in Gedik (2011) in addition to

the ones already introduced in (B) and (BB).

2.3.3.1 Anesthesia Patients

Constraints (2.6) make sure that the treatment durations for the patients who need anesthesia

surveillance during the sessions do not exceed the daily availability of anesthesia teams in each

12



gantry.

∑
k∈Ka

(c̄kxtkg + ck fkytkg)≤ Ag t ∈ T ; g ∈ G (2.6)

2.3.3.2 BID Patients

Some patient groups may need to receive two treatment sessions on the same day. They are called

BID (Bis In Die, twice daily) patients and constraints (2.7) assure that their second treatment ses-

sion starts at least γ+maxk∈K2 ck time units after the start of the day.

∑
k∈K2

(
c̄kxtkg + ckytkg

)
≤Ctg− τ−max

k∈K2
ck t ∈ T ; g ∈ G (2.7)

2.3.3.3 Gantry Specialization

Healthcare planners may specialize the use of some gantries for only certain patient groups in

order to increase the service level. The following constraints are used if the patient categories in

the set Kg are specialized to be treated in gantry g ∈ G.

xtkg = 0 t ∈ T ; g ∈ G; k ∈ K\Kg (2.8)

2.3.3.4 Prime Hours

Enforcing new patients to start their treatments only on the listed authorized days (TA) during

prime hours (ηg) in gantry g is handled by constraints (2.9).

∑
k∈K

(c̄k + ck)xtkg ≤ ηg t ∈ TA; g ∈ G (2.9)

xtkg = 0 t ∈ TNA; g ∈ G; k ∈ K (2.10)

Hence, starting patients on non authorized days (TNA) is ensured by constraints (2.10).
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2.4 Characterizing Optimal Solutions to (B) and (BB)

2.4.1 Optimal Solution Structure

In this section we show that, for certain model variants, the model (B) and (BB) have time in-

variant (stationary) optimal solutions. Notation below is used to represent different daily fraction

requirement and aggregated reward for treating a single patient of each patient type for both prob-

lem (B) and (BB).

• rk = reward for treating a patient in category k (often rk = nk fk)

• ckn = total treatment time on day n of treatment for patients in category k (n = 1, . . . ,nk, k =

1, . . . ,K). Note that in our earlier notation, ck1 = c̄k + fkck and ckn = fkck for n = 2, . . . ,nk.

2.4.1.1 Base Model

maximize
1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

rkxtkg

subject to (B)

K

∑
k=1

nk

∑
n=1

cknx[t−n+1],kg ≤Ctg t ∈ T ; g ∈ G (2.11)

T

∑
t=1

∑
g∈G

xtkg = dk

T

∑
t=1

K

∑
k′=1

∑
g∈G

xtk′g k ∈ K (2.12)

xtkg ≥0 t ∈ T ; k ∈ K; g ∈ G

The following lemma shows that, when gantry capacities are stationary, this problem has a sta-

tionary optimal solution.

Lemma 2.4.1 Suppose that the gantry capacities are time-invariant, i.e., Ctg = Cg for all t =
1, . . . ,T and g = 1, . . . ,G. Then there exists a stationary feasible solution to this problem.
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Proof Suppose x is a feasible solution to (B). Then define the following alternative solution:

x′tkg =
1
T

T

∑
t ′=1

xt ′kg t ∈ T ; k ∈ K; g ∈ G.

We first show that x′ is a feasible solution to (B):

• Gantry capacity constraints:

K

∑
k=1

nk

∑
n=1

cknx′[t−n+1],kg =
K

∑
k=1

nk

∑
n=1

ckn
1
T

T

∑
t ′=1

x[t ′−n+1],kg

=
1
T

T

∑
t ′=1

K

∑
k=1

nk

∑
n=1

cknx[t ′−n+1],kg

≤ 1
T

T

∑
t ′=1

Ct ′g

=Cg

t ∈ T ; g ∈ G

• Patient mix constraints:

∑
g∈G

x′tkg = ∑
g∈G

1
T

T

∑
t ′=1

xt ′kg

=
1
T

T

∑
t ′=1

∑
g∈G

xt ′kg

=dk
1
T

T

∑
t ′=1

K

∑
k′=1

∑
g∈G

xt ′k′g

=dk

K

∑
k′=1

∑
g∈G

1
T

T

∑
t ′=1

xt ′k′g =

=dk

K

∑
k′=1

∑
g∈G

x′tk′g t ∈ T ;k ∈ K

which actually shows that the patient mix constraints are satisfied in each period, and there-

fore also on average with respect to t ∈ T .

• Nonnegativity constraints: Due to the nonnegativity of xtkg ∀ t ∈ T ; k ∈ K; g ∈ G, we can
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write

x′tkg =
1
T

T

∑
t ′=1

xt ′kg ≥0 t ∈ T ; k ∈ K; g ∈ G.

• Objective function: Since x′ is stationary, for any t, we can write

1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

rkx′tkg =
K

∑
k=1

G

∑
g=1

rkx′tkg.

=
K

∑
k=1

G

∑
g=1

rk
1
T

T

∑
t=1

xt ′kg

=
1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

rkxtkg.

Finally, we show that x′ has the same objective function value as x.

2

The steps above imply that the problem can be simplified considerably by letting

xtkg =x̄kg t =1, . . . ,∞; k ∈ K; g ∈ G.

Then the problem with stationary gantry capacities can now be written as

maximize
K

∑
k=1

G

∑
g=1

rkx̄kg

subject to (I)

K

∑
k=1

nk

∑
n=1

cknx̄kg ≤Cg g ∈ G (2.13)

dk

K

∑
k′=1

G

∑
g=1

x̄k′g =
G

∑
g=1

x̄kg k ∈ K (2.14)

x̄kg ≥ 0 k ∈ K; g ∈ G.

Note that problem I is independent of the time horizon T , so that its optimal solution solves prob-

lem (B) with any horizon, and therefore an infinite-horizon variant of the problem.
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2.4.1.2 Bicriteria Base Model

maximize

{
1
T

T

∑
t=1

K

∑
k=1

G

∑
g=1

rkxtkg,−
K

∑
k=1

uk

}
subject to (BB)

K

∑
k=1

nk

∑
n=1

cknx[t−n+1],kg ≤Ctg t ∈ T ; g ∈ G∣∣∣∣∣ 1
T

T

∑
t=1

G

∑
g=1

(
dk

K

∑
k′=1

xtk′g− xtkg

)∣∣∣∣∣≤ uk k ∈ K

xtkg ≥ 0 t ∈ T ; k ∈ K; g ∈ G

uk ≥ 0 k ∈ K

The following lemma shows that, when gantry capacities are stationary, we can restrict model

(BB) to stationary solutions.

Lemma 2.4.2 Suppose that the gantry capacities are time-invariant, i.e., Ctg = Cg for all t =
1, . . . ,T and g = 1, . . . ,G. Then for any feasible solution to (BB), there exists a stationary feasible
solution with the same objective function values.

Proof Suppose (x,u) is a feasible solution to (BB). Then define the following alternative solu-

tion:

x′tkg =
1
T

T

∑
t ′=1

xt ′kg t ∈ T ; k ∈ K; g ∈ G

u′ = u.

We already know that (x′,u′) satisfies the gantry capacity and nonnegativity constraints. Further-

more, it has identical value for both objectives. It remains to show that this solution satisfies the

relaxed patient mix constraints. To this end, first note that

1
T

T

∑
t=1

G

∑
g=1

xtkg =
G

∑
g=1

1
T

T

∑
t=1

xtkg =
G

∑
g=1

x′tkg t ∈ T.
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This implies that ∣∣∣∣∣ 1
T

T

∑
t=1

G

∑
g=1

(
dk

K

∑
k′=1

xtk′g− xtkg

)∣∣∣∣∣
=

∣∣∣∣∣dk

K

∑
k′=1

1
T

T

∑
t=1

G

∑
g=1

xtk′g−
1
T

T

∑
t=1

G

∑
g=1

xtkg

∣∣∣∣∣
=

∣∣∣∣∣dk

K

∑
k′=1

G

∑
g=1

x′t ′k′g−
G

∑
g=1

x′t ′kg

∣∣∣∣∣
=

∣∣∣∣∣ 1
T

T

∑
t ′=1

G

∑
g=1

(
dk

K

∑
k′=1

xt ′k′g− xt ′kg

)∣∣∣∣∣≤ uk t ∈ T ;k ∈ K.

Therefore, the relaxed patient mix constraints, with u′k = uk for k = 1, . . . ,K, are indeed satisfied.

2

Similar to the single criteria base model problem, we can reduce the finite horizon bicrite-

ria problem (BB) to infinite horizon bicriteria problem by simply letting

x̄kg =xtkg t =1, . . . ,∞; k ∈ K; g ∈ G.

Then problem (BB) with stationary gantry capacities can now be written as

maximize

{
K

∑
k=1

G

∑
g=1

rkx̄kg,−
K

∑
k=1

uk

}

subject to (B-LP)

K

∑
k=1

nk

∑
n=1

cknx̄kg ≤Cg g ∈ G (2.15)∣∣∣∣∣ G

∑
g=1

(
dk

K

∑
k′=1

x̄k′g− x̄kg

)∣∣∣∣∣≤ uk k ∈ K (2.16)

x̄kg ≥ 0 k ∈ K; g ∈ G

uk ≥ 0 k ∈ K.

Problem (B-LP) is also independent of the time horizon T and its optimal solution solves prob-

lem (BB) with any horizon. Hence, (B-LP) is an infinite-horizon variant of problem (BB).
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2.4.1.3 Side Constraints

This section demonstrates that model (B) and (BB) preserve the time-invariant optimal solutions

with the following side constraints.

• Gantry switching:

When gantry switching is allowed, the gantry capacity constraints are replaced by a single

constraint in which both left and right hand side aggregated over all gantries as follows:

G

∑
g=1

K

∑
k=1

nk

∑
n=1

cknx[t−n+1],kg ≤
G

∑
g=1

Ctg t ∈ T.

This implies that when gantry switching is allowed and the necessary condition (Ctg = Cg)

for Lemma 2.4.1 and Lemma 2.4.2 are held, x′ and (x′,u′) are feasible solutions to (B) and

(BB), respectively.

• Anesthesia patients:

Let Atg = Ag for each t ∈ T . We assume that the set of anesthesia patients (Ka) is stationary.

Then, we can write

∑
k∈Ka

nk

∑
n=1

cknxtkg = ∑
k∈Ka

nk

∑
n=1

ckn
1
T

T

∑
t ′=1

xt ′kg

=
1
T

T

∑
t ′=1

∑
k∈Ka

nk

∑
n=1

cknxt ′kg

≤ 1
T

T

∑
t ′=1

At ′g

= Ag t ∈ T ; g ∈ G.

Therefore, when the anesthesia team availability is time invariant, x′ and (x′,u′) are feasible

solutions to (B) and (BB), respectively, with anesthesia patients.

• BID patients:

Let us define Btg = Ctg− γ−maxk∈K2 ck. If the set of BID patients (K2) is stationary and
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assuming Btg = Bg for each t ∈ T , we can write

∑
k∈K2

nk

∑
n=1

cknxtkg = ∑
k∈K2

nk

∑
n=1

ckn
1
T

T

∑
t ′=1

xt ′kg

=
1
T

T

∑
t ′=1

∑
k∈K2

nk

∑
n=1

cknxt ′kg

≤ 1
T

T

∑
t ′=1

Bt ′g

= Bg t ∈ T ; g ∈ G.

Thus, x′ and (x′,u′) are feasible solutions to (B) and (BB), respectively, with BID patients.

• Gantry specialization:

We assume that the specialized patient categories in the set Kg for gantry g is stationary.

Then, x′ and (x′,u′) are feasible solutions to (B) and (BB), respectively, with gantry special-

ization restriction.

xtkg = 0 t ∈ T ; g ∈ G; k ∈ K; k 6∈ Kg

1
T

T

∑
t ′=1

xt ′kg = 0 t ∈ T ; g ∈ G; k ∈ K; k 6∈ Kg

xt ′kg = 0 t ∈ T ; g ∈ G; k ∈ K; k 6∈ Kg

• Cyclic capacities:

Suppose gantry capacities are not stationary but cyclic with cycle length T0, and suppose

that T = aT0 for some integer a. That is, C(l−1)T0+τ,g = Cτg for g = 1, . . . ,G, l = 1, . . . ,a,

τ = 1, . . . ,T0. For any given feasible solution to (B), we now define the following cyclic

solution and follow a similar analysis as above:

x′(l−1)T0+τ,kg =
1
a

a

∑
l′=1

x(l′−1)T0+τ,kg τ = 1, . . . ,T0; l = 1, . . . ,a; k = 1, . . . ,K; g = 1. . . . ,G.
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We obtain an LP over the cycle length T0 by defining

x̄τkg = x(l′−1)T0+τ,kg τ = 1, . . . ,T0; l = 1, . . . ,a; k = 1, . . . ,K; g = 1. . . . ,G.

The base model then becomes

maximize
1
T0

T0

∑
τ=1

K

∑
k=1

G

∑
g=1

rkx̄τkg

subject to

K

∑
k=1

nk

∑
n=1

cknx̄[τ−n+1],kg ≤Cτg τ = 1, . . . ,T0; g ∈ G

T0

∑
τ=1

∑
g∈G

x̄τkg = dk

T0

∑
τ=1

K

∑
k′=1

∑
g∈G

x̄τk′g k ∈ K

x̄τkg ≥0 τ = 1, . . . ,T0; k ∈ K; g ∈ G

where the [.] notation now is relative to T0 rather than T . Note that all conclusions obtained

through Lemma 2.4.1 for the base model and extensions on other side constraints remain

valid with the cyclic capacities as described above. For example, if TA in prime hours side

constraints follows the described cyclic pattern, then there exists a time invariant stationary

solution to (B) with prime hours constraints.

2.4.2 Deriving Optimal Solution Values

The results of the previous section suggest a specific structure to the optimal solution of (B) and

(BB). In this section, we make use of these results to analytically obtain the optimal solution (B)

with other model variants.
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2.4.3 Base Model

Recall that optimal solution to (B) is stationary which leads to more compact representation (I) of

our problem. Therefore, we will focus on obtaining an optimal solution to I. Note that the objec-

tive function of problem (I) can be rewritten as

K

∑
k=1

G

∑
g=1

rkx̄kg =
K

∑
k=1

rk

G

∑
g=1

x̄kg

=
K

∑
k=1

rkdk

K

∑
k′=1

G

∑
g=1

x̄k′g

= r̃
K

∑
k′=1

G

∑
g=1

x̄k′g

where r̃ = ∑
K
k=1 rkdk. This implies that maximizing the total reward is equivalent to maximizing

the number of patients treated through optimization problem (I). Let g′ ∈ G′ be the set of gantries

in which there are some slack capacities left (G′ ∈ G).

K

∑
k=1

nk

∑
n=1

cknx̄kg <Cg′ g′ ∈ G′

For each g′ ∈ G′, modify the solution x̄ to get x̄′ by using vk values where vk ≥ 0 as follows:

x̄′kg =x̄kg + vk k ∈ K

dk

K

∑
k′=1

G

∑
g′=1

x̄′k′g′ =
G

∑
g′=1

x̄′kg′ k ∈ K

vk ≥0 k ∈ K

The patient mix constraints become

dk

K

∑
k′=1

(
G

∑
g′=1

x̄′k′g′+ vk′

)
=

G

∑
g′=1

x̄′kg′+ vk′ k ∈ K

dk

K

∑
k′=1

vk′ =vk k ∈ K (2.17)
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We can choose a v such that the capacity constraint of gantry g′ becomes binding.

vk =v (2.18)

vk′ =
dk′

dk
v k′ ∈ K; k′ 6= k. (2.19)

We can tighten all nonbinding gantry capacity constraints by repeating these steps which

explicitly increase the number of patients treated. Therefore, in the process of utilizing the un-

used gantry capacity, the objective function value increases. This implies that there exists an op-

timal solution in which all gantry capacity constraints are binding. Therefore, the optimization

problem I reduces to

maximize r̃
K

∑
k=1

G

∑
g=1

x̄kg

subject to

K

∑
k=1

nk

∑
n=1

cknx̄kg =Cg g ∈ G

dk

K

∑
k′=1

G

∑
g=1

x̄k′g =
G

∑
g=1

x̄kg k ∈ K

x̄kg ≥ 0 k ∈ K; g ∈ G.

Together with gantry capacity and patient mix constraints we can write

G

∑
g=1

K

∑
k=1

nk

∑
n=1

cknx̄kg =
G

∑
g=1

Cg

K

∑
k=1

nk

∑
n=1

ckn

G

∑
g=1

x̄kg =
G

∑
g=1

Cg

K

∑
k=1

nk

∑
n=1

ckndk

K

∑
k′=1

G

∑
g=1

x̄k′g =
G

∑
g=1

Cg

K

∑
k′=1

G

∑
g=1

x̄k′g =
∑

G
g=1Cg

∑
K
k=1 ∑

nk
n=1 ckndk

.
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Therefore, the objective function value of any optimal feasible solution for problem I is equal to

G

∑
g=1

Cg
∑

K
k=1 rkdk

∑
K
k=1 ∑

nk
n=1 ckndk

. (2.20)

Let x̄kg = 0 and x̄′kg = vk. Therefore, we can choose v such that

vk =v = dk
Cg

∑
K
k=1 ∑

nk
n=1 ckndk

vk′ =
dk′

dk
v

=
dk′

dk
dk

Cg

∑
K
k=1 ∑

nk
n=1 ckndk

=dk′
Cg

∑
K
k=1 ∑

nk
n=1 ckndk

k′ ∈ K; k′ 6= k

or

x̄kg = x̄′kg = vk =dk
Cg

∑
K
k=1 ∑

nk
n=1 ckndk

k ∈ K; g ∈ G. (2.21)

This result for the base model can be extended to account for a variety of the operational side

constraints discussed throughout this chapter.

• Gantry switching:

In the case of stationary gantry capacities, we show that the gantry capacity constraint will

be binding in the optimal solution. Thus, regardless of whether gantry switching is allowed

or not, the optimal objective function and solution of problem (I) are given in (2.20) and

(2.21), respectively.

• Anesthesia patients:

Anesthesia patient surveillance requirement independent of time horizon can be rewritten

as below

∑
k∈Ka

nk

∑
n=1

cknx̄kg ≤ Ag g ∈ G.
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In case of any slack either in gantry capacity or anesthesia constraint, we can modify fea-

sible solution x̄ to get x̄′ by using vk values given in (2.18) and (2.19). Since increasing x̄

also increases the objective function value, there exists an optimal solution in which either

or both of gantry capacity constraints and anesthesia requirement constraints are binding.

