49 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Get PDF
    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise

    A Novel Multiscale Edge Detection Approach Based on Nonsubsampled Contourlet Transform and Edge Tracking

    Get PDF
    Edge detection is a fundamental task in many computer vision applications. In this paper, we propose a novel multiscale edge detection approach based on the nonsubsampled contourlet transform (NSCT): a fully shift-invariant, multiscale, and multidirection transform. Indeed, unlike traditional wavelets, contourlets have the ability to fully capture directional and other geometrical features for images with edges. Firstly, compute the NSCT of the input image. Secondly, the K-means clustering algorithm is applied to each level of the NSCT for distinguishing noises from edges. Thirdly, we select the edge point candidates of the input image by identifying the NSCT modulus maximum at each scale. Finally, the edge tracking algorithm from coarser to finer is proposed to improve robustness against spurious responses and accuracy in the location of the edges. Experimental results show that the proposed method achieves better edge detection performance compared with the typical methods. Furthermore, the proposed method also works well for noisy images

    Image factorization and feature fusion for enhancing robot vision in human face recognition

    Get PDF

    Spatial Images Feature Extraction Based on Bayesian Nonlocal Means Filter and Improved Contourlet Transform

    Get PDF
    Spatial images are inevitably mixed with different levels of noise and distortion. The contourlet transform can provide multidimensional sparse representations of images in a discrete domain. Because of its filter structure, the contourlet transform is not translation-invariant. In this paper, we use a nonsubsampled pyramid structure and a nonsubsampled directional filter to achieve multidimensional and translation-invariant image decomposition for spatial images. A nonsubsampled contourlet transform is used as the basis for an improved Bayesian nonlocal means (NLM) filter for different frequencies. The Bayesian model adds a sigma range in image a priori operations, which can be more effective in protecting image details. The NLM filter retains the image edge content and assigns greater weight to similarities for edge pixels. Experimental results both on standard images and spatial images confirm that the proposed algorithm yields significantly better performance than nonsubsampled wavelet transform, contourlet, and curvelet approaches

    A parallel fusion method of remote sensing image based on NSCT

    Get PDF
    Remote sensing image fusion is very important for playing the advantages of a variety of remote sensing data. However, remote sensing image fusion is large in computing capacity and time consuming. In this paper, in order to fuse remote sensing images accurately and quickly, a parallel fusion algorithm of remote sensing image based on NSCT (nonsubsampled contourlet transform) is proposed. In the method, two important kinds of remote sensing image, multispectral image and panchromatic image are used, and the advantages of parallel computing in high performance computing and the advantages of NSCT in information processing are combined. In the method, based on parallel computing, some processes with large amount of calculation including IHS (Intensity, Hue, Saturation) transform, NSCT, inverse NSCT, inverse IHS transform, etc., are done. To realize the method, multispectral image is processed with IHS transform, and the three components, I, H, and S are gotten. The component I and the panchromatic image are decomposed with NSCT. The obtained low frequency components of NSCT are fused with the fusion rule based on the neighborhood energy feature matching, and the obtained high frequency components are fused with the fusion rule based on the subregion variance. Then the low frequency components and the high frequency components after fusion are processed with the inverse NSCT, and the fused component is gotten. Finally, the fused component, the component H and the component S are processed with the inverse IHS transform, and the fusion image is obtained. The experiment results show that the proposed method can get better fusion results and faster computing speed for multispectral image and panchromatic image.The work was supported in part supported by (1) the Fund Project of National Natural Science of China(U1204402), (2) the Foundation Project(21AT-2016-13) supported by the twenty-first century Aerospace technology Co., Ltd., China, (3) the Natural Science Research Program Project (18A520001) supported by the Department of Education in Henan Province, China

    Image Fusion Based on Nonsubsampled Contourlet Transform and Saliency-Motivated Pulse Coupled Neural Networks

    Get PDF
    In the nonsubsampled contourlet transform (NSCT) domain, a novel image fusion algorithm based on the visual attention model and pulse coupled neural networks (PCNNs) is proposed. For the fusion of high-pass subbands in NSCT domain, a saliency-motivated PCNN model is proposed. The main idea is that high-pass subband coefficients are combined with their visual saliency maps as input to motivate PCNN. Coefficients with large firing times are employed as the fused high-pass subband coefficients. Low-pass subband coefficients are merged to develop a weighted fusion rule based on firing times of PCNN. The fused image contains abundant detailed contents from source images and preserves effectively the saliency structure while enhancing the image contrast. The algorithm can preserve the completeness and the sharpness of object regions. The fused image is more natural and can satisfy the requirement of human visual system (HVS). Experiments demonstrate that the proposed algorithm yields better performance
    corecore