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In the nonsubsampled contourlet transform (NSCT) domain, a novel image fusion algorithm based on the visual attention model
and pulse coupled neural networks (PCNNs) is proposed. For the fusion of high-pass subbands in NSCT domain, a saliency-
motivated PCNNmodel is proposed. The main idea is that high-pass subband coefficients are combined with their visual saliency
maps as input to motivate PCNN. Coefficients with large firing times are employed as the fused high-pass subband coefficients.
Low-pass subband coefficients are merged to develop a weighted fusion rule based on firing times of PCNN. The fused image
contains abundant detailed contents from source images and preserves effectively the saliency structure while enhancing the image
contrast. The algorithm can preserve the completeness and the sharpness of object regions. The fused image is more natural and
can satisfy the requirement of human visual system (HVS). Experiments demonstrate that the proposed algorithm yields better
performance.

1. Introduction

Due to a tremendous growth in the application of image
sensors, image fusion technique has huge potential for growth
and has been used successfully in many fields, such as
remote sensing, medical imaging, defense surveillance, and
computer vision [1–3].The aim of image fusion is to combine
several source images (obtained from different sensors and
view points) into a fused image, which contains all important
contents from source images and expresses more abundant
information in a scene. In practical applications, the direct
obtained image is not able to satisfy the requirements because
of many factors, for example, the limitations of sensors,
varying illumination, occlusions and angles, and so forth.
Image fusion technique can solve effectively the problems by
taking advantage of multiple-source information producing
the fused result which satisfies perception system.

According to the level, image fusion approaches can
be generally classified into three types: pixel level, feature
level, or decision level [4]. According to whether the fusion
methods need the assistant of multiscale transform (MST)
tools or not, they can also be categorized into two main

classes [5]: MST-based and non-MST-based approaches. A
variety of MST tools have been developed for image fusion.
The earliest and the most popular MST tools are pyramid
[6, 7] and wavelet [8, 9] transform. They are directly
constructed by combination of two 1D transforms, so they
are not the true 2D transforms. To improve the accuracy of
decomposition and reconstruction, the more advanced MST
tools have been proposed, such as ridgelets [10], contourlets
[11, 12], curvelets [13, 14], and NSCT [15]. The approaches
are the true 2D geometric MST tools, which can achieve the
decomposition and reconstruction of image signals perfectly
and satisfy the requirement of image fusion. In addition,
for non-MST-based methods, Piella [16] performs the image
fusion by a variational model, and the fused result contains
the geometry structure of all the inputs and enhances the
contrast for visualization. Ludusan and Lavialle [17] propose
a variational approach based on error estimation theory and
partial differential equations for concurrent image fusion and
denoising of multifocus images.

The combination strategy of the decomposed coefficients
is another key step in the MST-based fusion approaches.
Fusion strategies can mainly be divided into three categories:



2 Mathematical Problems in Engineering

pixel-based, window based, and area based [18].The simplest
pixel-based fusion rule directly selects the fused coefficients
using single pixel, but the method is easily influenced by
noise. Window based and area based fusion rules take
advantage of the local characteristics of neighborhood pixels
and, thus, are superior to pixel-based rules [19].

The existing image fusion approaches do not take fully
into account the characteristics of HVS, which the HVS
tends to focus on the most relevant saliency regions in a
scene. According to the visual perception mechanism, the
fused image should improve the quality of object areas in
a scene. The goal of the proposed algorithm is to preserve
the completeness, saliency, and sharpness of object areas and
satisfy the requirements of HVS. Consequently, based on
NSCT and saliency-motivated PCNN, the paper proposes a
novel image fusion algorithm.The visual saliency model and
PCNN are two very important tools in image processing.
The former is inspired by the behavior and the neuronal
architecture of the early primate visual system; the latter is a
visual cortex-inspired neural network and characterized by
the global coupling and pulse synchronization of neurons.
The saliency map produced by the visual saliency model as
input to motivate PCNN is used as the fusion rule which can
preserve the saliency objects from source images leading to
more abundant content contained in a fused image.