Therefore, the optimization problem I with anesthesia patients restriction reduces to

maximize r̃
K

∑
k=1

G

∑
g=1

x̄kg

subject to

K

∑
k=1

nk

∑
n=1

ckn

G

∑
g=1

x̄kg =
K

∑
k=1

nk

∑
n=1

ckndk

K

∑
k′=1

G

∑
g=1

x̄k′g ≤
G

∑
g=1

Cg

∑
k∈Ka

nk

∑
n=1

ckn

G

∑
g=1

x̄kg = ∑
k∈Ka

nk

∑
n=1

ckndk

K

∑
k′=1

G

∑
g=1

x̄k′g ≤
G

∑
g=1

Ag

dk

K

∑
k′=1

G

∑
g=1

x̄k′g =
G

∑
g=1

x̄kg k ∈ K

x̄kg ≥ 0 k ∈ K; g ∈ G.

The optimal objective function value to the optimization problem above is shown in (2.22).

K

∑
k=1

rkdk min

{
∑

G
g=1Cg

∑
K
k=1 ∑

nk
n=1 ckndk

,
∑

G
g=1 Ag

∑k∈Ka ∑
nk
n=1 ckndk

}
(2.22)

• BID patients:

The time-independent BID patient constraint can be written as follows

∑
k∈K2

nk

∑
n=1

cknx̄kg ≤Cg− γ−max
k∈K2

ck = Bg g ∈ G.

Despite different patient sets (Ka and K2), anesthesia and BID patients constraints have

identical structure. Therefore, following same steps as in finding the optimal solution for

problem I with anesthesia patients leads to the optimal objective function of problem I with
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BID patients as seen in (2.23).

K

∑
k=1

rkdk min

{
∑

G
g=1Cg

∑
K
k=1 ∑

nk
n=1 ckndk

,
∑

G
g=1 Bg

∑k∈K2 ∑
nk
n=1 ckndk

}
(2.23)

2.5 Bicriteria Base Model (BB) Efficient Frontier

In previous sections, we dealt explicitly with the solution structure of various linear programming

model variants. Specifically, Section 2.4.1.2 showed that any feasible solution to the bicriteria

problem can be equivalently represented as a stationary solution. In this section, we seek to an-

alytically characterize and produce the entire Pareto efficient frontier associated with (B-LP).

Since, as we discuss in this section, the efficient frontier for our problem is a piecewise linear

function in the total allowed patient mix deviation (see Figure 2.1), we give particular attention to

determining the breakpoints associated with that function.

To begin the discussion, note that a point on the Pareto efficient frontier of problem (B-LP)

can be obtained by solving the following problem with a given amount of allowed total deviation,

U , where ∑
K
k=1 uk =U .

maximize
K

∑
k=1

G

∑
g=1

rkx̄kg
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subject to (B-LP(U))

K

∑
k=1

wkx̄kg ≤Cg g ∈ G [αg]

−uk− ∑
g∈G

x̄kg +dk

K

∑
k′=1

∑
g∈G

x̄k′g ≤ 0 k ∈ K [γk]

−uk + ∑
g∈G

x̄kg−dk

K

∑
k′=1

∑
g∈G

x̄k′g ≤ 0 k ∈ K [µk]

K

∑
k=1

uk =U [q]

x̄kg ≥ 0 k ∈ K ,g ∈ G

uk ≥ 0 k ∈ K.

To simplify notation, we’ve let ∑
nk
n=1 ckn = wk. (B-LP(U)) can be further simplified using the re-

sult of the following lemma.

Lemma 2.5.1 Suppose that the gantry capacities are time-invariant, i.e., Ctg = Cg for all t =
1, . . . ,T and g = 1, . . . ,G. Then, there exists a stationary optimal solution to (B-LP(U)) in which
the gantry capacity constraints are binding.

Proof The dual (DB(U)) of problem (B-LP(U)) is

minimize
G

∑
g=1

Cgαg +Uz

subject to (DB(U))

wkαg +(µk− γk)− ∑
k′∈K

dk′(µk′− γk′)≥ rk k ∈ K; g ∈ G (2.24)

z−µk− γk ≥ 0 k ∈ K (2.25)

µk,γk ≥ 0 k ∈ K

αg ≥ 0 g ∈ G.
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Due to dual constraint (2.24) and nonnegative α, we can write

αg ≥
∑k′∈K dk′(µk′− γk′)− (µk− γk)+ rk

wk
k ∈ K; g ∈ G

αg ≥max
k∈K

{
∑k′∈K dk′(µk′− γk′)− (µk− γk)+ rk

wk

}
g ∈ G

Since 0 ≤ dk ≤ 1 and ∑k∈K dk = 1, ∑k′∈K dk′(µk′− γk′) is a weighted sum of (µk− γk) and we can

write

min
k∈K
{µk− γk} ≤ ∑

k′∈K
dk′(µk′− γk′)≤max

k∈K
{µk− γk} . (2.26)

At least for one k ∈ K, ∑k′∈K dk′(µk′ − γk′)− (µk− γk) ≥ 0. In addition, rk and wk are positive for

each k ∈ K. Hence, any feasible solution to problem (DB(U)) must have

αg > 0 g ∈ G

which implies that the optimal solution for (B-LP(U)) must have tight gantry capacity constraints

K

∑
k=1

wkx̄kg =Cg g ∈ G.

2

By aggregating the x̄-variables over all gantries it is easy to see that the capacity constraints in

(BP-L(U)) reduces to one with a single gantry:

K

∑
k=1

wk

G

∑
g

x̄kg =
G

∑
g

Cg =C. (2.27)

Using the result of Lemma 2.5.1, the class of optimization problems to analyze (for a fixed

total patient mix deviation U) when generating the Pareto frontier of (B-LP) is

z(U) = maximize
K

∑
k=1

rkXk
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subject to (F)

K

∑
k=1

wkXk =C (2.28)

Xk−dk

K

∑
k′=1

Xk′ = s̄k− s
¯k k ∈ K (2.29)

K

∑
k=1

(s
¯k + s̄k) =U (2.30)

Xk, s
¯k, s̄k ≥ 0 k ∈ K

where z(U) denotes the optimal solution value to (F) for a fixed deviation U and Xk = ∑
G
g=1 x̄kg

is the total number of patients treated in each category. We are particularly interested in U values

between 0 and Ū where Ū is the largest value with the property that z(U) is strictly incrusting.

For convenience, the values of rk
wk

(k ∈ K) are unique. Also, note that s
¯k (s̄k) can be interpreted

as the number of patients in category k in shortfall (excess) of the “ideal” number dk ∑
K
k′=1 Xk′ .

Interestingly, it can be shown that the total amount of patient mix shortfall/excess are equal to

the same value. Lemma 2.5.2 shows how both the aggregate patient mix excess deviation and the

aggregate patient mix shortfall deviation are both exactly half of the total deviation, U
2 .

Lemma 2.5.2 In problem (F), the cumulative shortfall and the cumulative excess patient mix
deviation is equal to exactly half the allowable patient mix deviation. That is,

∑
k∈K

s
¯ k = ∑

k∈K
s̄k =

U
2
.

Proof From (2.30) we have that

∑
k∈K

s
¯k =U− ∑

k∈K
s̄k. (2.31)

Furthermore, summing (2.29) over k ∈ K yields

∑
k∈K

Xk− ∑
k∈K

dk

K

∑
k′=1

Xk′ = ∑
k∈K

s̄k− ∑
k∈K

s
¯k. (2.32)
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Substituting (2.31) into (2.32) results in

∑
k∈K

s̄k−

(
U− ∑

k∈K
s̄k

)
= ∑

k∈K
Xk− ∑

k∈K
dk

K

∑
k′=1

Xk′ (2.33)

= 0 (2.34)

so

∑
k∈K

s̄k =
U
2
.

The result

∑
k∈K

s
¯k =

U
2

follows from the same argument.

2

Interestingly, this result indicates that (i) there is always some patient mix deviation in

the optimal solution to (F) for U > 0 and (ii) the cumulative amount that the cumulative short-

fall/excess is always the exact same known value. Using this result and numerous other structural

properties of (F), the remainder of this section seeks to characterize the optimal solution to (F) for

U ∈ [0,Ū ].

2.5.1 Characterization of z(U)

The derivation of a Pareto optimal frontier involving the tradeoff between total fractions treated

and allowable patient mix deviation equates to quantifying the change in the number of fractions

treated as the allowable patient deviation mix is increased from U = 0 to the point in which any

further increase in U does not lead to an increase in fractions treated. That is, we are interested

in the structure of z(U). Of course, in general, there are an infinite number of points on this fron-

tier. Techniques, such as the NISE method, exist for generating this type of frontier, but those

algorithms require the solution of multiple linear programs. However, since solving (F) for vary-

ing values of U equates to a perturbation of the right-hand-side (RHS) of a linear programming

maximization problem, we know that z(U) is piecewise linear nondecreasing and concave in U
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(Bazaraa et al., 2011). An example of the structure of z(U) is shown in Figure 2.1. We contend

that the efficient frontier for our problem can be solved by utilizing the basis properties discussed

in the next section to determine the finite number of breakpoints along our efficient front. As will

be formally shown, our approach to analytically determining the frontier relies on the fact that (i)

it is simple to determine an optimal basis at z(Ū) and (ii) as U decreases, exactly one X or s
¯

vari-

able is added/removed to/from the basis at a time. To begin our discussion of these results, the

following section illustrates how applying established linear programming perturbation knowl-

edge to (F) provides revealing properties of (i) the optimal basis at each breakpoint in our frontier

and (ii) how this basis changes from breakpoint to breakpoint.

Figure 2.1: General structure: z(U)

2.5.2 Properties of an Optimal z(U) Basis

As we will detail in the 2.5.3, an application of perturbation analysis to (F) aids in the revealing

the efficient frontier (function z(U)) efficiently. Much of that analysis is driven by knowledge of
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the optimal basis of (F) for any U in 0 < U < Ū . This section presents these optimal basis prop-

erties through the following two lemmas. Specifically, these lemmas reveal specific information

regarding the so-called most attractive category, k̂, where

k̂ = argmax
k∈K

(
rk

wk

)
. (2.35)

Recall that k̂ is assumed to be unique. Lemma 2.5.3 shows that Xk̂ is in the optimal basis of (F)

with total deviation parameter 0 <U < Ū .

Lemma 2.5.3 Let β be any basis associated with the optimal solution for problem F when 0 <

U < Ū . Then, Xk̂ ∈ β where k̂ = argmaxk∈K{ rk
wk
}.

Proof Let β0 be any basis associated with the optimal solution for problem F such that Xk̂ /∈ β0.

Note that we can write s
¯k̂ = dk̂ ∑k′∈β0 Xk′−Xk̂ > 0 since ∑k′∈β0 Xk′ > 0 and Xk̂ /∈ β0. Hence, s

¯k̂ ∈ β0.

Now, we will check whether the dual feasibility is satisfied by β0 which implies primal optimal-

ity. Thus, let DF be the dual of F as formulated below:

minimize Cα+Uq

subject to (DF)

wkα+µk− ∑
k′∈K

dk′µk′ ≥ rk k ∈ K [Xk] (2.36)

µk +q≥ 0 k ∈ K [s
¯k] (2.37)

−µk +q≥ 0 k ∈ K [s̄k] (2.38)

From Lemma (2.5.2) there must exist at least one pair of basic variables (Xk
¯
, s̄k

¯
) ∈ β0. Since,

Xk̂ /∈ β0, we conclude that k
¯
6= k̂. Moreover, we know that Xk

¯
> 0 and s̄k

¯
> 0. Then, from the

32



complementary slackness conditions, we can write

µk
¯
= q (2.39)

α =
rk
¯
−µk

¯
+∑k′∈K dk′µk′

wk
¯

=
rk
¯
−q+∑k′∈K dk′µk′

wk
¯

. (2.40)

Similarly, for k̂ such that s
¯k̂ > 0 and Xk̂ = 0, we can also write the following dual constraints:

µk̂ =−q (2.41)

α≥
rk̂−µk̂ +∑k′∈K dk′µk′

wk̂
=

rk̂ +q+∑k′∈K dk′µk′

wk̂
. (2.42)

We know that q is the dual variable associated with total deviation constraint (2.30) and can

be interpreted as the slope of the efficient frontier for any U . Therefore, q > 0 when 0 < U < Ū

(see Figure 2.1). Recall that k̂ = argmaxk∈K{ rk
wk
}. Hence, α in (2.40) does not satisfy the in-

equality (2.42) which is necessary for the feasibility of (DF). By contradiction, we conclude that

β0 cannot be a basis associated with the optimal solution for problem (F) which also proves the

lemma.

2

While the previous lemma specifies the existence of Xk̂ variable in the optimal basis of (F),

the following lemma focuses on the values of the shortfall and excess variables (s
¯
, s̄) in (F).

Lemma 2.5.4 Let β be a basis associated with the optimal solution for problem (F) when 0 <

U < Ū . Then, the following properties hold with regard to the shortfall and excess variables.

(i) For each k ∈ K, at most one slack variables (s̄k,s¯ k) is strictly positive.

(ii) There is never deviation shortfall for patient category k̂ (e.g. s
¯ k̂ = 0).

(iii) There is always deviation excess for patient category k̂ (e.g. s̄k̂ > 0).

(iv) For all patient categories k 6= k̂ there is no deviation excess (e.g. s̄k = 0 ∀k ∈ K,k 6= k̂).
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Proof For (i), let (s̄k,s¯k) be both positive, then the following complementary slackness conditions

must be held.

µk =−q (2.43)

µk = q (2.44)

The only case conditions 2.43 and 2.44 are satisfied is when q = 0. Thus, if q > 0, at least one of

the slack variable (s̄k,s¯k) for each k ∈ K has to be equal to zero.

For (ii), let β0 be any basis associated with the optimal solution for problem (F) such that

s
¯k̂ > 0. We know that Xk̂ ∈ β0 from Lemma 2.5.3. From Lemma 2.5.2, there must exist at least

one patient category k′′ with a pair of basic variables (Xk′′ , s̄k′′) ∈ β0 such that Xk′′ > 0 and s̄k′′ > 0.

From (i) and s
¯k̂ > 0, we conclude that s̄k̂ = 0 and therefore k′′ 6= k̂.

For k′′, from the dual constraints (2.36) and (2.38), we can write

α =
rk′′−µk′′+∑k′∈K dk′µk′

wk′′
=

rk′′−q+∑k′∈K dk′µk′

wk′′
(2.45)

µk′′ = q. (2.46)

Similarly, for k̂, we can write the dual constraint (2.37) as (2.47) and constraint (2.36) as

(2.48) or (2.49).

µk̂ =−q (2.47)

if Xk̂ > 0, α =
rk̂−µk̂ +∑k′∈K dk′µk′

wk̂
=

rk̂ +q+∑k′∈K dk′µk′

wk̂
(2.48)

if Xk̂ = 0, α≥
rk̂−µk̂ +∑k′∈K dk′µk′

wk̂
=

rk̂ +q+∑k′∈K dk′µk′

wk̂
(2.49)

From constraints (2.48) and (2.49), we see that α≥ rk̂+q+∑k′∈K dk′µk′
wk̂

. However, rk′′−q+∑k′∈K dk′µk′
wk′′

<

rk̂+q+∑k′∈K dk′µk′
wk̂

which violates the dual feasibility and hence, optimality of β0. Therefore, by con-

tradiction, we conclude that β0 cannot be a basis associated with the optimal solution for problem

F which also proves that s
¯k̂ = 0.
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For (iii), Let β0 be any basis associated with the optimal solution for problem F such that

s̄k̂ = 0. From Lemma 2.5.3 and (ii), we know that Xk̂ ∈ β0 and s
¯k̂ = 0, respectively. Thus, Xk̂ =

dk̂ ∑k′∈β0 Xk′ > 0 since s
¯k̂ = s̄k̂ = 0 and dk̂ ∑k′∈K Xk′ > 0. From Lemma 2.5.2, there must exist a

patient category k′′ 6= k̂ with a pair of basic variables (Xk′′ , s̄k′′) ∈ β0 such that Xk′′ > 0 and s̄k′′ > 0.

We conclude that k′′ 6= k̂ since s̄k̂ = 0. For k′′, from the dual constraints (2.36) and (2.38), we can

write

µk′′ = q (2.50)

α =
rk′′−µk′′+∑k′∈K dk′µk′

wk′′
=

rk′′−q+∑k′∈K dk′µk′

wk′′
. (2.51)

For k̂, since s
¯k̂ = s̄k̂ = 0, corresponding dual constraints (2.37) and (2.38) form a range on q

as in (2.52). Moreover, since Xk̂ > 0, the dual constraint (2.36) is written as in (2.53).

−q≤ µk̂ ≤ q (2.52)

α =
rk̂−µk̂ +∑k′∈K dk′µk′

wk̂
=

rk̂−µk̂ +∑k′∈K dk′µk′

wk̂
(2.53)

From (2.52) and (2.53), we can conclude that α ≥ rk̂−q+∑k′∈K dk′µk′
wk′′

which is violated by (2.51)

since rk̂
wk̂

>
rk′′
wk′′

. By contradiction, β0 cannot be a basis associated with the optimal solution for

problem F which also proves that s̄k̂ > 0.

For (iv), the argument follows similarly to (iii) by using the results of 2.5.3 and (iii).

2

With these results equipped to investigate (i) what the values of Xk for each point along

our frontier and (ii) the manner in which Xk values change as we the total allowable deviation is

decreased from Ū down to 0. The next section shows how the structural properties derived for (F)

can be combined with established linear programming right-hand-side perturbation analysis to

obtain the answers to each of these questions.
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2.5.3 Revealing z(U) via RHS Perturbation

Assume we had complete information about the optimal basis associated with some point on

the efficient frontier. We address why this assumption is not restrictive in the following section.

Berkelaar et al. (1997) show that this optimal basis, which we denote as β remains unchanged for

some allowable change in the right-hand-side of the constraints in (F). They also conclude that

this allowable range can be determined by solving the following optimization problem, Fβ,

maximize λ

subject to (Fβ)

∑
k:Xk∈β

wkXk =C (2.54)

Xk̂−dk̂ ∑
k′:Xk′∈β

Xk′ = s̄k̂ (2.55)

Xk−dk ∑
k′:Xk′∈β

Xk′ =−s
¯k k :(Xk,s¯k) ∈ β (2.56)

Xk−dk ∑
k′:Xk′∈β

Xk′ = 0 k 6= k̂ :Xk ∈ β; s
¯k /∈ β (2.57)

−dk ∑
k′:Xk′∈β

Xk′ =−s
¯k k :Xk /∈ β; s

¯k ∈ β (2.58)

∑
k:s

¯k∈β

s
¯k + s̄k̂ =U−λ (2.59)

(s
¯
, s̄,X) ∈ β

where X is the collection of all Xk ∈ β. Fβ is simply problem F with the the righti-hand-side U

perturbed to be U − λ and an objective to maximize λ using only the decision variables in the

basis β. To accurately write this problem in terms of only decision variables in the basis β, (2.29)

has been separated by categories that appear in the the basis β through (2.55)-(2.58). Notice that

we take advantage of Lemma 2.5.4 to eliminate the need to consider s
¯k variables for category k̂

and s̄k variables for k 6= k̂.
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The following lemma shows that we can analytically obtain the optimal decision values to

Fβ. This will ultimately motivate the justification for how the basis changes along the efficient

frontier as the total deviation decreases.

