19,255 research outputs found

    Scale-free topology optimization for software-defined wireless sensor networks: A cyber-physical system

    Get PDF
    Due to the limited resource and vulnerability in wireless sensor networks, maximizing the network lifetime and improving network survivability have become the top priority problem in network topology optimization. This article presents a wireless sensor networks topology optimization model based on complex network theory and cyber-physical systems using software-defined wireless sensor network architecture. The multiple-factor-driven virtual force field and network division–oriented particle swarm algorithm are introduced into the deployment strategy of super-node for the implementation in wireless sensor networks topology initialization, which help to rationally allocate heterogeneous network resources and balance the energy consumption in wireless sensor networks. Furthermore, the preferential attachment scheme guided by corresponding priority of crucial sensors is added into scale-free structure for optimization in topology evolution process and for protection of vulnerable nodes in wireless sensor networks. Software-defined wireless sensor network–based functional architecture is adopted to optimize the network evolution rules and algorithm parameters using information cognition and flow-table configure mode. The theoretical analysis and experimental results demonstrate that the proposed wireless sensor networks topology optimization model possesses both the small-world effect and the scale-free property, which can contribute to extend the lifetime of wireless sensor networks with energy efficiency and improve the robustness of wireless sensor networks with structure invulnerability

    EEHC: Event-driven Energy Optimization in Heterogeneous Clustered Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are used in various applications worldwide. Large numbers small sized, inexpensive, low-powered sensor nodes are deployed in the target field to monitor or track particular objects. Sensor nodes have limited energy and computation capability. Energy optimization is an important task should be performed to improve the lifetime of the wireless sensor networks. Many researches focus only on continuous delivery model. This paper proposed energy efficient event-driven heterogeneous clustered wireless sensor network (EEHC) system. The results show that the proposed system reduced the energy consumption and longer lifetime than its comparatives

    Fast and Efficient Data Collection in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks utilize large numbers of wireless sensor nodes to collect information from their sensing terrain. Wireless sensor nodes are battery-powered devices. Energy saving is always crucial to the lifetime of a wireless sensor network. Recently, many algorithms have been proposed to tackle the energy saving problem in wireless sensor networks. In these algorithms, however, data collection efficiency is usually compromised in return for gaining longer network lifetime. There is a strong need to develop wireless sensor network algorithms with optimization priorities biased to aspects besides energy saving. In this paper, a fast and efficient data collection network structure for wireless sensor networks is proposed. The objective of the proposed network structure is to minimize delays in the data collection processes of wireless sensor networks. We give a logical overview of proposed model by a taking example of sensor network having many nodes and try to form a network structure in it

    Optimal Coverage in Wireless Sensor Network using Augmented Nature-Inspired Algorithm

    Get PDF
               One of the difficult problems that must be carefully considered before any network configuration is getting the best possible network coverage. The amount of redundant information that is sensed is decreased due to optimal network coverage, which also reduces the restricted energy consumption of battery-powered sensors. WSN sensors can sense, receive, and send data concurrently. Along with the energy limitation, accurate sensors and non-redundant data are a crucial challenge for WSNs. To maximize the ideal coverage and reduce the waste of the constrained sensor battery lifespan, all these actions must be accomplished. Augmented Nature-inspired algorithm is showing promise as a solution to the crucial problems in “Wireless Sensor Networks” (WSNs), particularly those related to the reduced sensor lifetime. For “Wireless Sensor Networks” (WSNs) to provide the best coverage, we focus on algorithms that are inspired by Augmented Nature in this research. In wireless sensor networks, the cluster head is chosen using the Diversity-Driven Multi-Parent Evolutionary Algorithm. For Data encryption Improved Identity Based Encryption (IIBE) is used.  For centralized optimization and reducing coverage gaps in WSNs Time variant Particle Swarm Optimization (PSO) is used. The suggested model's metrics are examined and compared to various traditional algorithms. This model solves the reduced sensor lifetime and redundant information in Wireless Sensor Networks (WSNs) as well as will give real and effective optimum coverage to the Wireless Sensor Networks (WSNs)

    Swarm intelligence–based energy efficient clustering with multihop routing protocol for sustainable wireless sensor networks

    Get PDF
    © The Author(s) 2020. Wireless sensor network is a hot research topic with massive applications in different domains. Generally, wireless sensor network comprises hundreds to thousands of sensor nodes, which communicate with one another by the use of radio signals. Some of the challenges exist in the design of wireless sensor network are restricted computation power, storage, battery and transmission bandwidth. To resolve these issues, clustering and routing processes have been presented. Clustering and routing processes are considered as an optimization problem in wireless sensor network which can be resolved by the use of swarm intelligence–based approaches. This article presents a novel swarm intelligence–based clustering and multihop routing protocol for wireless sensor network. Initially, improved particle swarm optimization technique is applied for choosing the cluster heads and organizes the clusters proficiently. Then, the grey wolf optimization algorithm–based routing process takes place to select the optimal paths in the network. The presented improved particle swarm optimization–grey wolf optimization approach incorporates the benefits of both the clustering and routing processes which leads to maximum energy efficiency and network lifetime. The proposed model is simulated under an extension set of experimentation, and the results are validated under several measures. The obtained experimental outcome demonstrated the superior characteristics of the improved particle swarm optimization–grey wolf optimization technique under all the test cases
    corecore