The rest of the paper is organized as follows. Section 2
reviews basic NSCT theory in brief. Section 3 presents the
proposed image fusion algorithm in detail. Section 4 demon-
strates and discusses the experimental results. Section 5
concludes.

2. Nonsubsampled Contourlet Transform

In this section, we briefly review the theory and properties of
NSCT, which will be used in the rest of this paper (see [15] for
details).

NSCT is a kind of overcomplete transform and is a shift-
invariant version of contourlet transform. NSCT has some
excellent properties in the process of image decomposition,
including shift invariance, multiscale, and multidirection.
NSCT is used as the MST tool to provide a better representa-
tion of the contours and overcome pseudo-Gibbs phenom-
ena. The main components of the NSCT are a nonsubsam-
pled pyramid filter bank (NSPFB) structure for multiscale
decomposition and a nonsubsampled directional filter bank
(NSDFB) structure for directional decomposition.TheNSCT
is displayed in Figure 1.

Themultiscale property of the NSCT is achieved by using
two-channel nonsubsampled 2-D filter banks (NSFBs), called
as NSPFB. The filters for next level are obtained by upsam-
pling the filters of the previous level, by which the multiscale
property is obtained without the need for additional filter
design. We assume that the NSPFB decomposition is with
𝐽 = 𝑁 levels. At the first level, input images are decomposed
by the low-pass filter𝐻

0
(𝑧) and the corresponding high-pass

filter 𝐻
1
(𝑧), respectively. The ideal passband support of the

low-pass filter at the jth level is the region [−(𝜋/2
𝑗
), (𝜋/2

𝑗
)]
2.

The ideal support of the equivalent high-pass filter is

the complement of the low-pass filter, that is, the region
[−(𝜋/2

𝑗−1
), (𝜋/2

𝑗−1
)]
2

\ [−(𝜋/2
𝑗
), (𝜋/2

𝑗
)]
2. The NSDFB, a

shift-invariant directional filter bank (DFB), is obtained by
eliminating the downsamplers and upsamplers in the DFB.
To achieve multidirection decomposition, the NSDFB is iter-
atively used. All filter banks in the NSDFB tree structure are
obtained from a single NSFB with fan filters. Each filter bank
in the NSDFB tree has the same computational complexity as
that of the building-block NSFB.

Figure 1 shows the NSCT which is constructed by com-
bining the NSPFB and the NSDFB. The two-channel NSFBs
in the NSPFB and the NSDFB satisfy the Bezout identity and
are invertible, so the NSCT is invertible. The key of NSCT
is the filter design problem of the NSPFB and NSDFB. The
aim is to design the filters supporting the Bezout identity
and obtaining other useful properties. In addition, for a fast
implementation, the mapping approach is used to transform
the filter into a ladder or lifting structure. More details can be
seen in [15].

3. The Proposed Algorithm

In the section, the proposed image fusion algorithm based on
NSCT and saliency-motivated PCNN is presented in detail.
The main idea is that the visual saliency map is first built on
high-pass subband coefficients of the NSCT using the visual
attentionmodel (phase spectrum of Fourier transform (PFT)
model presented in Section 3.1) and then is combined with
source high-pass subband coefficients as input to motivate
PCNN. Coefficients with large firing times are employed as
the fused high-pass subband coefficients. Low-pass subband
coefficients are merged to develop a weighted fusion rule
based on firing times of PCNN. PCNN is built in each
subband to simulate the biological activity of HVS.The fused
image has more natural visual appearance and can satisfy
the requirements of HVS. The framework of the proposed
algorithm is shown in Figure 2. For the clearness of the
presentation, we assume that two registered source images are
combined.