Lemma 2.5.5 For any 0 < U < Ū the optimal solution X decision values to the problem Fβ are
given as follows.

Xk = dk ∑
k′∈K

Xk′ Xk ∈ β, k 6= k̂ (2.60)

Xk = 0 Xk /∈ β, k 6= k̂ (2.61)

Xk̂ =

(
dk̂ + ∑

k:Xk /∈β

dk

)
∑

k′∈K
Xk′. (2.62)

Furthermore,

∑
k′∈K

Xk′ =
C(

dk̂ +∑k:Xk /∈β dk
)

wk̂ +∑k:Xk∈β,k 6=k̂ wkdk
.

Proof The objective function can be rewritten by substituting (2.59) for λ to get

U−minimize ∑
k:s

¯k∈β

s
¯k + s̄k̂

subject to (Fβ)

∑
k:Xk∈β

wkXk =C (2.63)

Xk̂−dk̂ ∑
k′:Xk′∈β

Xk′ = s̄k̂ (2.64)

Xk−dk ∑
k′:Xk′∈β

Xk′ =−s
¯k k :(Xk,s¯k) ∈ β (2.65)

Xk−dk ∑
k′:Xk′∈β

Xk′ = 0 k 6= k̂ :Xk ∈ β; s
¯k /∈ β (2.66)

−dk ∑
k′:Xk′∈β

Xk′ =−s
¯k k :Xk /∈ β; s

¯k ∈ β (2.67)

∑
k:s

¯k∈β

s
¯k + s̄k̂ =U−λ (2.68)

(s
¯
, s̄,X) ∈ β
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which after substituting the values of s in the objective leaves.

U−minimize

Xk̂−dk̂ ∑
k′:Xk′∈β

Xk′

+ ∑
k:(Xk,s¯k)∈β

dk ∑
k′:Xk′∈β

Xk′−Xk

+

∑
k:(Xk /∈β;s

¯k∈β)

dk ∑
k′:Xk′∈β

Xk′


subject to (Fβ)

∑
k:Xk∈β

wkXk =C (2.69)

Xk̂ ≥ dk̂ ∑
k′:Xk′∈β

Xk′ (2.70)

Xk ≤ dk ∑
k:Xk∈β

Xk′ k :(Xk,s¯k) ∈ β (2.71)

Xk = dk ∑
k:Xk∈β

Xk′ k 6= k̂ :Xk ∈ β; s
¯k /∈ β (2.72)

Xk ≥ 0 k : Xk ∈ β (2.73)

(s
¯
, s̄,X) ∈ β

However note that Lemma (2.5.2) states that

∑
k:s

¯k∈β

s
¯k + s̄k̂ =

U−λ

2
+

U−λ

2
. (2.74)

Therefore the objective of Fβ can be equivalently written as

U−minimize 2× s̄k̂ =U−2

Xk̂−dk̂ ∑
k′:Xk′∈β

Xk′

 . (2.75)

Next, by substituting 2.55 into 2.54 we have

wk̂dk̂ ∑
k′:Xk′∈β

Xk′+wk̂s̄k̂ + ∑
k′′ 6=k̂:Xk′′∈β

wk′′Xk′′ =C (2.76)

38



or

s̄k̂ =
C−wk̂dk̂ ∑k′:Xk′∈β Xk′−∑k′ 6=k̂:Xk′∈β

wk′Xk′

wk̂
(2.77)

=
C
wk̂
−dk̂Xk̂− ∑

k′ 6=k̂:Xk′∈β

(
wk′

wk̂
+dk̂

)
Xk′ (2.78)

Therefore, a final reformulation of Fβ yields

U−minimize 2×

 C
wk̂
−dk̂Xk̂− ∑

k′ 6=k̂:Xk′∈β

(
wk′

wk̂
+dk̂

)
Xk′


subject to (Fβ)

∑
k:Xk∈β

wkXk =C (2.79)

Xk̂ ≥ dk̂ ∑
k′:Xk′∈β

Xk′ (2.80)

Xk ≤ dk ∑
k:Xk∈β

Xk′ k :(Xk,s¯k) ∈ β (2.81)

Xk = dk ∑
k:Xk∈β

Xk′ k 6= k̂ :Xk ∈ β; s
¯k /∈ β (2.82)

Xk ≥ 0 k : Xk ∈ β (2.83)

(s
¯
, s̄,X) ∈ β

Clearly, all objective coefficients for Xk (k 6= k̂) are larger than that for Xk̂. Therefore, each

Xk (k 6= k̂) in the basis will want to be satisfied at its desired mix level. That is,

Xk = dk ∑
k′:Xk′∈β

Xk′. (2.84)

However, we also want Xk̂ to be as large as possible in order to reduce the objective further. To
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get the value of Xk̂ in Fβ note that

Xk̂ = ∑
k′:Xk′∈β

Xk′− ∑
k:Xk∈β,k 6=k̂

Xk = ∑
k′:Xk′∈β

Xk′− ∑
k:Xk∈β,k 6=k̂

dk ∑
k′:Xk′∈β

Xk′

= ∑
k′:Xk′∈β

Xk′

1− ∑
k:Xk∈β,k 6=k̂

dk


= ∑

k′∈K
Xk′

(
dk̂ + ∑

k:Xk /∈β

dk

)
.

Clearly, for all k : Xk /∈ β, Xk = 0.

In order to calculate ∑k′∈K Xk′ , we plug the optimal Xk expressions just derived into the

gantry capacity constraint. This leaves

∑
k∈K

wkXk = ∑
k:Xk∈β,k 6=k̂

wkdk ∑
k′∈K

Xk′+wk̂

(
dk̂ + ∑

k:Xk /∈β

dk

)
∑

k′∈K
Xk′ =C

which yields

∑
k′∈K

Xk′ =
C(

dk̂ +∑k:Xk /∈β dk
)

wk̂ +∑k:Xk∈β,k 6=k̂ wkdk
. (2.85)

This completes the proof. 2

In this section we have shown that the optimal solution to the problem Fβ can be obtained

analytically given that β is an optimal basis to the original problem F. In the following section,

we show how both the origin and final points of the frontier can be derived and utilized as a start-

ing point for the algorithm presented in Section 2.5.5.

2.5.4 Origin and End Point of z(U)

In this section, the extreme points, z(0) and z(Ū) of our efficient frontier. Lemma 2.5.6 states that

the optimal solution value at these points can be analytically obtained.

Lemma 2.5.6 The optimal solutions of (F) when U = 0 and U = Ū are given as follows.

(i) When no deviation from the specified patient mix is allowed, the optimal solution value is
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given by

z(0) =
∑k∈K rkdk

∑k∈K wkdk
C

and then number of patients treated in each category is

Xk =
dk

∑k′∈K wk′dk′
C (k ∈ K)

.

(ii) When U = Ū ,

z(Ū) =
rk̂C
wk̂

and the number of patients treated in each category is

Xk = 0 k ∈ K,k 6= k̂ (2.86)

Xk̂ =
C
wk̂

(2.87)

where k̂ = argmaxk∈K{ rk
wk
}

Proof The arguments for the two results are as follows.

(i) See section 2.4.3.

(ii) By definition, when U = Ū the amount of deviation is large enough such that no additional

benefit can be obtained by allowing additional deviation. Therefore, only the gantry capac-

ity constraints (2.28) are active. Notice that (F) with only 2.28 reduces to the well-known

linear relaxation of a standard knapsack problem (LP-KP). An optimal solution to (LP-KP)

is known to exist for which only a single item (patient category) is included at a non-zero

level. Furthermore, this item is known to have the largest ratio of profit to item size (e.g. rk

to wk).

Given this result, we know the optimal basis for the last point along the efficient frontier

before no further improvement can be reached by considering addition deviation. We use this

result, along with the results regarding the basis changes along the frontier in the algorithm pro-

posed in the following section.
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2.5.5 Efficient Frontier Generation Algorithm

We summarize the findings of the previous sections as below:

• According to Berkelaar et al. (1997), the optimal solution of Fβ addresses the transition

point of a linearity interval.

• Note that the optimal solution to problem F when U ≥ Ū (or q = 0) is given in 2.86 and

2.87. Thus, one of the optimal basis would be B0 = {Xk̂ ∪ s̄k̂ ∪ s
¯k : k ∈ K}. Once U is de-

creased to Ū (transition point), s
¯k̂ drops to zero and therefore has to be replaced with a non-

basic variable. This is called parametric perturbation analysis with optimal basis in Bazaraa

et al. (2011).

– At this point, s̄k ∀k ∈ K,k 6= k̂ cannot be in β when 0 < U < Ū (Lemma 2.5.4) and

s
¯k = 0 ∀k ∈ K,k 6= k̂ are already in β. Therefore, Xk ∀k ∈ K,k 6= k̂ are the only possi-

ble entering variables for the second to last linearity interval. However, s
¯k = 0 ;∀k ∈

K,k 6= k̂ variables can be potential entering variables at the future breakpoints.

– We utilize the optimal solution of Fβ when U < Ū in order to avoid solving another

LP to calculate the total deviation and fraction levels at the next breakpoint. We cal-

culate q = change in total fraction between breakpoints
change in total deviation between breakpoints for each nonbasic (entering candidate)

Xk and s
¯k ∀k ∈ K,k 6= k̂. Then, we select the nonbasic variable with minimum q as an

entering variable if the resulting λ ≥ 0. Based on the optimal solution structure of the

breakpoints from Lemma 2.5.5,

(i) if Xk′′ (k′′ ∈ K,k′′ 6= k̂) is the entering variable, s
¯k′′ (k

′′ ∈ K,k′′ 6= k̂) must leave the

basis at the next breakpoint or

(ii) if s
¯k′′ (k

′′ ∈ K,k′′ 6= k̂) is the entering variable, Xk′′ (k′′ ∈ K,k′′ 6= k̂) must leave the

basis at the next breakpoint.

– We generalize this procedure by relying on the fact that (Xk,s¯k) variables such that k ∈

K,k 6= k̂ are the only candidates to (leave) enter into the optimal basis at the transition
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points.

The above discussion motivates an algorithm to generate the entire efficient frontier analytically.

In order to calculate all breakpoints of the efficient frontier, we propose Algorithm 1. Below is

the extra notation used in Algorithm 1.

• j ∈ J, set of efficient breakpoints

• k ∈ NX , set of patient categories with nonbasic Xk variables

• k ∈ Ns
¯
, set of patient categories with nonbasic s

¯k variables except k̂ (k̂ /∈ Ns
¯
)

• k ∈ Pβ, set of patient categories with basic Xk variables except k̂ (k̂ /∈ Pβ and K = {k̂∪NX ∪

Pβ})

• X j
k , the value of Xk at Pareto breakpoint j

• T D j = ∑k∈K

∣∣∣dk ∑k′∈K X j
k′−X j

k

∣∣∣, total deviation at Pareto breakpoint j

• T F j = ∑k∈K rkX j
k , total fraction at Pareto breakpoint j

• XY k′′
k , the value of Xk at the next breakpoint if Xk′′ is selected to enter into the basis

• SY k′′
k , the value of Xk at the next breakpoint if s

¯k′′ is selected to enter into the basis

• XtempT Dk′′ , total deviation at the next breakpoint if Xk′′ is selected to enter into the basis

• XtempT Fk′′ , total fraction at the next breakpoint if Xk′′ is selected to enter into the basis

• StempT Dk′′ , total deviation at the next breakpoint if s
¯k′′ is selected to enter into the basis

• StempT Fk′′ , total fraction at the next breakpoint if s
¯k′′ is selected to enter into the basis

• qXk′′ = change in total fraction
change in total deviation , the value of the dual variable q (slope) if Xk′′ is selected to enter

into the basis

• qs
¯k′′ = change in total fraction

change in total deviation , the value of the dual variable q (slope) if s
¯k′′ is selected to enter

into the basis
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Algorithm 1 Generates efficient frontier breakpoints
1: Initialize:
2: Set j = 1, k̂ = argmaxk∈K

{
rk
wk

}
, M = Sufficiently large number

3: Set NX = K \{k̂}, Ns
¯
= /0, Pβ = /0, X j

k̂
= C

wk̂
, X j

k = 0 for each k ∈ NX

4: Calculate T D j = ∑k∈K

∣∣∣dk ∑k′∈K X j
k′−X j

k

∣∣∣ and T F j = ∑k∈K rkX j
k

5: while NX 6= /0 do
6: j=j+1
7: for all k ∈ NX do
8: Select k′′ = k

9: Y Xk′′

k̂
=C

(
dk̂+∑k∈NX \{k′′}

dk(
dk̂+∑k∈NX \{k′′}

dk

)
wk̂+∑k∈P

β
∪{k′′} dkwk

)

10: Y Xk′′

k′′ =C

(
dk′′(

dk̂+∑k∈NX \{k′′}
dk

)
wk̂+∑k∈P

β
∪{k′′} dkwk

)

11: Y Xk′′

k =C

(
dk(

dk̂+∑k∈NX \{k′′}
dk

)
wk̂+∑k∈P

β
∪{k′′} dkwk

)
for all k ∈ Pβ

12: Y Xk′′

k = 0 for all k ∈ NX \{k′′}

13: ∑k∈K Y Xk′′

k =C

(
1(

dk̂+∑k∈NX \{k′′}
dk

)
wk̂+∑k∈P

β
∪{k′′} dkwk

)
14: XtempT Dk′′ = ∑k∈K

∣∣∣dk ∑k′∈K Y Xk′′

k′ −Y Xk′′

k

∣∣∣, XtempT Fk′′ = ∑k∈K rkY Xk′′

k

15: if (T D j−1−XtempT Dk′′ > 0) then
16: qXk′′ = T F j−1−XtempT Fk′′

T D j−1−XtempT Dk′′

17: else
18: qXk′′ = M
19: end if
20: end for
21: for all k ∈ Ns

¯
do

22: Select k′′ = k

23: Y
s
¯k′′

k̂
=C

(
dk̂+∑k∈NX∪{k′′}

dk(
dk̂+∑k∈NX∪{k′′}

dk

)
wk̂+∑k∈P

β
\{k′′} dkwk

)

24: Y
s
¯k′′

k =C

(
dk(

dk̂+∑k∈NX∪{k′′}
dk

)
wk̂+∑k∈P

β
\{k′′} dkwk

)
for all k ∈ Pβ

25: Y
s
¯k′′

k = 0 for all k ∈ NX ∪{k′′}

26: ∑k∈K Y
s
¯k′′

k =C

(
1(

dk̂+∑k∈NX∪{k′′}
dk

)
wk̂+∑k∈P

β
\{k′′} dkwk

)
27: StempT Dk′′ = ∑k∈K

∣∣∣dk ∑k′∈K Y
s
¯k′′

k′ −Y
s
¯k′′

k

∣∣∣, StempT Fk′′ = ∑k∈K rkY
s
¯k′′

k

28: if (T D j−1−StempT Dk′′ > 0) then
29: qs

¯k′′ = T F j−1−StempT Fk′′

T D j−1−StempT Dk′′

30: else
31: qs

¯k′′ = M
32: end if
33: end for
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34: if (mink∈NX{qXk} ≤mink∈Ns
¯
{qs

¯k}) then
35: k∗ = argmink∈NX{qXk}
36: Set X j

k = Y Xk∗
k for each k ∈ K

37: Set T D j = XtempT Dk∗ and T F j = XtempT Fk∗

38: Set NX = NX \{k∗}, Pβ = Pβ∪{k∗} and Ns
¯
= Ns

¯
∪{k∗}

39: else
40: k∗ = argmink∈Ns

¯
{qs

¯k}

41: Set X j
k = Y

s
¯k∗

k for each k ∈ K
42: Set T D j = StempT Dk∗ and T F j = StempT Fk∗

43: Set NX = NX ∪{k∗}, Pβ = Pβ \{k∗} and Ns
¯
= Ns

¯
\{k∗}

44: end if
45: end while

Starting form the last breakpoint, Algorithm 1 enumerates all possible breakpoints that are

not necessarily to be on the Pareto frontier as long as there exists a decrease on U (i.e. positive λ

at the solution of Fβ). Entering variable with the minimum slope (q) points to the linearity inter-

val and the solution of Fβ with the updated basis identifies the next breakpoint at the end of this

frontier segment. The algorithm iterates until all X variables become basic (NX = /0). Solution

of Fβ with all basic X variables is identical to the solution of z(0) given in Lemma 2.5.6 where

U = 0.

2.5.6 Computational Study

This section assesses the efficiency gains due to our algorithm that is built on several mathemat-

ical structures in achieving the entire efficient frontier of the bicriteria base patient scheduling

problem (BB). The original formulation of (BB) in Gedik (2011) and Section 2.3.2 is solved by

the NISE method Cohon et al. (1979). We refer the reader to Gedik (2011) for a very detailed ex-

planation of the NISE method application on (BB). It requires solving several LPs with weighted

objective function to generate efficient frontier line segments. Therefore, these LPs are modeled

in IBM ILOG CPLEX Optimization Studio 12.6 which uses IBM ILOG CPLEX 12.6 solver.

IBM ILOG Concert Technology is utilized for embedding the formulations in C++ language into

IBM ILOG CPLEX. Algorithm 1 is also implemented in C++ programming language. We run all
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test problems on a Core 2 Duo 2.93 GHz, 16 GB RAM computer.

Same set of problem parameters used in Gedik (2011) is employed to create problem in-

stances. Table 2.2 lists three different patient mix ratios (PMRs) and other input parameters for

each patient category. In addition, we use two different capacity levels of gantries (Ctg = Cg =

720 and 900 minutes) and ten different planning period lengths (|T | = 100,200,300, . . . ,1000

days) to assess the effect of varying daily gantry capacity and planning period length.

