8 research outputs found

    Polynomial bounds for decoupling, with applications

    Get PDF
    Let f(x) = f(x_1, ..., x_n) = \sum_{|S| <= k} a_S \prod_{i \in S} x_i be an n-variate real multilinear polynomial of degree at most k, where S \subseteq [n] = {1, 2, ..., n}. For its "one-block decoupled" version, f~(y,z) = \sum_{|S| <= k} a_S \sum_{i \in S} y_i \prod_{j \in S\i} z_j, we show tail-bound comparisons of the form Pr[|f~(y,z)| > C_k t] t]. Our constants C_k, D_k are significantly better than those known for "full decoupling". For example, when x, y, z are independent Gaussians we obtain C_k = D_k = O(k); when x, y, z, Rademacher random variables we obtain C_k = O(k^2), D_k = k^{O(k)}. By contrast, for full decoupling only C_k = D_k = k^{O(k)} is known in these settings. We describe consequences of these results for query complexity (related to conjectures of Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening of the DFKO Inequality).Comment: 19 pages, including bibliograph

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2−c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure

    The Price of Independence in an Echo Chamber with Dependence Ambiguity

    Get PDF
    How much should we pay to remove the interdependence of biased information sources? This question is relevant in both statistics and political economy. When there are many information sources or variables, their dependence may be unknown, which creates multivariate ambiguity. One approach to answer our leading question involves use of decoupling inequalities from probability theory. We present a new inequality, designed to cope with this question, which holds for any type of dependence across information sources. We apply our method to a simple formalization of a political echo chamber. For a given set of marginal information, this bound is the sup over all possible joint distributions connecting the marginals. Our method highlights a price to pay for facing summed dependent (multivariate) data, similar to the probability premium required for univariate data. We show that a conservative decisionmaker will pay approximately 50% more than if the data were independent, in order to freely neglect the correlations

    Approximating Generalized Network Design under (Dis)economies of Scale with Applications to Energy Efficiency

    Full text link
    In a generalized network design (GND) problem, a set of resources are assigned to multiple communication requests. Each request contributes its weight to the resources it uses and the total load on a resource is then translated to the cost it incurs via a resource specific cost function. For example, a request may be to establish a virtual circuit, thus contributing to the load on each edge in the circuit. Motivated by energy efficiency applications, recently, there is a growing interest in GND using cost functions that exhibit (dis)economies of scale ((D)oS), namely, cost functions that appear subadditive for small loads and superadditive for larger loads. The current paper advances the existing literature on approximation algorithms for GND problems with (D)oS cost functions in various aspects: (1) we present a generic approximation framework that yields approximation results for a much wider family of requests in both directed and undirected graphs; (2) our framework allows for unrelated weights, thus providing the first non-trivial approximation for the problem of scheduling unrelated parallel machines with (D)oS cost functions; (3) our framework is fully combinatorial and runs in strongly polynomial time; (4) the family of (D)oS cost functions considered in the current paper is more general than the one considered in the existing literature, providing a more accurate abstraction for practical energy conservation scenarios; and (5) we obtain the first approximation ratio for GND with (D)oS cost functions that depends only on the parameters of the resources' technology and does not grow with the number of resources, the number of requests, or their weights. The design of our framework relies heavily on Roughgarden's smoothness toolbox (JACM 2015), thus demonstrating the possible usefulness of this toolbox in the area of approximation algorithms.Comment: 39 pages, 1 figure. An extended abstract of this paper is to appear in the 50th Annual ACM Symposium on the Theory of Computing (STOC 2018
    corecore