The algorithm first decomposes source images into the
low-pass subband and high-pass directional subband coeffi-
cients by the NSCT. The coarsest subband contains the main
energy from source images and denotes the abundant struc-
tural information. Therefore, an adaptive weighted average
fusion rule based on the firing times of PCNN is developed to
merge the low-pass subband. High-pass directional subbands
contain the abundant detail contents of source images, so
we create a maximum selection fusion principle based on
saliency-motivated PCNN for selecting the fused coefficients.
The final fused image is reconstructed by applying the inverse
NSCT on the merged coefficients.

3.1. Images Decomposition and Saliency-Motivated PCNN.
The decomposition of source images employs NSCT pre-
sented in Section 2. Input images 𝐴 and 𝐵 are decomposed
into different scale and direction subbands using NSCT. The
subbands {𝐶

𝐴

𝑗0
(𝑥, 𝑦), 𝐶

𝐴

𝑗,𝑙
(𝑥, 𝑦)} and {𝐶

𝐵

𝑗0
(𝑥, 𝑦), 𝐶

𝐵

𝑗,𝑙
(𝑥, 𝑦)} are



Mathematical Problems in Engineering 3

Image

NSPFB

NSPFB

NSDFB

NSDFB

Low-pass
subband

Bandpass
directional
subbands

Bandpass
directional
subbands

(a)

𝜔2

𝜔1

(𝜋, 𝜋)

(−𝜋, −𝜋)

(b)

Figure 1: Nonsubsampled contourlet transform. (a) NSFB structure that implements the NSCT and (b) idealized frequency partitioning
obtained with the proposed structure.

NSCT

NSCT

Directional subband

Directional subband

Low-pass subband

Low-pass subband

Directional subband fusion

Directional
subband

PFT Saliency
map

PCNN

PCNN

Firing map

Firing map

Maximum
selection

Low-pass
subband

Weighted average

Fused directional

Fused low-pass

Inverse
NSCT

Fused image

subband

subband

Low-pass subband fusion

Source image A

Source image B

Figure 2: Architecture of the proposed algorithm.

obtained, where C
𝑗0
(x,y) denotes the low-pass subband coef-

ficients of the input images at the coarsest scale and 𝐶
𝑗,𝑙
(𝑥, 𝑦)

denotes the high-pass directional subband coefficients at the
jth scale and in the lth direction.

The following the proposed saliency-motivated PCNN
model is discussed. Eckhorn develops a novel biological
neural network, called PCNN which is based on the experi-
mental observations of synchronous pulse bursts in cat and
monkey visual cortices [20]. PCNN is a feedback network
and each PCNN neuron consists of three parts: receptive
field, modulation field, and pulse generator [21]. In image
processing, PCNN is a single-layer and a two-dimensional
connection neural network [22, 23] shown in Figure 3.

In this paper, let 𝐶
𝑗,𝑙
(𝑥, 𝑦) denotes the coefficient located

at (x, y) in the jth scale at the lth direction. 𝐶
𝑗,𝑙
(𝑥, 𝑦) in each

subband is inputted to PCNN to motivate the neurons and
generate pulse of neurons with (1). Firing times 𝑇𝑗,𝑙

𝑥𝑦
are then

computed as in (2):

𝐹
𝑗,𝑙

𝑥𝑦
[𝑛] = 𝐶

𝑗,𝑙
(𝑥, 𝑦)

𝐿
𝑗,𝑙

𝑥𝑦
[𝑛] = exp (−𝛼

𝐿
) 𝐿
𝑗,𝑙

𝑥𝑦
[𝑛 − 1]

+ 𝑉
𝐿
∑
𝑝𝑞

𝑊
𝑗,𝑙

𝑥𝑦,𝑝𝑞
𝑌
𝑗,𝑙

𝑥𝑦,𝑝𝑞
[𝑛 − 1]

𝑈
𝑗,𝑙

𝑥𝑦
[𝑛] = 𝐹

𝑗,𝑙

𝑥𝑦
[𝑛] ∗ (1 + 𝛽𝐿

𝑗,𝑙

𝑥𝑦
[𝑛])
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Figure 3: Connection model of PCNN neuron.