Table 2.2: Parameters

Patient Categories
1 2 3 4 5 6 7 8 9 10

PMR1 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
PMR2 0.20 0.10 0.20 0.10 0.05 0.10 0.05 0.10 0.05 0.05
PMR3 0.65 0.15 0.07 0.03 0.03 0.02 0.01 0.01 0.02 0.01
fk (# of fractions per day) 1 1 2 2 1 1 1 1 1 1
nk (min) 40 40 31 31 30 30 30 30 42 12
ck (min) 18 30 35 45 35 55 60 90 50 35
c̄k (min) 15 15 20 25 20 20 45 45 30 20

Table 2.3 and 2.4 demonstrate computation times to generate the efficient frontier of prob-

lem (BB) by NISE method and our algorithm with the problem instances provided in 2.2. The

only difference between the problem instances in Table 2.3 and 2.4 is that ck and c̄k are randomly

generated for each patient category in Table 2.4 by a discrete uniform distribution with range

[18,90] and [15,45], respectively. We note that efficient frontiers for all instances generated by

the NISE method and our algorithm have identical breakpoints and linear segments. On the other

hand, the average computation time for an efficient frontier required by NISE method exceeds

that of the algorithm by a factor of 1700 in Table 2.3 and 1800 in Table 2.4. This is a direct result

of providing a time invariant equivalent problem formulation for (BB) and later the characteris-

tics of the optimal solution to this version. Note that the number of decision variables in (BB)

increases as |T | increases. Thus, the efficient frontier generation time by the NISE method for

(BB) tends to increase gradually as (|T |) gets larger. On the other hand, computation times for

our algorithm do not change by increasing |T | since it is able to identify time invariant efficient
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frontiers for (BB). Another advantage of our approach over the NISE method is that we generate

exact efficient frontiers of the bicriteria base problem, whereas there is a marginal error embed-

ded in the NISE method to approximate the exact efficient frontiers.
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2.6 Conclusions and Future Research

In this chapter, we study the characteristics of optimal solution for the strategic level patient

scheduling problem with patient mix restrictions. After showing the existence of time invari-

ant feasible solution with identical objective function value to any time variant (bicriteria) base

model feasible solution with stationary gantry capacities, we focus on exploring the optimal so-

lutions for the base model with and without deviation from the desired patient mix levels. In case

of no deviation, our efforts illustrate how to obtain the analytically derived optimal solution for

the base model with several side constraints. These findings provide very useful insights for the

healthcare decision makers in practice. Below, we provide several observations we learned by

studying the optimal solutions of (B) with strict patient mix restrictions.

• Maximizing the total reward (number of treatment sessions) is equivalent to maximizing

the number of patients treated.

• The optimal solution to the base model with or without gantry switching flexibility can be

interpreted as

Total gantry capacity×Weighted total treatment sessions (reward)
Weighted total treatment time

.

• The optimal solution to the base model with anesthesia patients restrictions can be inter-

preted as

Weighted total treatment sessions (reward)×min{GC,AC}

where

GC =
Total gantry capacity

Weighted total treatment time

AC =
Total anesthesia availability in all gantries

Weighted total treatment time for anesthesia patients

.
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• The optimal solution to the base model with BID patients restrictions can be interpreted as

Weighted total treatment sessions (reward)×min{GC,BC}

where

BC =
Total BID patients availability in all gantries

Weighted total treatment time for BID patients

.

By utilizing these simple rule of thumbs, scenario analysis can be performed very easily

regarding desired percent mix levels, anesthesia/BID team availability, treatment time and reward

for treating patient types. Clearly, these analytical results save the decision makers from solving

an optimization problem to evaluate the impacts of a patient mix percentages as well as other

capacity adjustments.

Another key contributions of this chapter is the derivation of the optimal solution for the

bicriteria base patient scheduling model (BB). As shown in Table 2.3 and Table 2.4, our algo-

rithm provides a very fast way of assessing the impacts of patient mix selection on the two objec-

tives; total fractions delivered to patients and corresponding deviation from patient mix prefer-

ences in a planning period. Managers and facility administration utilize patient mix preferences

to estimate approximate resource consumption, costs and revenues based on the values defined by

DRGs. A strategic level capacity plan can be easily generated by producing exact efficient fron-

tiers by using our approach that relate the treated total number of patients to the total deviation

from patient mix requirements.

Of course, since LP efficient frontiers tend to schedule a fractional amount of patients, they

can only be utilized for a strategic plan to observe the fundamental behaviors of the problem

components under different operational restrictions. It remains desirable to determine a frontier

of integer solutions that reflect the exact number of scheduled patients required from each cate-

gory k in each gantry g on each day t. The efficient frontier of (BB) can be used to approximate

the exact IP frontier. In order to investigate the quality of this approximation, initially, we can
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constraint on one objective (e.g. total fractions) associated with the breakpoints of the LP effi-

cient frontier and solve an integer program to optimize the remaining decision (e.g. patient mix

deviation).

Figure 2.2: Bicriteria base model IP and LP frontiers with PMR 1

Figure 2.2 is one example of the IP efficient frontier points obtained by using this method.

For small total deviation amounts (less than 50), the IP efficient points reveal that far fewer total

fractions can be treated than in the case of the LP frontier. This suggests that as the patient mix

deviation restriction is more strictly enforced, the approximation of the IP frontier by the LP is

less desirable. Obviously, solving an IP for each breakpoint is computationally expensive and the

breakpoints of the LP frontier do not necessarily coincide with that of the IP frontier. However,

LP frontier still provides a bound on IP frontier and can be more efficiently constructed by our

algorithm. As an immediate future research direction towards efficiently constructing IP frontier,

we would like to utilize some information revealed through analyzing the characteristics of the

efficient frontier for (BB). For instance, the total number of patients across all gantries associated

with a breakpoint is calculated analytically. This can be embedded in the IP formulation of (BB)

as a bound on the integer number of patients that can be accepted to the facility.
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The second research direction is to expand the findings of Section 2.5 to explore efficient

frontiers for the (BB) problem with the side constraints. Based on the type of the side constraint

added to the (BB), further investigations must be tailored to identify the impacts of additional

restriction(s) on the efficient frontier. For instance, if anesthesia or BID side constraints (inequal-

ities) are imposed into (BB), it is extremely vital to be able to monitor which constraint (side or

gantry capacity) remains binding as U takes on different values. Identifying this relationship is

even important when U is sufficiently large since k̂ = argmaxk∈K{ rk
wk
} might belong to a spe-

cial category (BID or anesthesia) and therefore limit the total number of patients. In this case,

we need to be able to monitor which inequality will become active and when. If we assume no

degenerate solution on efficient frontier segments except breakpoints, then any change in the sta-

tus of an inequality (becoming binding or unbinding) will create extra breakpoint since a slack

variable becomes either nonbasic or basic.

Finally, it still remains desirable to demonstrate the impacts of not having unique rk
wk

ratios

across all patient categories on efficient frontiers.
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Cardoen, B., Demeulemeester, E., and Bëlin, J. (2010). Operating room planning and scheduling:
A literature review. European Journal of Operation Research, 201:921–932.

Cayirli, T., Veral, E., and Rosen, H. (2006). Designing appointment scheduling systems for am-
bulatory care services. Health Care Management Science, 9:47–58.

Chaabane, S., Meskens, N., Guinet, A., and Laurent, M. (2008). Comparison of two methods of
operating theatre planning: Application in belgian hospitals. Journal of Systems Science and
Systems Engineering, 17(2):171–186.

Cohon, J. L., Church, R. L., and Sheer, D. N. (1979). Generating multiobjective trade-offs: An
algorithm for bicriterion problems. Water Resources Research, 19:1001–1010.

Conforti, D., Guerriero, F., and Guido, R. (2008). Optimization models for radiotherapy patient
scheduling. 4OR, 6:263–278.

55



Conforti, D., Guerriero, F., and Guido, R. (2010). Non-block scheduling with priority for radio-
therapy treatments. European Journal of Operation Research, 201:289–296.

Gedik, R. (2011). Evaluating the Capacity of a Proton Therapy Facility. University of Arkansas,
Fayetteville.

Hughes, W. L. and Soliman, S. Y. (1985). Short-term case mix management with linear program-
ming. Hospital and Health Services Administration, 30(1):52–60.

Kaandorp, G. C. and Koole, G. (2007). Optimal outpatient appointment scheduling. Health Care
Management Science, 10:217–229.

Men, C. (2009). Optimization models for radiation therapy: treatment planning and patient
scheduling. University of Florida.

Mulholland, M. W., Abrahamse, P., and Bahl, V. (2005). Linear programming to optimize perfor-
mance in a department of surgery. Journal of the American College of Surgeons, 200(6):861–
868.

Pham, D. N. and Klinkert, A. (2008). Surgical case scheduling as a generalized job shop schedul-
ing problem. European Journal of Operation Research, 185:1011–1025.

Robbins, W. A. and Tuntiwongpiboon, N. (1989). Linear programming a useful tool in case-mix
management. Healthcare Financial Management, 43(6):114–116.

Vanberkel, P. T., Boucherie, R. J., Hans, E. W., and Hurink, J. L. (2011). Optimizing the strategic
patient mix. Memorandum 1935, Department of Applied Mathematics, University of Twente,
Enschede.

Vissers, J., Adan, I. J., and Bekkers, J. A. (2005). Patient mix optimization in tactical cardiotho-
racic surgery planning: a case study. IMA Journal of Management Mathematics, 16(3):281–
304.

56



3. PROTON THERAPY PATIENT SCHEDULING: MARKOV DECISION PROCESS
MODELING APPROACH

Ridvan Gedik Chase Rainwater Shengfan Zhang

3.1 Introduction

Stochastic patient arrivals and appointment cancellations (no-shows) are the most common sources

of uncertainty in patient scheduling problems. However, in Chapter 2, we assume that the issue of

rescheduling and treatment session cancellations is less significant in proton therapy treatment

planning than in other healthcare applications due to the large demand for this therapy. Therefore,

we study deterministic patient scheduling models in bi-criteria objective settings. As the costs

associated with building proton therapy facility decrease due to advancing technology, handling

stochastic patient arrivals will be vital in the near future to keep the utilization of the resources

at their maximum levels. Therefore, we propose a Markov decision process (MDP) model that

accounts for stochastic patient arrivals to a proton therapy facility.

Patient mix optimization, the requirement that the mix of patients treated satisfy desired

percentages, is a relatively new consideration in proton therapy planning. The desirable findings

in hospitals in early stages of DRG (i.e. case mix) implementations by LP models motivate fur-

ther investigation into sophisticated models for efficient patient planning in the proton therapy

healthcare environment. All other studies in the patient mix optimization literature aim to find the

most suitable patient mix levels such that the maximum benefit is achieved. On the other hand,

none of them focused on patient scheduling where the patient mix levels are taken as an input

and the impacts of their interactions with the other operational constraints are demonstrated on

the facility capacity. In Chapter 2, we demonstrated the impacts of a given patient mix prefer-

ences on the capacity of a proton therapy facility by comparing the total treated patients versus

the total deviations from patient mix levels in the presence of several operational constraints. The

tradeoffs between total fractions delivered and total deviation from the mix ratios were identified

through analysis of efficient frontiers.
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Assuming that there is an infinite patient supply for the treatment is a simplifying assump-

tion that will become less appropriate as proton therapy becomes an affordable treatment. To ad-

dress this concern, this chapter proposes an MDP model which relaxes the assumption that there

is an infinite patient supply for treatment. Instead, this model is able to represent the stochas-

tic arrivals of patients which also allows incorporating other stochastic dynamics, such as ap-

pointment cancellations that happen on daily basis. Even though MDP is a powerful way of

handling stochasticity associated with patient arrivals, it takes quite amount of computational

effort to solve this multi-category patient scheduling problem due to the exponentially growing

state space. Therefore, this chapter also proposes an approximate aggregate MDP model to over-

come this special type of curse of dimensionality. The aggregate MDP model clusters original

states into subgroups that results in a more tractable state space. Of course, the aggregate MDP

provides only approximate optimal patient admission policies. Therefore, we seek to assess the

trade-off between the traditional and aggregated models in terms of solution time and quality.

The rest of this chapter is organized as follows. Section 3.2 describes how stochastic pa-

tient arrival and scheduling in healthcare facilities have been handled by MDP models in the lit-

erature. Then, two MDP models, exact and aggregate, are introduced in Section 3.3. Section 3.4

demonstrates the performance of these models and finally, Section 3.5 briefly highlights the con-

tributions of this study and discusses future research directions.

3.2 Literature Review

Adan and Vissers (2002) categorize patient admissions into two groups; non-scheduled and sched-

uled. Non-scheduled admissions are unplanned and might be due to emergency cases, whereas

scheduled patients are planned and selected from a waiting list created as the service is being re-

quested. In most of the studies (e.g., Bowers and Mould (2005), Cayirli et al. (2006), Pham and

Klinkert (2008)), scheduled (elective) cases are considered in order to reduce potential uncertain-

ties associated with patient attributes (i.e., patient type, financial gain, resource allocation per pa-

tient, etc.). Some other studies assume that the treatment time for an outpatient is constant for the
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sake of simplicity (see, e.g., Conforti et al. (2008)). In the context of this study, we assume that

proton therapy patients are elective outpatients who do not need to spend the night at the facility.

Conforti et al. (2010) compare the two most common types of daily basis radiation therapy

patient scheduling strategies: (i) block system and (ii) non-block system. In blocked scheduling,

a workday is composed of a fixed number of blocks/time slots with the same duration, whereas

in the non-block scheduling, different time intervals are reserved for different patients based on

the type of the treatments. Furthermore, patients in the non-block scheduling system are usually

scheduled on a first-come first-served basis unless the individual cases are not restricted by strict

earliest and/or latest start constraints. In the same study, after highlighting the fact that the block

scheduling strategy is more commonly used than its counterpart in many radiation therapy cen-

ters, a patient scheduling model which accounts for non-block scheduling rules is developed for a

short planning period (a week). In reality, non-block appointment system is conceptually superior

to the block appointment system since the former is able to represent the whole workload. This is

because, during a workday, accumulation of the idle time leftover from a time slot can be used to

treat other patients who have not been scheduled yet.

Despite of its advantages, the non-block scheduling appointment strategy is not considered

very often in the literature due to the extra limitations/constraints it adds to the treatment plan-

ning problem. On the other hand, block scheduling is commonly encountered (Conforti et al.,

2008; Kapamara et al., 2006; Gocgun et al., 2011; Nunes et al., 2009), since it simplifies most

of the concepts that are hard to be taken into account in a radiation therapy patient scheduling

problem. Therefore, due to its ability to simplify appointment scheduling decisions, the proton

therapy patient scheduling problem with stochastic arrivals is assumed to have a block appoint-

ment system. In such system, a group of patients can be assigned to time slots in a manner such

that each of them can concurrently be receiving treatment. Figure 3.1 demonstrates a basic block

patient scheduling schema for a configuration of three gantries and three time slots in a given day.

Hence, for each time slot, the number of patients assigned to a time slot can not be greater than

the number of gantries available in that time slot in the system. Accordingly, let us assume that
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the days in the planning period are divided into time slots such that all these slots have identical

durations. Note that the daily treatment times of all gantries are identically distributed to time

slots of a day as demonstrated in Figure 3.1. Therefore, the total number of patients that can be

treated on all gantries in a day would be equivalent to the total number of time slots allocated to

all gantries in a given day (i.e. 9 in Figure 3.1).

Figure 3.1: Block appointment system

A recent contribution that is directly related to proton therapy patient scheduling research

corresponds to the work of Nunes et al. (2009). They present an MDP model in order to con-

trol the scheduled patient admissions from different specialties on a periodic basis. Patient flows

from m distinct specialties are assumed to be continuous. In order to measure the resource con-

sumption, they adopt the treatment pattern methodology, which is first proposed by Kapadia

et al. (1985). It is assumed that a patient could follow n different treatment patterns until he is

discharged (end of treatment). In this study, state space of the hospital is defined as the number of

patients from all specialties following different treatment patterns. The number of patients to be

admitted to the hospital in each specialty for the next decision period is considered as the action

space. Finally, the stochastic dynamics of the study is described as the probability of one patient’s

transition from a treatment pattern to all others.

One of the first MDP approaches developed for hospital admission scheduling is proposed

by Kolesar (1970) who transforms the MDP model into a linear program to obtain results. An-

other important finding of this study is that simultaneous patient scheduling reservations for dif-
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ferent services are modeled over a planning horizon.

Gocgun et al. (2011) develop a finite horizon MDP to model a patient scheduling problem

commonly seen in providing computed tomography (CT) service. They assume that there are

only four patient types who demand the CT service during a work day period. The MDP model

in this study aims to maximize the total profit obtained by scheduling different patient types for

the available time slot of a CT machine during the work day. Different than most of the patient

scheduling models, they adopt each available time slot for each CT machine as a stage. Simi-

lar to the study conducted by Nunes et al. (2009), the number of patients from different types

constitutes the state space and the actions are denoted by the number of scheduled patients from

different types for the next service slot. They compare the optimal solutions obtained from their

model with simple heuristic rules (first-come first-served (FCFS), randomized etc.) typically em-

ployed to schedule patients in real life. Even though their model finds better values in terms of

total profit, FCFS heuristic provides better values in terms of the average number of patients not

scanned by the end of the day.

3.3 Solution Methodology

3.3.1 A Markov Decision Process (MDP) Model

In light of the insights developed by Nunes et al. (2009); Kapadia et al. (1985); Gocgun et al.

(2011), we also model our strategic patient mix optimization model as an MDP. Based on the

block scheduling schema in Figure 3.1, the finite state and action space for of our problem can

be modeled as in equations (3.1) and (3.2). sk
tq represents the number of patients being treated

from category k in service slot q between decision instants t − 1 and t. Thus, the state space S

comprises all possible states. Furthermore, ak
q represents the number of patients in each category

that will be admitted for treatment in service slot q in the next period.
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S =



s1
t,q=1

s2
t,q=1

...

s|K|t,q=1


,



s1
t,q=2

s2
t,q=2

...

s|K|t,q=2


, . . . ,



s1
t,q=|Q|

s2
t,q=|Q|

...

s|K|t,q=|Q|


(3.1)

Ast =



a1
q=1

a2
q=1
...

a|K|q=1


,



a1
q=2

a2
q=2
...

a|K|q=2


, . . . ,



a1
q=|Q|

a2
q=|Q|

...

a|K|q=|Q|


(3.2)

In addition to the number of current patients receiving treatment and newly accepted patients

from each category, we also need to account for the ones whose treatment schedule ends on each

day. From each patient type k on day t, it is known that there will be ak
t−nk

number of discharges,

which is the number of patients from type k accepted on day t− nk given that a patient from cat-

egory k must receive fractions during nk consecutive days. It should be noted that incorporating

the discharged patients into the state definitions would increase the complexity and degrade the

tractability of the model. Therefore, a useful assumption is made in order to avoid this foreseen

difficulty. Accordingly, discharges are assumed to be handled after accepting new patients to each

category. Hence, transition from one state to another includes only the newly accepted patients

and the ones that are receiving their treatments.

In the case of identical gantries, we can modify the gantry-time slot representation of a

single day as in Figure 3.1. Accordingly, state space and action space can be defined in a more

compact way as in equations (3.3) and (3.4). Based on the representation in Figure 3.1, both time

slots and the gantries are assumed to be identical in a given day. Moreover, during our work in

Chapter 2 on the patient scheduling problem, we have identified that if the daily gantry capacity

depends only on gantry type not time period, an optimal solution for the linear program exists

in which we start and treat the same number of patients in category k on each day t and in each
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gantry g. In other words, this implies that the optimal solution of the LP model enforces patient

types to hold the desired patient mix restrictions on daily basis. In order to represent this, sk is

defined as the total number of type k patients receiving treatments in all time slots and ak is de-

fined as the accepted number of patients from category k to all time slots.

