105,964 research outputs found

    A Non-parametric Semi-supervised Discretization Method

    Get PDF
    Semi-supervised classification methods aim to exploit labelled and unlabelled examples to train a predictive model. Most of these approaches make assumptions on the distribution of classes. This article first proposes a new semi-supervised discretization method which adopts very low informative prior on data. This method discretizes the numerical domain of a continuous input variable, while keeping the information relative to the prediction of classes. Then, an in-depth comparison of this semi-supervised method with the original supervised MODL approach is presented. We demonstrate that the semi-supervised approach is asymptotically equivalent to the supervised approach, improved with a post-optimization of the intervals bounds location

    A Unifying Framework in Vector-valued Reproducing Kernel Hilbert Spaces for Manifold Regularization and Co-Regularized Multi-view Learning

    Get PDF
    This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) framework for the problem of learning an unknown functional dependency between a structured input space and a structured output space. Our formulation encompasses both Vector-valued Manifold Regularization and Co-regularized Multi-view Learning, providing in particular a unifying framework linking these two important learning approaches. In the case of the least square loss function, we provide a closed form solution, which is obtained by solving a system of linear equations. In the case of Support Vector Machine (SVM) classification, our formulation generalizes in particular both the binary Laplacian SVM to the multi-class, multi-view settings and the multi-class Simplex Cone SVM to the semi-supervised, multi-view settings. The solution is obtained by solving a single quadratic optimization problem, as in standard SVM, via the Sequential Minimal Optimization (SMO) approach. Empirical results obtained on the task of object recognition, using several challenging datasets, demonstrate the competitiveness of our algorithms compared with other state-of-the-art methods.Comment: 72 page

    From representation learning to thematic classification - Application to hierarchical analysis of hyperspectral images

    Get PDF
    Numerous frameworks have been developed in order to analyze the increasing amount of available image data. Among those methods, supervised classification has received considerable attention leading to the development of state-of-the-art classification methods. These methods aim at inferring the class of each observation given a specific class nomenclature by exploiting a set of labeled observations. Thanks to extensive research efforts of the community, classification methods have become very efficient. Nevertheless, the results of a classification remains a highlevel interpretation of the scene since it only gives a single class to summarize all information in a given pixel. Contrary to classification methods, representation learning methods are model-based approaches designed especially to handle high-dimensional data and extract meaningful latent variables. By using physic-based models, these methods allow the user to extract very meaningful variables and get a very detailed interpretation of the considered image. The main objective of this thesis is to develop a unified framework for classification and representation learning. These two methods provide complementary approaches allowing to address the problem using a hierarchical modeling approach. The representation learning approach is used to build a low-level model of the data whereas classification is used to incorporate supervised information and may be seen as a high-level interpretation of the data. Two different paradigms, namely Bayesian models and optimization approaches, are explored to set up this hierarchical model. The proposed models are then tested in the specific context of hyperspectral imaging where the representation learning task is specified as a spectral unmixing proble

    Augmented semi-supervised learning for salient object detection with edge computing

    Full text link
    [EN] Salient object detection (SOD) from raw sensor images in the edge networks can effectively speed up the decision-making process in the complex environments, because it simulates the mechanism of human attention to identify salient objects from images. The success of supervised deep learning approaches have been widely proved SOD field. However, the imbalanced and limited training data at each edge device pose a huge challenge for us to deploy deep learning methods in the edge computing environments. In this article, we propose a cloud-edge distributed augmented semi-supervised learning architecture for SOD over the edge networks. The framework consists of two components: the base classification networks are employed in different edge nodes, and the reverse augmented network is employed in cloud. First, the base classification networks are trained with data from edge nodes while the reverse augmented network is trained with the whole data. Then, we concatenate each base classification network with reverse augmented network, thus the latter network can help the training of former network. Finally, we integrate the outputs of all base classification network to generate the pseudo-labels, which are used for semi-supervised learning of the augment network. We demonstrated a convincing performance of our semi-supervised learning framework on four bench-marked data-sets. These results show that our augmented semi-supervised learning framework can outperform other optimization strategies on deep learning for the edge computing.Yu, C.; Zhang, Y.; Mukherjee, M.; Lloret, J. (2022). Augmented semi-supervised learning for salient object detection with edge computing. IEEE Wireless Communications. 29(3):109-114. https://doi.org/10.1109/MWC.2020.200035110911429
    • …
    corecore