𝜃
𝑗,𝑙

𝑥𝑦
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𝜃
) 𝜃
𝑗,𝑙

𝑥𝑦
[𝑛 − 1] + 𝑉

𝜃
𝑌
𝑗,𝑙

𝑥𝑦
[𝑛 − 1]

𝑌
𝑗,𝑙

𝑥𝑦
[𝑛] = {

1, if 𝑈𝑗,𝑙
𝑥𝑦

[𝑛] > 𝜃
𝑗,𝑙

𝑥𝑦
[𝑛]

0, otherwise,
(1)

𝑇
𝑗,𝑙

𝑥𝑦
[𝑛] = 𝑇

𝑗,𝑙

𝑥𝑦
[𝑛 − 1] + 𝑌

𝑗,𝑙

𝑥𝑦
[𝑛] . (2)

In (1), the coefficient 𝐶
𝑗,𝑙
(𝑥, 𝑦) is assigned to the feeding

input 𝐹𝑗,𝑙
𝑥𝑦
. The linking input 𝐿𝑗,𝑙

𝑥𝑦
is equal to the sum of neu-

rons firing times in linking range, where 𝛼
𝐿
indicates the

decay constants and 𝑉
𝐿
is the amplitude gain. 𝑊

𝑥𝑦,𝑝𝑞
is the

weighted coefficient (p and 𝑞 point out the size of linking
range in PCNN). The internal state signal 𝑈𝑗,𝑙

𝑥𝑦
is obtained by

modulating𝐹𝑗,𝑙
𝑥𝑦
and𝐿
𝑗,𝑙

𝑥𝑦
, where𝛽 is the linking strength. 𝜃𝑗,𝑙

𝑥𝑦
is

the threshold,where𝛼
𝜃
and𝑉
𝜃
are the decay constants and the

amplitude gain, respectively. n denotes the iteration times. If
𝑌
𝑗,𝑙

𝑥𝑦
= 1, the neuron will generate a pulse, called one firing. If

𝑌
𝑗,𝑙

𝑥𝑦
= 0, the neuron will not generate a pulse. In applications,

𝑇
𝑗,𝑙

𝑥𝑦
[𝑛] defined in (2) are often used to indicate the total

firing times in 𝑛 iteration. The firing times are employed to
represent image information.

The saliencymaps 𝑆𝐴
𝑗,𝑙
(𝑥, 𝑦) and 𝑆

𝐵

𝑗,𝑙
(𝑥, 𝑦) are computed on

the high-pass directional subbands 𝐶
𝐴

𝑗,𝑙
(𝑥, 𝑦) and 𝐶

𝐵

𝑗,𝑙
(𝑥, 𝑦),

which denotes the 𝑗th scale and lth direction. The saliency
maps are used as the importance indicator of the coefficients
for preserving important information of source images.

Phase spectrum of Fourier transform (PFT) proposed in
[24] is employed as a saliency detection model for grayscale
image. PFT showed that the saliency map can be easily com-
puted by the phase spectrum of an image’s Fourier transform
when its amplitude spectrum is at nonzero constant value.
Only the phase spectrum is used to reconstruct an image
which reflects the saliency information of the source image.
The implementation of PFT model consists of three steps.
An image is first transformed into frequency domain using
Fourier transform, and the amplitude and phase spectrums
are then obtained. Finally, the saliency map is obtained by

inverse Fourier transform on only the phase spectrum. Given
an input image 𝐼(𝑥, 𝑦), three steps have the corresponding
equations as follows:

𝐹 (𝑢, V) = 𝐹 (𝐼 (𝑥, 𝑦)) (3)

𝑃 (𝑢, V) = 𝑃 (𝐹 (𝑢, V)) (4)

𝑆 (𝑥, 𝑦) = 𝑔 ∗
󵄩󵄩󵄩󵄩󵄩
𝐹
−1

{exp𝑖⋅𝑃(𝑢,V)}󵄩󵄩󵄩󵄩󵄩
2

, (5)

where 𝐹 and 𝐹
−1 denote Fourier transform and inverse

Fourier transform. P(F) is the phase spectrum of 𝐼 and 𝑔 is
a 2D Gaussian filter. The saliency value in location (x, y) is
computed using (5).