Figure 3.1: Modified block appointment system for identical gantries

S =



s1
q=1 + . . .+ s1

q=|Q|

s2
q=1 + . . .+ s2

q=|Q|
...

s|K|q=1 + . . .+ s|K|q=|Q|


=



s1

s2

...

s|K|


(3.3)

As =



a1
q=1 + . . .+a1

q=|Q|

a2
q=1 + . . .+a2

q=|Q|
...

a|K|q=1 + . . .+a|K|q=|Q|


=



a1

a2

...

a|K|


(3.4)

Due to the problem definition, patient mix ratios must be satisfied and maximum number of

fractions/patients must be treated over a planning period. In order to assess the impacts of these

constraints, we represent patient mix preferences in the optimality equations. One procedure is

to assign a penalty for those patient types which fail to conform to the desired patient mix levels.

To implement this procedure, we must keep track of the total number of patients treated (after the

actions are taken), and then compare both the actual and desired patient mix levels. Let J be the
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total number of patients from all types being treated in the facility.

J= ∑
k∈K
{sk +ak} (3.5)

Then, the desired (Dk) and actual (Hk) patient mix of patient type k can be calculated as follows.

Dk = dkJ (3.6)

Hk = sk +ak (3.7)

Hence, deviation from patient mix constraint for each category k is |Ak −Dk|. Then, a reward

function (r(s,a)) for each state and action can be constructed as follows:

r(s,a) = ∑
k∈K

aknk fk− ∑
k∈K

(wk|Hk−Dk|) a ∈ As (3.8)

where fk is the number of fractions required by patient type k per day and nk is the consecutive

number of days a patient type k needs to receive treatment. Therefore, the first term in the reward

function is the total number of fractions obtained by starting ak patients from each patient type

k ∈ K. The second term penalizes the deviation of each type k from the desired patient mix level

by wk. It is important to note that the deviation is measured in terms of number of patients, but

the first term is in terms of fractions. Finally, it is clear to see that the objective seeks to maximize

the total reward.

Let v(s) be the total expected reward obtained for the state s. Assuming that the state and

action spaces are finite and the horizon length is infinite, a value iteration algorithm finds a sta-

tionary ε-optimal policy and approximation to value function (3.9) for each state s with a dis-

count factor of β.

v(s) = max
a∈As
{r(s,a)+β ∑

j∈S
p jsv( j)} (3.9)
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We note that p js is the transition probability from state j to s. The stochastic dynamic of the

problem, patient arrivals, can be modeled as Poisson arrivals. Hence, let N(k) be the number of

patient types k request treatment on a specific day in the proton therapy facility. Then, N(k) ∼

Poisson(αk). Assuming that the arrivals are independent from each other, we can estimate the

probability of patient arrivals as follows:

P(N(1) = x,N(2) = y, . . . ,N(|K|) = z) =
e−α1αx

1
x!

e−α2α
y
2

y!
, . . . ,

e−α|K|α
z
|K|

z!
(3.10)

A Numerical Example

This section demonstrates the performance of the MDP model over a numerical example in terms

of best patient admission policy and convergence graphs for each state. Moreover, since the best

patient admission policies may not always be optimal due to some other operational restrictions,

second and third best actions are also reported. Before explaining these findings, the transition

probability matrix, action and state space are illustrated in Figure 3.2 and 3.3. For this illustration

the total patient capacity (Q) is equal to 4.

Figure 3.2: State space and action space when Q = 4

The reason behind the limited and decreasing order action space as the number of patients

in the facility increases is due to the assumption that discharges are performed after accepting
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Figure 3.3: Probability transition matrix when Q = 4

new patients. When the capacity (the absorbing “FULL” state) is reached, we assume that the

MDP model is terminated. First column in Figure 3.2 lists all possible states for this problem.

Note that first number in each state represents the number of patients in the facility from the first

category and the second number stands for the number of patients in the facility from the second

category. Actions are the possible combinations of accepting patients to the facility from these

two types.The last action of each state in Figure 3.2 groups all combinations that might lead to

the full state under a single action. Similarly, the probability of reaching the full state is calcu-

lated by subtracting the probabilities of all other arrival combinations from 1.

Table 3.1: Input parameters

nk fk wk dk αk

k=1 40 1 40 50% 0.5
k=2 30 1 30 50% 0.4

Baseline input parameters are seen in Table 3.1. Based on the desired mix percentages (dk),

the number of patients from two types are assumed to be the same for simplicity of this example.

The number of consecutive days required for type k over the planning period (nk) and number of

daily fractions required for type k ( fk) are the actual numbers of the two categories obtained from

University of Florida Proton Therapy Institute (UFPTI). Arrival rates (αk) and penalty terms (wk)

are selected arbitrarily.
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Figure 3.4: v(s) when w1 = 40,w2 = 30

Figure 3.4 demonstrates the convergence of value function for each state obtained by solv-

ing the optimality equations 3.9 with the input parameters in Table 3.1 via a value iteration algo-

rithm. Similarly, Figure 3.5 and 3.6 illustrate the change in these functions with different penalty

terms.

These figures depict that the value function of the state (0,0) dominates the value function

of all other states. This is because, the fewer the number of patients in the facility, the more spots

that can be filled with new patients which ultimately leads to a larger total expected fractions. As

the penalty parameters decrease, the actions associated with the full state become less desirable

for the states. The model chooses to transition to the full state instead of deviating from desired

mix levels as the penalty terms increase. For this reason, transitioning to the full state is the best

action for the last seven, six and five states as seen in Figure 3.4, 3.5 and 3.6, respectively.

Since the number of accepted patients directly impacts the actual and desired total mix ra-

tios, acceptance preferences (best, second and third best actions) change as the penalty terms dif-

fer. This is illustrated for each state in Table 3.2. For instance, the best action is to accept two and
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Figure 3.5: v(s) when w1 = 20,w2 = 15

one patient from the first and second category, respectively, for the state (0,0) regardless of the

penalty terms. On the other hand, accepting one patient from the first category becomes more af-

fordable and the best action as the penalty terms decrease for the state (0,2). Similar conclusions

can be made for each state.
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Figure 3.6: v(s) when w1 = 8,w2 = 6
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3.3.2 An Aggregate MDP Model

The MDP model in the previous section provides strategic level optimal patient admission poli-

cies when the time horizon is assumed to be in steady state. Despite the useful practical insights

it provides for the decision makers, it becomes intractable as the problem parameters increase.

The state space of the MDP model grows exponentially in the order of |Q| and |K| (see Section

3.4).Thus, this section introduces a state aggregation technique that is proposed to overcome the

exponentially growing states and actions (curse of dimensionality) associated with the MDP for-

mulation.

In order to reduce the complexity associated with a large state space, researchers have fo-

cused on applying aggregation techniques in which the main idea is clustering original states into

aggregate subgroups. These aggregate subgroups are treated as newly created states in the aggre-

gate MDP. As a consequence, the reduced number of states will directly decrease the size of the

probability transition matrix since it is the square of the number of states. Using this approach,

the original MDP can be represented by a potentially exponentially smaller approximate MDP.

Since the ultimate approximate model preserves the Markovian property, any MDP algorithm can

be used to solve the aggregate MDP.

State aggregation is referred to as state abstraction in the studies within the artificial intel-

ligence domain. Dearden and Boutilier (1997) provide a very concise discussion regarding the

differences between state abstraction (or aggregation) and other compact MDP representation

techniques. They propose an MDP model for the decision-theoretic planning (DTP) problem, an-

other version of optimal stochastic control problem, and develop an abstract MDP model with ex-

ponentially fewer states which allow them to obtain approximate optimal solutions. The key idea

behind their abstraction policy is to use action and reward structure to judge whether a variable

(state) should be included in the aggregate MDP or not. The selection criteria of a state is based

on the eligibility of capturing important behaviors of the original MDP (i.e. set of possible ac-

tions, amount of reward). Although there may be several states removed from the original MDP,

the ultimate policy from their aggregate MDP remains executable for the original MDP. In other

71



words, the optimal policy for the aggregate problem is the approximate optimal solution for the

original problem. This is a very important feature of a good practical state aggregation algorithm

and one of the main objectives of this study in generating approximate optimal patient admission

policies.

Dean et al. (1997) introduce a ε-homogeneity technique that is employed to partition the

very large state space of MDPs. They specifically study approximate optimal solutions for bounded

MDPs in which upper and lower bounds on the transition probabilities and rewards are given as

input parameters. Li et al. (2006) propose a unified treatment of state abstraction for MDPs with

large state space by analyzing five different state aggregation techniques and assess their func-

tionalities in planning and learning problems. Moreover, an insightful case study is offered to

measure the tradeoff between minimizing curse of dimensionality through different state abstrac-

tion and minimizing information loss. Other applications of state abstraction techniques in rein-

forcement learning can be found in Dietterich (2000); Sutton et al. (1999) and Andre and Russell

(2002).

Despite its popularity and dominance in artificial intelligence field, especially reinforce-

ment learning application area, state aggregation has a very strong competitor in operation re-

search field. Researchers in operations research have recently started exploring a different ver-

sion of tackling curse of dimensionality through approximate dynamic programming (ADP) tech-

niques. As opposed to clustering states in state aggregation, ADP focuses on stepping forward in

time and selecting states with good approximate dynamic value functions to obtain approximately

optimal policies (Powell, 2009). This technique has been successfully implemented on numerous

challenging problems including multidimensional knapsack (Bertsimas and Demir, 2002), trans-

portation & logistics (Powell et al., 2012), resource allocation (Powell et al., 2003) and capacity

allocation (Schütz and Kolisch, 2012; Sauré et al., 2012). For further details on different aspects

of ADP techniques, we refer the reader to Powell (2007).
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3.3.3 State Aggregation

Recall that S = {s1,s2, . . . ,s|K|} is the state space of the original MDP model where sk is defined

as the total number of type k patients within the facility. We let
{

S1,S2, . . . ,S|K|,S|K|+1,S|K|+2
}

partition S where ∪|K|+2
k=1 Sk = S and Sk∩Sm = /0 if k 6= m and k,m ∈K= {1,2, . . . , |K|,

|K|+1, |K|+2}. K is the set of states in the aggregate MDP. S|K|+2 represents the full state in

the aggregate MDP. If s1 = s2 = . . . = s|K| holds, that is the number of patients from all patients

are same, in an original MDP state, then it is assigned to the S|K|+1 aggregate state. We assign

an original MDP state {s1,s2, . . . ,s|K|} to aggregate state Sk if sk > sm for all m ∈ K and m 6= k

(patient type k has the unique largest number of patients). If there is more than one patient types

which have the identical maximum amount of patients, then we randomly pick the aggregate state

among those states. For example, if sk = sm > sn for all n ∈ K and n 6= k 6= m in {s1,s2, . . . ,s|K|},

then we randomly assign this original state to either Sk or Sm with equal probability.

For each k ∈ K, we define Ak as ∪s∈SkAs. That is, Ak is the set of actions available from

state k ∈K in the aggregate MDP. We use the fixed-weight aggregation technique that is proposed

by Heyman and Sobel (2003). Accordingly, for each k,m ∈ K and a ∈ Ak, we let γkm and ρa
k be

a transition probability and single-state immediate reward in the aggregate MDP as defined in

equations (3.11) and (3.12), respectively,

γkm = ∑
s∈Sk

λ
k
s ∑

j∈Sm

ps j (3.11)

ρ
a
k = ∑

s∈Sk

λ
k
sr(s,a) (3.12)

where λk
s ≥ 0 and ∑s∈Sk

λk
s = 1 for each k ∈ K and s ∈ Sk. In (3.11), ∑ j∈Sm ps j is the aggregate

probability of transitioning from state s to aggregate state Sm which makes γkm the weighted av-

erage of these transition probabilities where λk
s are the weights for s ∈ Sk. Intuitively, λk

s assesses

the contribution of state s to the aggregate state Sk and can be any valid weighting function (Li
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et al., 2006). It is easy to see that γkm are the transition probabilities in the aggregate MDP:

∑
m∈K

γkm = ∑
m∈K

∑
s∈Sk

λ
k
s ∑

j∈Sm

ps j = ∑
s∈Sk

λ
k
s ∑

m∈K
∑

j∈Sm

ps j = ∑
s∈Sk

λ
k
s ∑

j∈S
ps j = 1

Similarly, ρa
k is the weighted average of r(s,a) as defined in (3.8).

3.3.4 Fixed Policy Evaluation

Heyman and Sobel (2003) prove that the output of the fixed aggregation transformation technique

is indeed an MDP model with fewer states. This enables us to use the same value iteration algo-

rithm to solve the aggregate model. The policy obtained by solving the aggregate model is exe-

cutable for the original MDP model since the set of aggregate actions for each aggregate group

is inherited from the original states (Ak=∪s∈SkAs). Of course, solutions for both original and ag-

gregate MDP may not be identical. Thus, we need a fixed policy evaluation technique to assess

the quality of the aggregate MDP policy with respect to the optimal policy. In other words, a dis-

aggregating method is required to substitute the policy for the aggregate MDP model into the

original MDP.

The optimal policy for infinite horizon MDP model is always stationary. That is, the opti-

mal stationary policy (π∗) for an infinite horizon discounted MDP model does not change with

time and remains identical once it is obtained. Given a policy π, we define Vπ(s) as the value of

policy π at state s, Rπ(s) as the immediate reward and Pπ(s, j) as the probability transition ma-

trix. Let Vπ and Rπ be n dimensional column vectors and P be an n× n matrix. Note that for any

given policy π, Rπ and P will be known which will make the solution of the following set of lin-

ear equations (3.13) possible with respect to only unknown Vπ.

Vπ =Rπ +βPπVπ

Rπ =(I−βP)Vπ

Vπ =(I−βP)−1Rπ (3.13)
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After solving the aggregate MDP model by the value iteration algorithm, we obtain the approxi-

mate optimal policy π̄. We create another feasible policy δ for the original MDP model based on

π̄ such that

δ(s) =a if s ∈ Sk and π̄(k) = a ∀k ∈K. (3.14)

The policy disaggregation (3.14) suggests using the same optimal action for the aggregate

subgroup Sk for all the original states assigned to it (s ∈ Sk). The quality of the aggregate policy δ

and optimal policy π∗ is measured by solving the set of linear equations (3.13).

3.4 Computational Results

3.4.1 Problem Parameters and Experimental Design

Several different problem instances are used to test the tractability and efficiency of the aggre-

gate MDP model. Table 3.1 illustrates the required parameters for each patient category. All of

these parameters except daily arrival rates are obtained from UFPTI. The arrival rate is calculated

by using expected number of new incidence of each patient category given in American Cancer

Society (2014). These values are first adjusted based on the population of Florida and then nor-

malized to fit into [0,1]. Finally, the arrival rate of each patient is obtained by multiplying the

normalized value by four to make the total arrival rate of the patients equal to the minimum num-

ber of time slots available in the facility.

Different combinations of the number of patient categories (|K|= 5,6, . . . ,10) and available

time slots (Q = 4,5,6) are used to vary the size of the state space. Therefore, we group multiple

patient types as shown in Table 3.2-3.6 to meet different number of patient categories in problem

instances with |K|= 5,6, . . . ,9, respectively. In addition, three different penalty terms are adopted

as follows:

1. wk = dk×20 ∀k ∈ K
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2. wk =
nk× fk

4 ∀k ∈ K

3. wk = nk× fk×dk ∀k ∈ K

Lastly, state aggregation weights are calculated as in equation (3.15).

λ
k
s =

1
|Sk|

∀k ∈K, s ∈ Sk (3.15)

Table 3.1: (Aggregate) MDP problem parameters when |K|= 10

Patient Category (k ∈ K)
1 2 3 4 5 6 7 8 9 10

dk 65% 15% 7% 3% 3% 2% 1% 1% 2% 1%
nk 40 40 31 31 30 30 30 30 42 12
fk 1 1 2 2 1 1 1 1 1 1
αk 1.65 0.38 0.92 0.19 0.12 0.08 0.15 0.15 0.19 0.15

Table 3.2: (Aggregate) MDP problem parameters when |K|= 9

Patient Category (k ∈ K)
1 2 3 & 10 4 5 6 7 8 9

dk 65% 15% 8% 3% 3% 2% 1% 1% 2%
nk 40 40 31 31 30 30 30 30 42
fk 1 1 2 2 1 1 1 1 1
αk 1.65 0.38 1.07 0.19 0.12 0.08 0.15 0.15 0.19

Table 3.3: (Aggregate) MDP problem parameters when |K|= 8

Patient Category (k ∈ K)
1 2 3 & 10 4 5 6 7 & 8 9

dk 65% 15% 8% 3% 3% 2% 2% 2%
nk 40 40 31 31 30 30 30 42
fk 1 1 2 2 1 1 1 1
αk 1.65 0.38 1.07 0.19 0.12 0.08 0.30 0.19
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Table 3.4: (Aggregate) MDP problem parameters when |K|= 7

Patient Category (k ∈ K)
1 2 3 & 10 4 5 & 6 7 & 8 9

dk 65% 15% 8% 3% 5% 2% 2%
nk 40 40 31 31 30 30 42
fk 1 1 2 2 1 1 1
αk 1.65 0.38 1.07 0.19 0.21 0.30 0.19

Table 3.5: (Aggregate) MDP problem parameters when |K|= 6

Patient Category (k ∈ K)
1 2 3 & 10 4 5,6,7 & 8 9

dk 65% 15% 8% 3% 7% 2%
nk 40 40 31 31 30 42
fk 1 1 2 2 1 1
αk 1.65 0.38 1.07 0.19 0.51 0.19

Table 3.6: (Aggregate) MDP problem parameters when |K|= 5

Patient Category (k ∈ K)
1 & 2 3 & 10 4 5, 6,7 & 8 9

dk 80% 8% 3% 7% 2%
nk 40 31 31 30 42
fk 1 2 2 1 1
ak 2.03 1.07 0.19 0.51 0.19

3.4.2 MDP vs. Aggregate MDP Model

The patient scheduling problem formulations in Section 3.3 are modeled in JAVA programming

language. We assess the quality of the aggregate policy (δ) and optimal policy (π∗) as described

in Section 3.3.4. Recall that these policies provide the best action for each state and the total ex-

pected rewards obtained for each state are calculated by solving (3.13). In order to compare the

values and best actions obtained by the MDP and aggregate MDP model, we define two perfor-

mance indicators:
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Average percent difference (APD) = 100×
∑s∈S

(
|Vπ∗(s)−Vδ(s)|

max{Vπ∗(s)−Vδ(s)}

)
|S|

(3.16)

Matched action percentage (MAP) = 100× Number of same actions across all states in S
Total number of states (|S|)

(3.17)

APD demonstrates how much, on average, the total expected reward values obtained by

the MDP and aggregate MDP model deviate from each other across all states, whereas MAP

illustrates the average precision of the aggregate MDP model in terms of locating the same ac-

tions with the MDP model across all states. These two measures for the instances with penalty

type 1, 2 and 3 are illustrated in Figures 3.1-3.3, Figures 3.4-3.6 and Figures 3.7-3.9, respec-

tively. When the penalty type 2 is used, that is each unit of deviation from the desired patient

mix level for category k is penalized by nk fk
4 , APD and MAP levels are consistently decreasing

and increasing, respectively, as the models are exposed to larger |K| values. This leads us to con-

clude that behaviors of the MDP and aggregate MDP models become similar as |K|, therefore,

the number of states increases when the penalty 2 levels are used. We can see the same pattern

in APD and MAP values when each unit deviation from the desired mix level for patient type k

is charged with nk fkdk (penalty type 3). The only instance that does not comply with this trend

under penalty type 3 is when |K|= 6 and Q = 6. Even though the APD and MAP values improve

with larger |K| when penalty type 1 is in use and Q = 4, we cannot observe the same behavior

under the same penalty type with Q = 5 and Q = 6.

We observe that the majority of the contributions made to MAP levels come from the states

in which the best action is to transition to the full state in both MDP models. Aggregate MDP

model is very good at matching with these type of actions in general. It is not very competitive

in anticipating the best action for the states that have several good quality actions available. We

believe that part of the reason behind having better APD and MAP values with penalty types 2

and 3 is because they apply penalty levels directly proportional to immediate reward coefficients
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(nk fk) which in turn restricts the set of rewarding actions for states. This ultimately produces

higher chance for the aggregate MDP to identify the best action taken by the MDP and approx-

imate the total expected rewards.

We report problem setup times and value iteration algorithm solution times for both MDP

and aggregate MDP models in Table 3.7. We run these test problems on a Core 2 Quad 2.93

GHz, 4 GB RAM computer. We see that solving the MDP model takes significantly more time

than solving the aggregate MDP model in all instances. This is a direct result of including larger

number of states (|S|) in the MDP compared to the one (|K|+ 2) in the aggregate MDP. How-

ever, as the number of states increases, it takes dramatically more computation time to set up the

aggregate MDP problem components. We also tested the computational performance of the two

models on the problem instances with very large number of states as seen in Table 3.8. The ag-

gregate MDP model is computationally more efficient than the original MDP model although the

setup time for the larger problems is high. These experiments are performed on a computer with

two Intel six-core Xeon X5670 2.93 GHz processors and 24GB of memory.
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Figure 3.1: APD and MAP with penalty type 1 and Q = 4
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Figure 3.2: APD and MAP with penalty type 1 and Q = 5
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Figure 3.3: APD and MAP with penalty type 1 and Q = 5
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Figure 3.4: APD and MAP with penalty type 2 and Q = 4
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Figure 3.5: APD and MAP with penalty type 2 and Q = 5
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Figure 3.6: APD and MAP with penalty type 2 and Q = 6
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Figure 3.7: APD and MAP with penalty type 3 and Q = 4
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Figure 3.8: APD and MAP with penalty type 3 and Q = 5
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Figure 3.9: APD and MAP with penalty type 3 and Q = 6

Table 3.8: Performance of (aggregate) MDP models on large problem instances

MDP Aggregation
Q |K| Number of states Setup (sec.) Algorithm (sec.) Setup (sec.) Algorithm (sec.)
7 10 8009 56.93 19111.621 128.065 4.709

15 5 11629 - - 3900.989 7.43
8 10 19449 - - 865.857 12.243

17 5 20350 - - 3900.989 7.430
20 5 42505 - - 30607.492 16.096
10 10 92379 - - 32868.907 65.671

3.5 Conclusions and Future Research Directions

The MDP model proposed in this chapter is powerful decision mechanisms in the case of an un-

expected opening in the facility (i.e. no-shows, appointment cancellations etc.). It aims to find

the best patient admission decision with the maximum total expected reward while conforming to

the patient mix and capacity restrictions. Numerical experiments demonstrate that it becomes in-

tractable due to exponentially growing state space as problem parameters increase. Thus, approx-
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imate optimal patient admission policies are targeted via an aggregate MDP model developed

by fixed-weight aggregation technique. Despite its ease of application, it is capable of providing

very good executable approximate policies for the original MDP model which is also evidenced

by small APD and large MAP values. Note that worst case APD (MAP) values are 21% (69%),

14.1% (79%) and 14.4% (80%) for the penalty type 1,2, and 3, respectively.

There are several future directions regarding this study. Note that gantry capacity con-

straints are the only factor that limits the acceptance of new patients in the MDP model. One

important extension of this work would be incorporating other operational restrictions such as

sequencing of patients, anesthesia surveillance team availability and assessing the impacts of

these on patient admission policies. For instance, in order to account for the treatments of pa-

tients who need other resources (i,e, technicians or nurses) during their treatment sessions, we

need to differentiate the time slots based on the availability of such resources in gantries. This

would dramatically increase the dimension of both the state and action spaces which in turn ulti-

mately impact the complexity of the problem. Another important extension of this work would be

accounting for the waiting patients for this treatment. Since this is another layer of information

that describes the state of the facility, it should be incorporated in the state space definition. Fi-

nally, a more competitive aggregation technique that can mimic the behaviors of the MDP model

with several other operational constraints would be another possible research direction.
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4. ANALYSIS OF A PARALLEL MACHINE SCHEDULING PROBLEM WITH
SEQUENCE DEPENDENT SETUP TIMES AND TIME WINDOWS

Ridvan Gedik Chase Rainwater Heather Nachtmann Edward Pohl

4.1 Introduction

This study aims to provide useful insights for decision-makers managing a fleet of resources,

which is composed of a limited number of dissimilar machines under operational and tactical

level restrictions. For a given time horizon, we seek to assign nonidentical jobs to machines and

provide the best sequence for each piece of machine. During the search for the best assignment

and job sequence, one must also account for the time spent navigating in between jobs. More-

over, since the machines are dissimilar, completion time of each job depends on the type of the

machine assigned to it. Finally, each job has a cost, profit, time availability window(s) and can be

assigned to at most one machine. The total cost of operations across all jobs has to be less than

or equal to a budget. Subject to all these requirements, a typical decision-maker’s objective is to

either (i) maximize the total profit or (ii) minimize the makespan within a given time horizon.

The main differences between modeling this problem with two different objectives can be seen

in Section 4.2. In order to clarify some other aspects of the problem description, the following

assumptions are made in all models given in this study:

• Release time and deadline of each job are start and end of planning horizon, respectively.

• All jobs are available for processing at the beginning of time horizon.

• Tardy jobs are not allowed.

• A piece of machine can work on at most one job at a time.

• A job can be assigned to at most one machine.

• Job preemption is not allowed.

• Job processing times are deterministic, but vary based on the machine type.
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• Sequence dependent travel (setup) time from one job location to another is deterministic

and assumed to be same for each machine.

• There is no travel (setup) time before the first job and after the last job in a machine’s sched-

ule.

• A job might have more than one time availability window restriction. A restricted period

is defined as a complementary concept for time availability window to represent the times

when job processing is prohibited.

The remainder of the paper is organized as follows. Section 4.2 discusses the integer pro-

gramming (IP), constraint programming (CP) and decomposition algorithms developed to solve

our scheduling problem. A real world application of this problem with corresponding instances

is introduced in Section 4.3. Finally, Section 4.4 compares the performance of the proposed solu-

tion techniques.

4.2 Problem Modeling: Mathematical versus Constraint Programming

In recent years, constraint programming has been widely applied to a variety of scheduling prob-

lems as an alternative or in conjunction with IP. From a general perspective, the first important

distinction between constraint programming and mathematical programming (specifically, ILP,

integer linear programming) is the ways that they express the conditions to solve an optimization

or a constraint satisfaction problem. On one hand, CP allows declarative, flexible and compact

model formulations which makes adapting new constraints straightforward while not affecting

the previous constraints (Focacci et al., 2002; Hooker, 2007a). Especially, the ability of repre-

senting complex application oriented constraints in terms of global (logical) constraints brings

CP a competitive advantage when the actual interest is to provide good feasible solutions (Jain

and Grossmann, 2001). Hence, CP has proven to have good performance in solving highly con-

strained discrete optimization and feasibility problems such as scheduling, planning and resource

allocation problems. On the other hand, ILP is more likely to perform better when the attacked
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problem has a pure (well studied) geometrical structure compared to the CP (Focacci et al., 2002)

and (Lombardi and Milano, 2012). It should be noted that when the side constraints are added,

the problems become less pure, and the application of CP seems to be more appropriate.

A recent increase in the number of studies which use CP to develop (part of) solution tech-

niques for classical operations research problems suggest a growing interest in its functionality.

Jain and Grossmann (2001) compare pure CP and ILP model formulations with a hybrid CP/ILP

model for a scheduling problem which involves dissimilar parallel machines, nonidentical orders

with different release times and deadlines. They demonstrated that the hybrid model is able to

solve larger instance as opposed to pure CP and ILP models. Besides, the decomposition (Logic-

Based Benders) algorithm outperforms all other alternatives in terms of solution time and ob-

jective function value. Later, Sadykov and Wolsey (2006) studied the same problem in order to

generate efficient decomposition algorithms based on column generation (branch and price) and

branch and cut approaches. Harjunkoski and Grossmann (2002) also studied the parallel schedul-

ing problem motivated by Jain and Grossmann (2001) with sequence independent setup times and

developed another decomposition method in which both master and subproblems are formulated

as ILP. More details on CP/ILP based decomposition algorithms and hybrid modeling approach

are included in Section 4.2.3.

For some other versions of parallel machine scheduling problems, a double or combined

modeling approach is reported to be an efficient solution method. Edis and Ozkarahan (2011)

developed a combined ILP/CP model formulation which tackles “resource-constrained identical

parallel machine scheduling problem with machine eligibility restrictions” and showed that the

combined ILP/CP model is able to find the optimal solution in 174 out of 200 test instances with

substantial decreases in solution time as opposed to solving the same test instances by pure ILP

and CP models. Moreover, pure ILP and CP models managed to find optimal solutions in only

47 and 6 problems, respectively. Similar success of combined ILP/CP approach is reported in

Edis and Oguz (2012) which tackles parallel machine scheduling with flexible resources problem.

There are other operations research problems that are successfully solved by combined ILP/CP
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approach compared to pure ILP and CP methods such as time-tabling/rostering (Trick and Yildiz,

2011; Topaloglu and Ozkarahan, 2011; He and Qu, 2012), project scheduling with time windows

(Cesta et al., 2002). For further information about double or hybrid modeling and other decompo-

sition methods, we refer the reader to Hooker (2006b) and van Hoeve and Katriel (2006).

Pearn et al. (2002) studied a parallel machine scheduling problem with nonidentical job

processing times, identical machines and sequence dependent setup times in a wafer probing

factory. They proposed an ILP model and then its transformation to a well studied vehicle rout-

ing problem with time windows due to the complexity of the ILP model formulation. Three dif-

ferent heuristics were used to find the near-optimal solutions for a real-world test instance with

100 jobs, 14 identical equipments and 30 different product types. Cakici and Mason (2007) also

considered parallel scheduling problem in semiconductor manufacturing with auxiliary resource

constraints and proposed a heuristic which produces a solution with a 0.78% optimality gap. A

comprehensive survey on scheduling problems in semiconductor manufacturing operations is

proposed in Mönch et al. (2011).

Rojanasoonthon and Bard (2005) addressed a parallel machine scheduling problem with

time windows, priority levels on jobs and with the objective of maximizing the number of jobs

scheduled. They reported that their ILP is unable to report even a feasible problem and there-

fore, they provided a greedy randomized adaptive search procedure that produced good qual-

ity solutions for the data instances with 400 jobs and 6 machines. A different variant of parallel

scheduling problem was first described by Arkin and Silverberg (1987) in which each job has a

fixed start time, end time and a value. The objective is to maximize the total value associated with

the feasible subset of jobs that are to be processed. This problem with dissimilar equipments is

shown to be NP-complete. Türsel Eliiyi and Azizoğlu (2009) addressed the fixed job scheduling

problem with machine dependent job values and developed a branch and bound algorithm that is

capable of obtaining optimal solutions for the large instances with 100 jobs. We refer the reader

to Allahverdi et al. (2008) which provided a comprehensive review on scheduling problems with

numerous constraints and performance measures based on due date (makespan, tardiness etc.),
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setup time, (weighted) completion or delivery time of jobs and flowtime.

In the light of strengths and weaknesses of previous scheduling models developed in dif-

ferent framework, Sections 4.2.1, 4.2.2 and 4.2.3 elaborate on our modeling efforts on problem

described in Section 4.1.

4.2.1 Integer Programming (IP) Formulation

Before explaining the details of the IP, required notation to account for the key components of the

scheduling problem is given in Table 4.1.

Table 4.1: Notation

Sets
d ∈ D set of machines
t ∈ T set of consecutive time periods comprising the planning horizon
j ∈ J set of jobs
w ∈Wj set of restricted periods applicable to job j

Parameters
bw the beginning of restricted period w ∈Wj; j ∈ J
ew the end of restricted period w ∈Wj; j ∈ J
rd the operation rate of machine d ∈ D
q j the profit associated with job j ∈ J

t jd =
⌈

q j
rd

⌉
the time it takes for machine d ∈ D to complete job j ∈ J

t j j′ the time that it takes to move machine d ∈ D from job site j ∈ J to job site j′ ∈ J ( j 6= j′)
c j the cost for completing job j ∈ J
B the available budget for the planning horizon

Decision variables
yd j 1 if machine d is used to complete job j
zd jt 1 if machine d begins working on job j in period t
v makespan

Then, we introduce the mixed integer programming model (DS) as follows.

maximize ∑
j∈J

∑
d∈D

q jyd j
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subject to (DS)

∑
d∈D

yd j ≤ 1 j ∈ J (4.1)

∑
j∈J

∑
d∈D

c jyd j ≤ B (4.2)

∑
t∈T

zd jt = yd j j ∈ J; d ∈ D (4.3)

min{|T |,t+t jd+t j j′}

∑
t ′=t

zd j′t ′ ≤ 1− zd jt j ∈ J; j′ ∈ J; j 6= j′; d ∈ D; t ∈ T (4.4)

∑
d∈D

ew

∑
t=max{1,bw−t jd}

zd jt = 0 w ∈Wj; j ∈ J (4.5)

(
t + t jd

)
zd jt ≤ |T | j ∈ J; d ∈ D; t ∈ T (4.6)

yd j ≥ 0 d ∈ D; j ∈ J (4.7)

zd jt ∈ {0,1} d ∈ D; j ∈ J; t ∈ T (4.8)

The objective of the model is to maximize the total profit. Constraints (4.1) ensure that job

j is satisfied by at most one machine d, whereas constraint (4.2) states that the total cost incurred

by such assignment can not exceed the total budget. Constraints (4.3) require that if job j is sat-

isfied by machine d, exactly one start day for that work must be specified for that assignment.

Constraints (4.4) specify that if job j is started in period t, by machine d, then machine d can-

not begin another job, j′, until t j j′ + t jd periods have passed (i.e. the time to complete job j on

machine d plus the time to travel to job j′ from job j). Constraints (4.5) prevent a job from begin-

ning, or ending, on a day that overlaps with a restricted period. Constraints (4.6) ensure that if a

job is decided to be processed, the completion time should be before the end of the planning hori-

zon. Finally, constraints (4.7)-(4.8) specify the appropriate domain of each variable in the model.

The same problem where minimizing the makespan is the objective is also formulated in

(DS-M). In order to represent the fact that each job has to be processed by a single machine, the

assignment constraint is modified as in (4.9). Since the budget is not a concern anymore, con-
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straint (4.2) is not included in (DS-M). Finally, constraints (4.10) are used to enforce that the

makespan is greater than or equal to the maximum of job completion time.

minimize v

subject to (DS-M)

∑
d∈D

yd j = 1 j ∈ J (4.9)

v≥
(
t + t jd

)
zd jt j ∈ J; d ∈ D; t ∈ T (4.10)

(4.3), (4.4), (4.5), (4.7), (4.8)

v≥ 0 (4.11)

As with many integer programs, providing the exact optimal schedules for each machine

and for each job gets more challenging as the number of decision variables and constraints in-

crease. Given the difficulty in solving problems (DS) and (DS-M) in an IP context and the strengths

of CP in finding feasible solutions for highly constrained problems by global constraints and in-

terval variables, the next sections discuss the CP model formulation equivalent to (DS) and (DS-

M) and then discuss decomposition algorithms which enhance the competitive advantages of both

CP and IP.

4.2.2 Constraint Programming Approach

4.2.2.1 Search in Constraint Programming

The effectiveness of CP can be assessed by focusing on the constraint and variable definition

choices a modeler explores. Heipcke (1999) pointed out that CP models, in general, include

much more specific information about variables, constraints and the relationships between/among

them. Primarily this factor allows developing stronger and more efficient specialized solution

strategies for highly constrained complex problems. Conveying information between constraints
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and variables is made possible by constraint propagation (filtering) iterative processes of global

constraints. Each global constraint is associated with a propagation algorithm to remove the val-

ues of variables from their domains that prevent constraints from being feasible when they are

assigned to a variable (van Hoeve and Katriel, 2006; Hooker, 2006b). The propagation algorithm

of a constraint is run each time a change occurs on a variable (for instance a value is removed

form the domain). Since constraints are related to each other through shared variables, whenever

a change occurs on the domain of a shared variable due to the propagation algorithm of a con-

straint, the filtering algorithms of other constraints are also triggered to evaluate possible other

reductions in the domains of all variables (Lombardi and Milano, 2012; Harjunkoski and Gross-

mann, 2002; van Hoeve and Katriel, 2006). Once all possible reductions on domains are made

and a feasible solution has not been found, branching on a variable takes place. At this point, one

can see that addition of new constraints at any moment does not impact the current model or the

search since the propagation algorithms of the previous constraints will remain unchanged due to

incremental search (Focacci et al., 2002).

For further information on details of the search (branching rules, backtracking, dead end

etc.) in constraint programming, we refer the reader to Hooker (2002), Heipcke (1999), van Ho-

eve and Katriel (2006) and Hooker (2006b) which provide rich descriptions and clear differences

of search trees in details used in both ILP and CP.

4.2.2.2 Constraint Programming Models

In addition to the notation in Table 4.1, the following parameters and decision variables are used

in developing the CP formulation as well.

Parameters

• I( j) is the step function of job j ∈ J. That is I( j) = 0%, if the job j is not allowed to be

processed at time t such that bw ≤ t ≤ ew, I( j) = 100% otherwise.

• T D(t j j′) is the transition distance function between job j ∈ J and j′ ∈ J. It is used to inform
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other global constraints that the travel time between job pairs j and j′ should be at least t j j′ .

Decision variables

• Yjd , optional interval variable when job j ∈ J is assigned to machine d ∈ D with job dura-

tion of t jd;

• Yj = {Yj1,Yj2, . . . ,Y jD}, set of interval variables representing possible machine d ∈ D that

can be assigned to job j ∈ J;

• Yd = {Y1d,Y2d, . . . ,YJd}, set of interval variables representing possible jobs j ∈ J that can be

assigned to machine d ∈ D (interval sequence variable for d);

• Z j, optional interval variable associated with job j ∈ J.