PFT model is a simple and efficient saliency detection
method. An example of the PFT saliency detection is shown
in Figure 4. Figures 4(a) and 4(c) are two multifocus source
images which show complementary focus point regions.
Figures 4(b) and 4(d) are the corresponding saliency maps
which indicate different saliency regions of source images.We
can observe that the saliency maps present focus point areas
in source images.

Consequently, in this paper, the saliency value of high-
pass subbands 𝑆

𝐴/𝐵

𝑗,𝑙
(𝑥, 𝑦) can be computed by (5) in which

coefficient 𝐶𝐴/𝐵
𝑗,𝑙

(𝑥, 𝑦) replaces 𝐼(𝑥, 𝑦) as the input. Instead of
using PCNN in NSCT domain directly, the product
𝑆𝐶
𝑗,𝑙
(𝑥, 𝑦) between coefficient 𝐶

𝐴/𝐵

𝑗,𝑙
(𝑥, 𝑦) in location (𝑥, 𝑦)

of high-pass subbands and its saliency value 𝑆
𝐴/𝐵

𝑗,𝑙
(𝑥, 𝑦) are

used to motivate PCNN. 𝑆𝐶
𝑗,𝑙
(𝑥, 𝑦) is computed as follows:

𝑆𝐶
𝑗,𝑙

(𝑥, 𝑦) = 𝑆
𝐴/𝐵

𝑗,𝑙
(𝑥, 𝑦) ⋅ 𝐶

𝐴/𝐵

𝑗,𝑙
(𝑥, 𝑦) . (6)

Then, 𝑆𝐶
𝑗,𝑙
(𝑥, 𝑦) is normalized as 𝑆𝐶 Norm

𝑗,𝑙
(𝑥, 𝑦)which

is inputted to PCNN to motivate neurons. The proposed
saliency-motivated PCNN model is defined in (7) by mod-
ifying (1):

𝐹
𝑗,𝑙

𝑥𝑦
[𝑛] = 𝑆𝐶 Norm

𝑗,𝑙
(𝑥, 𝑦)

𝐿
𝑗,𝑙

𝑥𝑦
[𝑛] = exp (−𝛼

𝐿
) 𝐿
𝑗,𝑙

𝑥𝑦
[𝑛 − 1]

+ 𝑉
𝐿
∑
𝑝𝑞

𝑊
𝑗,𝑙

𝑥𝑦,𝑝𝑞
𝑌
𝑗,𝑙

𝑥𝑦,𝑝𝑞
[𝑛 − 1]

𝑈
𝑗,𝑙

𝑥𝑦
[𝑛] = 𝐹

𝑗,𝑙

𝑥𝑦
[𝑛] ∗ (1 + 𝛽𝐿

𝑗,𝑙

𝑥𝑦
[𝑛])

𝜃
𝑗,𝑙

𝑥𝑦
[𝑛] = exp (−𝛼

𝜃
) 𝜃
𝑗,𝑙

𝑥𝑦
[𝑛 − 1] + 𝑉

𝜃
𝑌
𝑗,𝑙

𝑥𝑦
[𝑛 − 1]

𝑌
𝑗,𝑙

𝑥𝑦
[𝑛] = {

1, if 𝑈𝑗,𝑙
𝑥𝑦

[𝑛] > 𝜃
𝑗,𝑙

𝑥𝑦
[𝑛]

0, otherwise.