An interval variable (IBM (2011)) is a powerful way of representing generic decision variables

of a scheduling problem. It addresses the time interval of a job that is being processed by explic-

itly assigning start and end times. One of its important features is that these variables can be op-

tional which enables modeling different assignment alternatives in combinatorial problems. For

instance, if an interval variable is optional and absent, it is not considered in the solution schedule

and its domain is left empty. Otherwise, if an optional interval variable is present, it implies that

it is considered in the solution and its domain should be filtered to a single value represented by

a start and end time. The status or Boolean value of an interval variable can be retrieved by using

the presenceOf(Interval Variable) constraint.

In light of the basic definition of an interval variable, the constraint programming formu-

lation of the parallel machine scheduling problem with maximizing total profit (CP-DS) is given

below.

maximize ∑
j∈J

q j presenceO f (Z j)
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subject to (CP-DS)

Alternative(Z j,Yj) j ∈ J (4.12)

Cumulative(Z j,c j,B) (4.13)

Cumulative(Z j,1, |D|) (4.14)

Z j.StartMin = 1 j ∈ J (4.15)

Z j.EndMax = |T | j ∈ J (4.16)

ForbidExtent(Z j, I( j)) j ∈ J (4.17)

NoOverlap(Yd,T D(t j j′)) d ∈ D (4.18)

The objective function of (CP-DS) seeks to maximize the total profit in a planning horizon. Con-

straints (4.12) ensure that each job can only be assigned to at most one machine. Alternative con-

straint enforces that if Z j is present in the solution, then one and only one of the Yj will be present

in the solution in order to make the assignment decision. Constraint (4.13) assures that the to-

tal cost of operations cannot exceed the budget. Cumulative constraint is used to model the re-

source usage over time and computed with the help of its elementary sub-functions such as Step,

Pulse, StepAtStart and StepAtEnd (IBM (2011)). StepAtStart(Z j) is used to increase the total

money spent on operations at the start of interval variable Z j by c j amount. Cumulative in con-

straint (4.13) is utilized for restricting total spending not to exceed the budget at any time. Sim-

ilarly, the Cumulative constraint and Pulse(Z j) function are used to make sure that total number

of occupied machines at any time can not exceed the fleet size (|D|) as in constraint (4.14) where

Pulse(Z j) increases and decreases the cumulative usage of fleet by one at the start and end of in-

terval variable Z j, respectively.

Constraints (4.15) and (4.16) set the minimum start time and maximum end time of each

job to the first and last day of the planning horizon, respectively. ForbidExtent constraint (4.17)

states that if interval variable Z j is present in the solution, it cannot overlap with the time inter-

vals where its step function is 0%.
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NoOverlap constraints (4.18) ensures that the interval sequence variable Yd which consists

of optional interval variables constitutes the order of the non-overlapping intervals for each ma-

chine d ∈ D. Moreover, it also has TransitionDistance function (T D(t j j′)) which puts a minimal

time (t j j′) to be maintained between the end of interval variable Yjd and the start of interval vari-

able Yj′d .

The following formulation (CP-DS-M) is the constraint programming formulation of the

parallel machine scheduling problem with a minimizing makespan objective. (CP-DS-M) is

equivalent to (DS-M).

minimize v

subject to (CP-DS-M)

v≥ EndO f (Z j) j ∈ J (4.19)

(4.12), (4.14), (4.15), (4.16), (4.17), (4.18)

The objective function of (CP-DS-M) seeks to minimize the maximum makespan represented

in constraints (4.19). Note that the budget constraint (4.13) is removed from the formulation. In

order to assure that each job is processed by a machine, we change Z j interval variables from

optional to compulsory. Therefore, constraints (4.12) ensure that only one member of the Yj will

be present in the solution since Z j must be in the solution.

4.2.3 Hybrid Modeling and Decomposition

A powerful aspect of ILP techniques is that the impacts of all constraints are evaluated simul-

taneously, and therefore it has a global perspective while the search tree is being explored (Ro-

dosek et al., 1999; Harjunkoski and Grossmann, 2002). On the other hand, CP propagation al-

gorithms explore the impacts of constraints sequentially through domain reduction of variables

(local perspective) (Jain and Grossmann, 2001). These two important features, global vs. local

perspectives, originate from the unique differences in defining models (constraints and variables)

with these two techniques. These differences have significant impact on the subsequent search
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procedures. The most important bottleneck that arises in the branch-and-bound search tree of

the ILP is when handling the integrality constraints. This ultimately might result in evaluating

an exponential number of combinations due to the number of subproblems. Furthermore, if the

initial gap between the objective value for the optimal solution and the initial relaxed linear sub-

problem is large, the effectiveness of ILP tends to degrade. In addition to the number of the con-

straints and variables, representation of complex relationships between/among variables and con-

straints can be a major difficulty in providing a concise model. This is because ILP can handle

only inequality and equality constraints which might be insufficient to represent real life con-

straints. On the other hand, such a strong restriction on constraint expression is minimized in CP

since application-based global constraints can be utilized which express complex relationships in

shorter ways. However, one needs to take care in selecting of global constraints since the qual-

ity and speed of the domain reduction process at each node depends on the filtering algorithm

running behind these global constraints. Since these propagation algorithms are called multiple

times during a search, inefficient algorithms might dramatically slow down the search process. It

should be remembered that not all global constraints have efficient constraint propagation engines

(Jain and Grossmann, 2001). Therefore, hybrid approaches aim to develop integrated methods to

merge the complementary strengths of ILP and CP to solve problems that are intractable using

either of these two methods alone. Modeling an entire problem in both the CP and ILP contexts is

referred to as double modeling. Milano (2004); Hooker (2002) and Focacci et al. (2002) explain

the advantages and disadvantages of this formulation technique in detail.

More recently, Benders decomposition and Branch & Price algorithms have shown to be

very effective when reformulated in a hybrid CP and ILP framework. In the Branch & Price algo-

rithm, the master problem and subproblem are formulated as ILP and CP respectively (Topaloglu

and Ozkarahan, 2011; He and Qu, 2012). Using CP as a column generator takes advantage of

CP’s flexibility to formulate complex relationships that might occur in pricing problems (Hooker,

2006a). Similarly, the classic Benders decomposition master problem is formulated as an ILP and

resolved with the Benders cuts generated from the CP formulated subproblems (Hooker, 2006a,

101



2007b; Jain and Grossmann, 2001).

4.2.3.1 Benders Decomposition: IP/CP Integration

We observe that (CP-DS-M) produces good solutions within a reasonable computational time as

shown in Section 4.4. Although (CP-DS) provides feasible solutions for all instances, it fails to

report the optimal solution within a specified time limit. In order to overcome this weakness, we

propose two novel logic-based Benders decomposition algorithms based on problem formula-

tions (DS) and (CP-DS). Section 4.4 contains results that document the differences between all

approaches.

Hooker (2007b) states that classical Benders decomposition (Benders, 1962) is not appro-

priate for highly combinatorial problems such as scheduling, because it enforces subproblems

to be continuous linear or nonlinear programming problems. Therefore, recent studies have fo-

cused on implementing logic-based Benders decomposition in which subproblems are discrete

feasibility problems and solved to generate Benders cuts. All generated Benders cuts are added

to the master ILP problem. After the master problem is solved to optimality, all subproblems are

solved and produced cuts are placed in the cut set. If the master problem is solved to optimality

and all subproblems are feasible, the solution is optimal to the global problem. However, if there

is at least one infeasible subproblem, corresponding cuts are added to the cut set, and the master

problem is called to perform the next iteration of the logic-based Benders algorithm.

Given the competitive advantage of ILP in proving optimality through linear relaxation, the

objective function of the problem is modeled in the master problem of logic-based Benders de-

composition (M1-DS) which contains assignment (4.20), budget (4.21) constraints and Benders

cuts (4.22).

maximize ∑
j∈J

q j

(
∑

d∈D
yd j

)
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subject to (M1-DS)

∑
d∈D

yd j ≤ 1 j ∈ J (4.20)

∑
j∈J

c j

(
∑

d∈D
yd j

)
≤ B (4.21)

∑
j∈Hk

d

yd′ j ≤ |Hk
d |−1 d′ ∈ D̄d; k = {1,2, . . . ,K−1} (4.22)

yd j ∈ {0,1} d ∈ D; j ∈ J

Note that (M1-DS) has no impact on the scheduling and sequencing decisions of jobs with re-

spect to the machine they are assigned to. Therefore, we need to solve |D| independent subprob-

lems to check if the assignments made by (M1-DS) are feasible or not. Hence, let Hk
d = { j|yk

d j =

1} be the set of jobs j ∈ J that are assigned to machine d ∈ D at kth iteration and define A jd and

Ād as the compulsory (not optional) interval variable associated with job j and machine d and

interval sequence variable for machine d ∈ D respectively. Then, the following feasibility prob-

lem (without an objective function) is formulated in the CP context and solved for each machine

d in order to make specific scheduling and sequencing decisions with respect to restricted periods

and travel times between jobs.

(S1-DS: Subproblem for each d ∈ D)

NoOverlap(Ād, t j j′)

A jd.StartMin = 1 j ∈ Hk
d

A jd.EndMax = |T | j ∈ Hk
d

ForbidExtent(A jd, I( j)) j ∈ Hk
d

Cumulative(A jd,1,1)

Note that if (S1-DS) is feasible for each machine, the solution for both master and subprob-

lems will be the optimal solution to the overall problem. Otherwise, a “Benders cut ” will be gen-
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erated for each machine where the jobs assigned to it could not be scheduled successfully. Such

cuts are first offered by Hooker et al. (1999) and referred as “no good” and later used by Jain and

Grossmann (2001) on a parallel machine scheduling problem. These studies report a significant

decrease in solution times when logic based Benders decomposition is applied with “no good”

when compared to pure CP or ILP formulations. However, “no good” is demonstrated to be not

strong enough to handle scheduling problems.

Assume that jobs in Hk
d are not successfully completed by machine d. Also let D̄d = {d′|rd′ ≤

rd, d,d′ ∈ D ,d 6= d′} be the set of machine operation rates which are less than or equal to the op-

eration rate of d ∈ D. Then, following cuts are formed;

∑
j∈Hk

d

yd j ≤ |Hk
d |−1 (4.23)

∑
j∈Hk

d

yd′ j ≤ |Hk
d |−1 d′ ∈ D̄d. (4.24)

Note that “no good” (4.23) can be satisfied by omitting just one job from the set Hk
d in later itera-

tions. Moreover, constraints (4.23) cannot prevent assigning same jobs in Hk
d to another machine

d′ ∈ D̄d . In order to prevent this, we developed the cuts in (4.24). Thus, if the subproblem for

machine d at iteration k is infeasible, then inequalities (4.24) are added to (M1-DS) to enforce

that all jobs in Hk
d cannot be assigned to machines d′ ∈ D̄d for the later iterations. Note that such

inequalities cut off several assignment combinations which might only be revealed by several

branching/propagation/instantiation operations in a CP search when the whole problem is ap-

proached by a CP formulation. Moreover, since subproblems are solved independently in this

decomposition approach, it is easy to identify which subproblem, therefore machine, produces

infeasible solutions under which assignment scheme. The size of the master problem increases as

the the algorithm generates cuts. However, the size of each subproblem cannot exceed the total

number of jobs, |J|. As a consequence, if the optimal solution is not obtained in early iterations

of the algorithm, the time required for solving (M1-DS) to optimality will increase significantly.

In order to lessen the intensity of the Benders cut added to (M1-DS), we developed a second
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logic-based Benders decomposition algorithm. The master and subproblem of this alternative

approach are given below as (M2-DS) and (S2-DS) respectively.

maximize ∑
j∈J

q jx j

subject to (M2-DS)

∑
j∈J

c jx j ≤ B (4.25)

∑
j∈Gk

x j ≤ |Gk|−1 k = {1,2, . . . ,K−1} (4.26)

x j ∈ {0,1} j ∈ J

where x j is 1 if job j is completed by any machine, 0 otherwise and Gk = { j|xk
j = 1} is the set of

jobs that are decided to be processed at iteration k. Similar to (M1-DS), the objective function is

to maximize the total profit subject to budget constraint (4.25) and Benders cuts (4.26). Note that

(M2-DS) is a binary knapsack problem without the Benders cuts. Since assignment decisions are

not made by (M2-DS), they have to be handled in (S2-DS) through optional interval variables.

Hence, let Yjd be the optional interval variable when job j ∈ Gk is assigned to machine d ∈ D at

iteration k and Yd be the interval sequence variable for machine d ∈ D. Therefore, we can write

the subproblem as

(S2-DS)

Alternaive(Z j,Yj) j ∈ Gk (4.27)

Z j.StartMin = 1 j ∈ Gk (4.28)

Z j.EndMax = |T | j ∈ Gk (4.29)
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ForbidExtent(Z j, I( j)) j ∈ Gk (4.30)

NoOverlap(Yd, t j j′) d ∈ D (4.31)

Cumulative(Z j,1, |D|) j ∈ Gk (4.32)

where Z j is the compulsory interval variable for job j ∈ Gk and Yj = {Yj1,Yj2, . . . ,YjD} is the set

of interval variables Y jd for each j ∈ Gk. Similar to problem (CP-DS), (S2-DS) controls the job

assignments to machines. However, in this case, Z j is a compulsory interval variable that must be

present in the solution because M2-DS determines the set of jobs that must be processed. There-

fore, constraints (4.27) assure that each job j ∈ Gk is processed by exactly one machine. Con-

straints (4.28) and (4.29) enforce that each job must be started and finished within the given plan-

ning horizon. Moreover, constraints (4.30) forbid the restricted periods of each job j ∈ Gk rep-

resented by intensity function (I( j)) overlapping with its processing time. Similarly, constraints

(4.31) make sure that machine d cannot operate while traveling between jobs j and j′ such that

j, j′ ∈ Gk and j 6= j′. Finally, (4.32) is an additional constraint to strengthen the formulation by

ensuring that the total number of machines in operation cannot exceed the fleet size at any given

time. Note that there are only two problems that need to be solved at each iteration in the sec-

ond Benders decomposition algorithm. However, the size of subproblem (S2-DS) is significantly

larger than the ones represented by (S1-DS). Performance of these two algorithms are evaluated

in Section 4.4.

4.3 Case Study: Optimizing Inland Waterway Infrastructure Maintenance for Supply Chain
Operations

Each year the U.S. Army Corps of Engineers (USACE) dredges hundreds of navigation projects

through its fleet of government dredges and individual contracts with private industry. The de-

cision of assigning dredge resources (government and private industry) to navigation projects

is predominately made regionally by awarding the contract to the lowest cost bid that meets the

scheduling demands of the dredge job. Most likely, efficiencies can be gained by optimizing
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the entire portfolio of dredging jobs. The proposed models and solution approaches in Section

4.2 are used to optimize the decision of allocating dredge resources to projects under neces-

sary constraints such as environmental windows, dredge resource cost and availability, and se-

quence dependent travel times. Using these approaches, sensitivity analysis on resource levels are

performed in order to demonstrate under which circumstances USACE can complete the entire

dredging portfolio while achieving compliance and desired system performance.

A specific challenge investigated in this study is the concept of environmental window re-

strictions. The USACE describes environmental windows as temporal constraints placed upon

dredged material disposal operations in order to protect biological resources or their habitats

from potentially detrimental effects (Dickerson et al. (I998)). The USACE has documented an in-

crease in total dredging cost without a proportionate increase in total volume of material dredged

(Pointon, 1996). Dickerson et al. (I998) stated that a widely-held explanation for this increase

in dredging costs is system inefficiencies associated with environmental window compliance. In

order to be compatible with the related model constraints, we define restricted periods for each

environment window.

Dredge fleet scheduling and sequencing optimization is challenging due to the highly vari-

able and uncertain feature of natural processes, engineering capacity, dredging operations and

economic conditions (Ratick and Garriga, 1996). Despite its difficulty level, risk and reliability

based dredging optimization papers (see Ratick and Garriga (1996); Menon and Lansey (1990);

Lund (1990)) are frequently seen in the literature that model the volatile river and environmen-

tal situations that influence dredging operations at a specific project or reach level. The solution

techniques in this study provide a system wide optimization perspective which can efficiently and

effectively use resources across the entire dredging project portfolio.

Historical USACE dredge project data collected between 1997 and 2011 was utilized to

parameterize the model. The data was provided by the Corps Dredging Information System, and

a total of 116 unique channel maintenance dredging jobs were identified as seen in Figure 4.1.

Table 4.1 demonstrates the descriptive statistics of the model input parameters such as volume of
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jobs (q j), cost of jobs (c j), length of restricted periods (ew− bw) and production rate of dredge

vessels (rd). Since the USACE cannot currently afford to meet all the dredging requests, we set

the available budget (B) to 75% of the total cost of the 116 jobs. A from-to distance matrix was

constructed by using a GIS layer to compute travel distance on the waterways between prospec-

tive dredge project locations. Then, the travel (setup) time between each job pair is calculated by

assuming the velocity of a dredge vessel is 50 miles per day.

Table 4.1: Descriptive Statistics of Input Parameters

Average Minimum Maximum St. Dev.
q j (cubic yards) 416427.4 4376.4 5413965.0 705142.0
c j $1,922,517.34 $46,440.77 $14,477,345.28 $2,455,009.14
ew−bw (days) 144.6 30.0 275.0 71.5
rd (cubic yards per day) 14636.7 1237.7 66418.0 14584.4

Figure 4.1: Graphical Depiction of 116 Dredge Project Locations

We identified 130 distinct restricted periods across the 116 jobs that are time windows

when dredging is not permitted at certain job locations due to environmental concerns. Note that
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some jobs may have none, one or multiple restricted periods. Production rates of dredge vessels

in Table 4.1 reflect a historical statistical average of multiple dredging projects.

Table 4.2: Experiment Design

|J| Number of RPs |D| Job Size (q j) Vessel Type

32 36 10, 15, 20, 25, 30
Original (O)
Random (R)

Fastest (F)
Random (R)
Slowest (S)

57 63 10, 15, 20, 25, 30
Original (O)
Random (R)

Fastest (F)
Random (R)
Slowest (S)

116 130 10, 15, 20, 25, 30
Original (O)
Random (R)

Fastest (F)
Random (R)
Slowest (S)

Table 4.2 demonstrates the properties of 90 problem instances that were used to measure

the performance of the solution techniques described in Section 4.2. The first (|J| = 32) and sec-

ond (|J| = 57) sets of jobs do not have any common dredge projects; whereas, the final job set

(|J| = 116) includes all job locations and restricted periods. For each problem instance, we either

select the fastest, slowest or randomly picked distinct dredge vessels to build the fleet from a 40

vessel fleet. We also generate job sizes while keeping all other parameters constant with respect

to a discrete uniform distribution in a range of [10K,2M]. Thus, “32-36-10-O-F” stands for the

problem instance with 32 jobs with Original job sizes, 36 restricted periods and the Fastest 10

dredge vessels of the fleet.