(7)

3.2. Subband Coefficients Fusion. The high-pass subbands of
NSCTdecomposition contain abundant detailed information
and indicate the saliency components of images, for example,
lines, edges, contours, and so forth. In order to preserve
the saliency components in the process of image fusion,
we propose the fusion rule based on saliency-motivated
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Step 0: Given source images 𝐴 and 𝐵.
Step 1: Perform decomposition on source images 𝐴 and 𝐵 using NSCT to obtain the high-pass
directional subband coefficients and the low-pass subband coefficients.
Step 2: Merge the high-pass directional subbands with (8), (7) and (2).
Step 3: Obtain the fused low-pass subband with (9), (1) and (2).
Step 4: Construct the fused image by applying the inverse NSCT to the fused subband coefficients.

Algorithm 1: Image fusion method with saliency-motivated PCNN.

(a) Source image 𝐼1 (b) Saliency map𝑀1 (c) Source image 𝐼2 (d) Saliency map𝑀2

Figure 4: The results of saliency detection from two complementary input images. (a) and (c) Multifocus source images (b) and (d) saliency
maps from PFT.

PCNN for the high-pass subbands. According to the visual
attention mechanism, different regions in an image have
varying importance for HVS, so the saliency detection is
performed on source images to yield saliency maps which
indicate the significance level of every pixel in source images.
Based on the characteristics, the PFT model is performed
on the high-pass subbands to produce the saliency maps,
which indicate the importance level of coefficients. And
then, the obtained saliency maps are combined with the
corresponding high-pass subband coefficients as the input
to motivate PCNN. Coefficients with large firing times are
selected as the fused coefficients. In addition, the low-
pass subband of NSCT decomposition in the coarsest scale
contains the main energy of source images and denotes
abundant structural information. The fusion rule of the low-
pass subband employs a weighted fusion rule based on firing
times of PCNN.

The activity maps of high-pass subbands as the criteria
of selecting coefficients are presented by the firing map of
saliency-motivated PCNN. The activity level indicates the
magnitude of coefficients. The coefficients of greater energy
carry more important information, so the coefficients of
greater activity level are selected as the fused coefficients.
Now, according to (7) and (2), the fused coefficients in
location (x, y) of high-pass subbands denoted by 𝐹

𝑗,𝑙
(𝑥, 𝑦) are

defined as follows:

𝐹
𝑗,𝑙

(𝑥, 𝑦) =

{{

{{

{

𝐶
𝐴

𝑗,𝑙
(𝑥, 𝑦) , if 𝑇𝑗,𝑙

𝐴,𝑥𝑦
> 𝑇
𝑗,𝑙

𝐵,𝑥𝑦

𝐶
𝐵

𝑗,𝑙
(𝑥, 𝑦) , otherwise. (8)

The fused coefficients of low-pass subbands denoted by
F
𝑗0
(x, y) employ a weighted fusion rule based on firing times

of PCNN on coefficients 𝐶
𝐴

𝑗0
(𝑥, 𝑦) and 𝐶

𝐵

𝑗0
(𝑥, 𝑦), which are

defined as follows:

𝐹
𝑗0

(𝑥, 𝑦) = 𝜔 ∗ 𝐶
𝐴

𝑗0
(𝑥, 𝑦) + (1 − 𝜔) ∗ 𝐶

𝐵

𝑗0
(𝑥, 𝑦)

𝜔 =
𝑇
𝑗0

𝐴,𝑥𝑦

𝑇
𝑗0

𝐴,𝑥𝑦
+ 𝑇
𝑗0

𝐵,𝑥𝑦

,

(9)

where 𝜔 is the weight of coefficients and 𝑇
𝑗0

𝑥𝑦
is computed by

(1) and (2). Because the low-pass subband at the coarsest scale
does not contain the direction, here the symbol 𝑙 in (1) and
(2) is changed to 0. Specifically, 𝐶

𝑗,𝑙
(𝑥, 𝑦) in (1) is replaced by

𝐶
𝐴/𝐵

𝑗0
(𝑥, 𝑦), and 𝑇

𝑗,𝑙

𝑥𝑦
in (2) is replaced by 𝑇

𝑗0

𝑥𝑦
.