4.4 Computational Results

The parallel machine scheduling problem formulations in Section 4.2 are modeled in IBM ILOG

CPLEX Optimization Studio 12.3 (IBM, 2011) which uses IBM ILOG CPLEX 12.3 to solve ILP,

IBM ILOG CP Optimizer 12.3 to solve CP and both to solve logic based Benders algorithms.

All formulations are modeled in C++ programming language. IBM ILOG Concert Technology

is utilized for embedding the formulations in C++ language into IBM ILOG CPLEX and CP Op-

timizer. We run all test problems on a Core 2 Duo 2.93 GHz, 16 GB RAM computer. We create

and solve the master problems from scratch with the updated Benders cuts at each iteration.
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As mentioned before, we observe that for a medium size problem instance (|D| = 10 and

|J| = 32), CPLEX cannot even begin to solve the (DS) and (DS-M) models presented in Section

4.2.1 due to the memory insufficiency. Therefore, we do not report any experiment results for

models (DS) and (DS-M). Table 4.A.1 shows computational results obtained by solving the prob-

lem (CP-DS) and Benders decompositions algorithms (Benders 1 and 2). Note that (CP-DS) is

able to report at least a feasible solution to all instances within a 30 minute time limit. Similarly,

Benders 1 and 2 also terminate the search when the solution time reaches 30 minutes or the num-

ber of iterations is equal to 200. As seen in Table 4.A.1, decomposition algorithms are shown to

be more efficient in proving optimality and effective in providing more optimal solutions within

a reasonable amount of time and allowed iteration limit. Further statistics on the type of the final

solution obtained by each method can be seen in Table 4.1. Although the Benders 1 algorithm in-

creases the number of optimal solutions identified by CP for the problem instances with |J| = 32

and |J| = 57, it is outperformed by Benders 2 in terms of number of optimal solutions except for

the problem instances with |J| = 32 and original job sizes. Moreover, Benders 2 is able to pro-

duce optimal solutions for the largest dataset with |J| = 116 while Benders 1 and (CP-DS) fail

to provide any. Overall, 37 of the 45 problem instances with original job sizes and 22 out of 45

problem instances with randomly generated job sizes are solved to optimality by one of our meth-

ods and for the rest of them, (CP-DS) terminates with at least a feasible solution.

The reason that Benders 2 outperforms Benders 1 (and also (CP-DS)) in terms of finding

optimal solutions for the problem instances with |J| = 116 is that as the number of projects in-

creases, the Benders cuts (4.24) throughout the iterations increase the size of the master problem

(M1-DS) of Benders 1 which eventually leads to large computation times. Hence, the time or it-

eration limit is reached before generating the essential cuts required to find the optimal solution.

Benders 2, on the other hand, has a relatively larger subproblem compared to the ones in Benders

1 but it has a master problem with less constraints. One can assume that proving that the sub-

problem (S2-DS) of Benders 2 is feasible or infeasible requires larger computation time since it

handles the assignment decisions for all dredge vessels as opposed to checking feasibility of each
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Table 4.1: Number of Optimal (O), Feasible (F) and Infeasible (I) Solutions

q j CP Benders 1 Benders 2 Overall
O

ri
gi

na
l

|J| O F I O F I O F I O F I
32 4 11 0 12 0 3 9 0 6 14 1 0
57 1 14 0 7 0 8 11 0 4 14 1 0
116 0 15 0 0 0 15 9 0 6 9 6 0
Av. Time 1.68 1800 - 543 - 1425 1.03 - 258 - - -
Av. Itrs. - - - 95 - 177 1 - 200 - - -

D
U

(1
0K

,2
M

) |J| O F I O F I O F I O F I
32 2 13 0 5 0 10 6 0 9 10 5 0
57 1 14 0 1 0 14 9 0 6 10 5 0
116 0 15 0 0 0 15 2 0 13 2 13 0
Av. Time 0.78 1800 - 846 - 1241 1.46 0 584 - - -
Av. Itrs. - - - 121 - 190 1 0 157 - - -
Total 8 82 0 25 0 65 46 0 44 59 31 0

dredge vessel in a separate problem in (S1-DS). The results in Tables 4.A.1 and 4.1 suggest that

solving (S2-D2) does not require more computational time since the iteration limit is generally

the termination criteria in most problem instances. When the iteration upper limit or time limit is

not reached, Benders 2 is able to explore the optimal solution in at most one iteration. This sit-

uation exemplifies the high efficiency of CP in obtaining feasible/infeasible solutions for highly

constrained problems.

In order to assess the quality of the feasible solutions obtained by (CP-DS) for the problem

instances that are solved to optimality, we calculate the optimality gap % such that

Optimality Gap % = 100∗
(

Optimal Objective−CP Objective
Optimal Objective

)
.

Figure 4.1 plots the optimality gap of (CP-DS) for the problem instances that are solved to op-

timality by at least one of the methods. An interesting observation is that there are 31 problem

instances with 0% optimality gap. This means that CP is able to explore 31 optimal solutions

but it is only able to prove the optimality of eight of them as listed in Table 4.A.1. Figure 4.1

also shows that the quality of the feasible solutions obtained by (CP-DS) is impressive since the

largest optimality gap of (CP-DS) is 3%.
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Figure 4.1: Optimality Gap of (CP-DS)

For the problem instances that are not solved to optimality, the gap between feasible (CP-

DS) solution and the last infeasible solutions of the Benders algorithms increases dramatically as

the job size increases. However, these gaps are smaller between Benders 1 and (CP-DS) than the

ones between Benders 2 and (CP-DS). This is because the cuts generated in Benders 1 convey the

restrictions on job assignments to dredge equipments to the master problem whereas the cuts in

Benders 2 only restricts whether to process a job or not and do not inform the master problem on

further infeasible assignments. Therefore, Benders 1 is able to prevent the infeasible job assign-

ments to specific dredge equipments for further iterations. However, this advantage is not good

enough to provide more optimal solutions than Benders 2 as highlighted in Table 4.1.

The results obtained by the (CP-DS-M) model to minimize the makespan on problem in-

stances in Table 4.2 are listed in Table 4.2. The minimum makespan (v) value found within 30

minutes time limit is reported if the problem is not infeasible (I). Furthermore, total dredge, travel

and idle days are illustrated for each problem instance. Note that CP is able to identify the opti-

mal solutions for the problem instances that are not infeasible within the time limit. Especially

for problem instances with |J| = 116, most of the problems are proven to be infeasible in a very
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short time, and in the ones that are feasible, the optimal solutions are obtained. The largest solu-

tion time is 166.99 seconds for the problem instances that are solved to optimality by (CP-DS-M)

model. The only time CP could not prove optimality is for the problem instance “57-15-63-R-R”.

Other highlighted problem instances for which CP reaches the time limit are the ones where a

feasible solution is not identified within 30 minutes. Total travel, dredge and idle time of the fleet

for each problem instance can be seen in Table 4.2. Idle time reported in Table 4.2 only accounts

for the idle time of a dredge vessel that handles at least one project. If a dredge vessel has no jobs

assigned to it, it can be removed from the fleet and assigned to some other operations. Also, the

calendar days before and after a particular dredge is utilized are not reported as idle time.
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4.5 Concluding Remarks

In this study, we discuss the advantages and disadvantages of three modeling approaches for the

parallel machine scheduling problem with sequence dependent setup times, time windows, dis-

similar dredge equipments and non-identical job durations. We propose three different solution

methods: (i) integer programming, (ii) constraint programming, and (iii) logic-based Benders

decomposition algorithms to approach this problem with a maximizing total profit objective func-

tion. We also propose a CP formulation for the same problem with a minimizing makespan objec-

tive function.

We prepare real-life test instances in collaboration with the USACE to be able to opti-

mize the inland waterway infrastructure maintenance operations to make the waterways navi-

gable for the supply chain activities. For most of the problem instances, we observe that the two

proposed Benders algorithms are much more efficient and effective than either pure ILP or CP.

Collectively, CP and Benders 1 and 2 are able to obtain 59 optimal solutions out of 90 problem

instances with original and randomly generated job sizes (q j ∼ DU(10K,2M)). Based on our fur-

ther computational experiments, we observe that the number of optimal solutions for the 45 prob-

lem instances with randomly generated job sizes (q j ∼ DU(10K,4M)) decreases to 10, whereas

the number of optimal solutions for the problem instances with the original job sizes remains at

the same level (37).

We also develop the (CP-DS-M) model for the same problem with a minimizing makespan

objective. The computational results show that it has the capability of achieving optimal solutions

in a very short time unless the problem is infeasible. Infeasible problems are also detected in a

reasonable amount of time. For this purpose, possible decomposition algorithms for the same

problem with minimizing makespan objective are not considered.
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Appendix

4.A Detailed Experiment Results for the Problem with Maximizing Profit Objective

Problem
(CP-DS) Benders 1 Benders 2

Time Status Time Iteration Status Time Iteration Status
32-10-36-O-F 1800 F 485.9 200 I 0.8 1 O
32-10-36-O-R 1800 F 514.1 200 I 234.6 200 I
32-10-36-O-S 1.007 O 431.3 153 O 225.3 200 I
32-10-36-R-F 1800 F 524.5 200 I 0.9 1 O
32-10-36-R-R 1800 F 611.4 200 I 236.3 200 I
32-10-36-R-S 0.776 O 559.1 200 I 235.4 200 I
32-15-36-O-F 1800 F 114.4 39 O 0.8 1 O
32-15-36-O-R 1800 F 57.0 20 O 0.8 1 O
32-15-36-O-S 1.041 O 1057.5 200 I 236.3 200 I
32-15-36-R-F 1800 F 810.2 200 I 0.9 1 O
32-15-36-R-R 1800 F 760.0 200 I 237.2 200 I
32-15-36-R-S 0.848 O 940.1 200 I 234.6 200 I
32-20-36-O-F 1800 F 341.3 80 O 0.8 1 O
32-20-36-O-R 1800 F 182.5 47 O 0.7 1 O
32-20-36-O-S 0.686 O 1087.4 189 O 234.5 200 I
32-20-36-R-F 1800 F 848.1 152 O 0.9 1 O
32-20-36-R-R 1800 F 824.1 200 I 236.4 200 I
32-20-36-R-S 1800 F 1232.1 200 I 236.8 200 I
32-25-36-O-F 1800 F 320.5 84 O 0.8 1 O
32-25-36-O-R 1800 F 149.3 38 O 0.8 1 O
32-25-36-O-S 1.111 O 220.4 50 O 234.9 200 I
32-25-36-R-F 1800 F 349.3 68 O 0.9 1 O
32-25-36-R-R 1800 F 1006.2 200 I 236.7 200 I
32-25-36-R-S 1800 F 843.0 137 O 234.8 200 I
32-30-36-O-F 1800 F 451.1 71 O 0.8 1 O
32-30-36-O-R 1800 F 178.6 41 O 0.8 1 O
32-30-36-O-S 1800 F 421.9 64 O 238.0 200 I
32-30-36-R-F 1800 F 959.9 123 O 1.0 1 O
32-30-36-R-R 1800 F 1283.7 200 I 0.9 1 O
32-30-36-R-S 1800 F 880.3 107 O 260.4 200 I
57-10-63-O-F 1800 F 1014.2 200 I 1.0 1 O
57-10-63-O-R 1800 F 1552.7 200 I 1.0 1 O
57-10-63-O-S 4.24 O 1800.0 126 I 305.8 200 I
57-10-63-R-F 1800 F 737.2 200 I 1.3 1 O
57-10-63-R-R 1800 F 575.2 200 I 387.3 200 I
57-10-63-R-S 0.715 O 673.5 200 I 249.5 200 I
57-15-63-O-F 1800 F 135.8 35 O 0.9 1 O
57-15-63-O-R 1800 F 1800.0 14 I 0.9 1 O
57-15-63-O-S 1800 F 1515.1 200 I 271.9 200 I
57-15-63-R-F 1800 F 1353.3 200 I 1.2 1 O
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Problem
(CP-DS) Benders 1 Benders 2

Time Status Time Iteration Status Time Iteration Status
57-15-63-R-R 1800 F 955.8 200 I 2.9 1 O
57-15-63-R-S 1800 F 1083.5 200 I 226.0 200 I
57-20-63-O-F 1800 F 1419.6 200 I 1.2 1 O
57-20-63-O-R 1800 F 1037.4 200 I 0.5 1 O
57-20-63-O-S 1800 F 1166.0 144 O 272.7 200 I
57-20-63-R-F 1800 F 1124.4 200 I 1.2 1 O
57-20-63-R-R 1800 F 1048.6 200 I 0.7 1 O
57-20-63-R-S 1800 F 1494.1 200 I 143.8 200 I
57-25-63-O-F 1800 F 314.3 110 O 0.6 1 O
57-25-63-O-R 1800 F 1010.9 200 I 0.6 1 O
57-25-63-O-S 1800 F 1682.5 200 O 273.3 200 I
57-25-63-R-F 1800 F 1036.4 200 I 0.8 1 O
57-25-63-R-R 1800 F 1282.5 200 I 1.0 1 O
57-25-63-R-S 1800 F 1800.0 161 I 253.5 200 I
57-30-63-O-F 1800 F 1074.8 177 O 1.0 1 O
57-30-63-O-R 1800 F 477.8 72 O 0.9 1 O
57-30-63-O-S 1800 F 1510.1 190 O 1.0 1 O
57-30-63-R-F 1800 F 1198.7 140 O 1.3 1 O
57-30-63-R-R 1800 F 1448.6 200 I 0.9 1 O
57-30-63-R-S 1800 F 1800.0 150 I 256.4 200 I

116-10-130-O-F 1800 F 1021.5 200 I 1.1 1 O
116-10-130-O-R 1800 F 1130.1 200 I 291.1 200 I
116-10-130-O-S 1800 F 899.3 200 I 287.0 200 I
116-10-130-R-F 1800 F 819.9 200 I 1800.0 2 I
116-10-130-R-R 1800 F 832.6 200 I 308.4 200 I
116-10-130-R-S 1800 F 881.1 200 I 305.7 200 I
116-15-130-O-F 1800 F 1800.0 191 I 1.7 1 O
116-15-130-O-R 1800 F 1796.9 200 I 1.6 1 O
116-15-130-O-S 1800 F 1663.5 200 I 288.6 200 I
116-15-130-R-F 1800 F 1732.1 200 I 1800.0 2 I
116-15-130-R-R 1800 F 1463.3 200 I 312.5 200 I
116-15-130-R-S 1800 F 1605.4 200 I 312.5 200 I
116-20-130-O-F 1800 F 1800.0 182 I 1.6 1 O
116-20-130-O-R 1800 F 1800.0 177 I 1.6 1 O
116-20-130-O-S 1800 F 1800.0 177 I 290.3 200 I
116-20-130-R-F 1800 F 1800.0 194 I 1800.0 2 I
116-20-130-R-R 1800 F 1800.0 183 I 1800.0 2 I
116-20-130-R-S 1800 F 1800.0 189 I 173.1 200 I
116-25-130-O-F 1800 F 1359.2 200 I 0.9 1 O
116-25-130-O-R 1800 F 1577.0 200 I 1.0 1 O
116-25-130-O-S 1800 F 1800.0 185 I 165.1 200 I
116-25-130-R-F 1800 F 1691.4 200 I 5.9 1 O
116-25-130-R-R 1800 F 1800.0 191 I 1800.0 2 I
116-25-130-R-S 1800 F 1800.0 159 I 175.5 200 I
116-30-130-O-F 1800 F 1800.0 148 I 1.9 1 O
116-30-130-O-R 1800 F 1800.0 50 I 1.8 1 O
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Problem
(CP-DS) Benders 1 Benders 2

Time Status Time Iteration Status Time Iteration Status
116-30-130-O-S 1800 F 1800.0 144 I 292.1 200 I
116-30-130-R-F 1800 F 1800.0 149 I 2.4 1 O
116-30-130-R-R 1800 F 1800.0 133 I 1800.0 2 I
116-30-130-R-S 1800 F 1800.0 127 I 311.4 200 I

Table 4.A.1: Experiment Results for the Problem with Maximizing Profit Objective
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5. CONCLUSION

In this dissertation, we propose novel solution approaches for two real life and highly complex

scheduling problems. We first introduced a patient scheduling problem with deterministic pa-

tient arrivals to the proton therapy facility in Chapter 2. Single and multi-criteria linear program-

ming models were proposed in order to assess the impacts of several operational restrictions. A

notable feature of these models was ability to account for the deviation from a predetermined

strategic level patient mix restrictions for each patient category, which has received little attention

in the literature. We exploited the mathematical structures of the model with strict patient mix

constraints and derived analytical equations for the optimal solution under several operational re-

strictions. These efforts led to a set of rule of thumbs that can be utilized to assess the impacts of

several input parameters and patient mix levels on the capacity utilization without solving opti-

mization problems. We also explored the necessary and sufficient conditions in order to be able

to generate efficient frontiers of the bicriteria problem without any additional side constraint an-

alytically. The computational study of our algorithm, which relies on parametric perturbation

analysis and optimal solution characteristics, demonstrated the efficiency gains in solving this

problem by our approach. A brief discussion regarding the possible ways of analytically generat-

ing efficient frontiers for the same problem with some of the side constraints was provided.

In Chapter 3, we investigated possible solution techniques to the patient scheduling prob-

lem introduced in Chapter 2 with stochastic patient arrivals. We proposed an MDP model that

seeks to obtain the best patient admission policies while maximizing the total expected number of

treatment sessions and penalizing the deviation from the patient mix restrictions. It provided very

useful insights in determining the best patient admission policies in the case of an unexpected

opening in the facility (i.e. no-shows, appointment cancellations etc.). However, our numerical

experiments illustrated that the MDP state space grows exponentially and it becomes computa-

tionally intractable as the size of input parameters (number of available time slots, patient cate-

gories etc.) increases. Thus, we developed an aggregate MDP model that is able to approximate

optimal patient admission policies by fixed-weight aggregation technique. Our further experi-
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ments revealed that it is capable of obtaining high quality executable approximate policies for the

realistic problem instances.

Finally, in Chapter 4, we dealt with a different version of the parallel machine scheduling

problem with sequence dependent setup times and time windows. We studied this problem with

two different objective functions: (i) maximizing the total reward achieved and (ii) minimizing

the makespan. For a given time horizon, our objective is to find the best assignment scheme of

nonidentical jobs to dissimilar machines. In addition, we accounted for the sequence dependent

setup time in between consecutive jobs assigned to the same machine and (multiple) restricted

time periods. We realized that the proposed ILP model fails to solve even very small problem in-

stances. Thus, we developed pure CP models for the same problem with two different objectives.

Our computational efforts demonstrated that the pure CP performs very well on the problem with

minimizing makespan objective. However, although it finds feasible solutions very quickly for

the problem with maximizing total profit objective, it fails to terminate with the optimal solution

on most of the instances. In order to address this issue, we developed two different novel logic-

based Benders decomposition algorithms that are capable of locating more optimal solutions.
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