Finally, apply the inverse NSCT to the fused coefficients
{𝐹
𝑗0
(𝑥, 𝑦), 𝐹

𝑗,𝑙
(𝑥, 𝑦)} and then obtain the fused image 𝐹. At

last, the algorithm description of the proposed image fusion
approach is shown in Algorithm 1 for better understanding.

4. Experiments and Analysis

In this section, the proposed image fusion algorithm based
on NSCT and saliency-motivated PCNN (named as NSCT-
SPCNN) is tested on several sets of images. The goal of
the tests is to validate if the proposed algorithm can be
used in the real applications and varying surroundings.
For comparison, besides the fusion scheme proposed in
this paper, another three fusion algorithms, the Laplacian
pyramid transform based (LPT), discrete wavelet transform
based (DWT), and NSCT-simple based, are used to fuse
the same images. All of these use averaging and absolute
maximum selection schemes for merging low- and high-pass
subband coefficients, respectively. The decomposition level
of all of the transforms is three. Extensive experiments with
multifocus image fusion and different sensor image fusion
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(a) (b) (c)

(d) (e) (f)

Figure 5: “Clock” source images (256 level, size of 256 × 256) and fused images: (a) focus on the right; (b) focus on the left and fused images
using (c) LPT, (d) DWT, (e) NSCT-simple, and (f) NSCT-SPCNNmethods.

have been performed. Here, three groups of different images
were tested to evaluate the performance of the proposed
algorithm: a set of multifocus images, a set of multimodal
medical images, and a set of artificial out-of-focus images. It
is assumed that source images have been registered.The fused
results were evaluated using subjective visual inspection and
objective assessment tools.

4.1. Visual Analysis. Thefirst experiment uses twomultifocus
source images and four fused images produced by LPT,
DWT, NSCT-simple, and NSCT-SPCNNmethods, shown in
Figure 5. Figure 5(a) focuses on the right region. Figure 5(b)
focuses on the left region. The fused images contain all of
focus point regions of source images and expand effectively
the depth of a scene. In Figure 5(f), the saliency value
associated with coefficients as the input to motivate PCNN is
employed to compute the activity level of coefficients. In this
way, the algorithm makes sure that the activity level of the
saliency pixel is higher, so that the fused image preserves the
saliency regions of source images.The images in Figures 5(c)–
5(e) are not clear enough and have lower contrast; artifacts
were also introduced.Thedifferences among the fused images
are very slight, so it is difficult to evaluate the image quality
by direct visual inspection. To observe the image quality in
more detail, one area in the fused images was magnified.

Figures 6(a)–6(d) show magnified images of the region
marked by the boxes in Figures 5(c)–5(f). The performance
of the different fusion algorithms can be observed from
these magnified images. The images fused using LPT, DWT
and NSCT-simple methods (Figures 6(a)–6(c)) have some
deformation leading to bend edges. Figure 6(d) has the better
visual quality than others with the best visual effect and
smoother and sharper edges.This comparison reveals that the
NSCT-SPCNN-based fusion approach effectively determines
complementary or redundant information between source
images. It can preserve all the important information of the
source images while avoiding artifacts. In addition, a clearer
comparison is made by examining the differences between
the fused and source images, shown in Figure 7. Figures 7(a)–
7(d) show the difference images between Figures 5(c)–5(f)
and Figure 5(a). Observing Figures 7(a)–7(d), we can see that
there is little difference between the fused image by NSCT-
SPCNN (Figure 5(d)) and the right-focus clock (Figure 5(a)),
while a lot of difference between the fused images in Figures
5(c)–5(e) and the right-focus source image in Figure 5(a) can
be seen. This further demonstrates that the NSCT-SPCNN-
based method is with higher fusion performance.

Figure 8 shows a group of multimodal medical images
and images fused using four different fusion algorithms. A
set of spatial out-of-focus images are shown in Figure 9,
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(a) (b) (c) (d)

Figure 6: Magnified regions from the fused images in Figures 5(c)–5(f) using (a) LPT, (b) DWT, (c) NSCT-simple, and (d) NSCT-SPCNN
methods.

(a) (b) (c) (d)

Figure 7: (a)Difference image between Figures 5(c) and 5(a); (b) difference image between Figures 5(d) and 5(a); (c) difference image between
Figures 5(e) and 5(a); (d) difference image between Figures 5(f) and 5(a).

(a) (b) (c)

(d) (e) (f)

Figure 8: Medical source images (256 level, size of 256 × 256) and fused images: (a) and (b) source images and fused images using (c) LPT,
(d) DWT, (e) NSCT-simple, and (f) NSCT-SPCNNmethods.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Spatial source images (256 level, size of 512 × 512) and fused images: (a) focus on the right; (b) focus on the left and fused images
using (c) LPT, (d) DWT, (e) NSCT-simple, and (f) NSCT-SPCNNmethods.

which is obtained by artificial blurring different regions of
the ground truth image using a Gaussian filter. Experimental
results demonstrate the visual effects of two sets of images in
Figures 8 and 9 coinciding with Figure 5. Thus, the proposed
algorithm NSCT-SPCNN-based can effectively improve the
quality of the fused image both multifocus, and multimodal
images.

4.2. Objective Analysis. In previous discussion, the fusion
results of different algorithms have been analyzed by visual
aspect. However, the performance of fusion algorithms needs
to be further evaluated using objective metric tools. A suc-
cessful fusion technique has to satisfy many conditions, such
as preserving important features of source images, enhancing
contrast, and avoiding artifacts. Mutual information (MI)
[25] and an objective image fusion performance measure
(𝑄
𝐴𝐵/𝐹

) [26] are employed to evaluate the fusion performance
of different fusion methods quantitatively. MI indicates how
much of the input information the fused image contains.
𝑄
𝐴𝐵/𝐹

reflects the preservation of input edge information in
the fused image. For the two metrics, the higher the values
are, the better are the fusion results.

Figure 10 shows the qualitymeasurement results for fused
images in Figure 5 and Figures 8 and 9. Observing Figure 10,
we can see that the LPT andDWTmethods are theworst.This

is consistent with the subjective visual analysis. Compared
with other fusion algorithms, the NSCT-SPCNN yields the
optimal performance. Experimental results demonstrate that
the proposed NSCT-SPCNN algorithm can preserve the
saliency regions of source images and improve the quality of
the fused image.

Finally, the computational performance of the proposed
NSCT-SPCNN algorithm is tested on three sets of images
(Figures 5, 8, and 9). The hardware setup is an Intel Core
i5-3479 PC with 4GB RAMs. Our Matlab implementation
takes about 16 seconds for Figures 5 and 8 and 73 seconds for
Figure 9. Meanwhile, the NSCT-simple-based fusionmethod
takes about 17 seconds for Figures 5 and 8 and 72 seconds for
Figure 9.The LPT- and DWT-based fusion methods take less
than 1 second. From the comparison, we can observe that
the computational bottleneck lies in the NSCT transform.
Therefore, a more efficient MST tool needs to be applied in
the future.

5. Conclusion

The paper proposes a novel image fusion algorithm based on
NSCT and saliency-motivated PCNN. In fusion for high-pass
subbands, a saliency-motivated PCNN model is proposed.
The key idea is that depending on the human visual attention
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Figure 10: Quality metrics for the different fusion methods.

model, the visual saliency map is first built on high-pass sub-
band coefficients of NSCT, and then the algorithm combines
the visual saliencymapwith the coefficients of NSCT as input
to motivate PCNN. Coefficients with large firing times are
employed as the fused high-pass subband coefficients. Low-
pass subband coefficients are merged to develop a weighted
fusion rule based on firing times of PCNN. The algorithm
can preserve the completeness and the sharpness of object
regions. The fused image is more natural and can satisfy the
requirement ofHVS. Experiments illustrate that the proposed
fusion algorithm improves greatly the quality of the fused
images.
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