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The Price of Independence in an Echo Chamber

with Dependence Ambiguity

Lorán Chollete, Michael Klass and Victor de la Peña *

July 17, 2019

Abstract

How much should we pay to remove the interdependence of biased information

sources? This question is relevant in both statistics and political economy. When there

are many information sources or variables, their dependence may be unknown, which

creates multivariate ambiguity. One approach to answer our leading question involves

use of decoupling inequalities from probability theory. We present a new inequality,

designed to cope with this question, which holds for any type of dependence across in-

formation sources. We apply our method to a simple formalization of a political echo

chamber. For a given set of marginal information, this bound is the sup over all possi-

ble joint distributions connecting the marginals. Our method highlights a price to pay

for facing summed dependent (multivariate) data, similar to the probability premium

required for univariate data. We show that a conservative decisionmaker will pay ap-

proximately 50% more than if the data were independent, in order to freely neglect the

correlations.

Keywords: Multivariate Ambiguity; Decoupling Inequality; Echo Chamber; Independence;

Probability Premium
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1 Introduction

How much would a pollster pay to extract truly independent data from citizens that are

highly correlated (e.g. from the same political party)? Statistically, this question may be

posed as: what is the price of independence? In this paper we will see that the price of

independence is a constant proportion, which provides a useful benchmark in some economic

contexts.

In particular, in Section 3 we show that the price of independence PD may be expressed as

the sup over all possible joint distributions, once you know the marginals. How much would

you pay for the information on the dependence? Our main Theorem in Section 3 shows that,

given a concave loss function, it is roughly 50% more than you would pay if the data were

truly independent.1

The term dependence is used in several ways in the statistical and economics literature. In

this paper, we will generally refer to dependence with Kendall’s tau, denoted τ, which mea-

sures the difference between concordance and discordance.2 We utilize τ because it measures

dependence between random variables in a way that is robust to rescaling, and unlike the

Pearson correlation, does not confuse the marginals with the dependence structure. More-

over, experimental evidence suggests that although individuals tend to estimate average de-

pendence fairly well, they incorrectly estimate high or low dependence (Clemen et al. (2000)).

We therefore require a measure such as τ that can apply overall and in the tails of the dis-

tribution. Our main result does not depend on the particular measure of dependence that we

utilize.

Dependence in a Statistical Echo Chamber. In section 3 below, we will define a sta-

tistical echo chamber Ck(d) as a collection of m-dimensional random variables d, which is

observed k different times. Each observation on d has a different level of dependence, and

we order the observations in terms of their dependence τ(k), such that each observation fea-

tures greater dependence than the previous observation, i.e. τ(k) ≥ τ(k−1), for k = 1, ...,K .

This problem has inherent ambiguity because in general, the researcher will not know what

1The term ‘price of independence’ signifies the amount that a researcher would pay to work with

data that are truly independent, see discussion in Section 3 below. Our main Theorem of Section 2

shows that PD equals e
e−1

, which is approximately 1.58.
2
τ is defined for two variables in the following manner: Consider a random vector (X1, X2) and

an independent vector (X̃1, X̃2) from the same distribution. Then τ is the probability of concordance

minus the probability of discordance for these pairs:

τ(X1, X2)= P((X1 − X̃1)(X2 − X̃2)> 0)−P((X1− X̃1)(X2− X̃2)< 0).

For a multivariate version of τ, see McNeil et al. (2015).

1



k is; hence there is ambiguity about the increase in dependence. When a decisionmaker faces

ambiguity, she may worry about the worst-case scenario (Gilboa and Schmeidler (1989)), and

make decisions based on that (by selecting univariate probability distributions consistent

with the worst-case). We apply the theorem in this setting, the ‘worst-case scenario’ is now a

dependence bound on a multivariate (unknown) distribution.

This setup resembles real world situations. One example is where the same set of assets

becomes increasingly dependent, as the economy moves from a boom market to a bust mar-

ket. Another example is in politics, where voters within a given political party increasingly

coalesce in their opinions on a particular issue, as the voting date comes closer. We apply our

result in a proposition, which allows us to evaluate conservatively, the price of information

loss due to being in a political echo chamber.

Related Literature. Our paper builds on the statistical literature on decoupling, much of

which is summarized in de la Peña and Giné (1999). It is also complementary to the follow-

ing research in economics. Meyer and Strulovici (2012) study how to order interdependence

in economic settings. They analyze five orderings of interdependence. The authors assess

when the orderings can be meaningfully ranked, depending on the dimension of the vari-

ables involved. Levy and Razin (2015) examine the effect on policy outcomes when voters

neglect correlations. This cognitive bias can improve political outcomes. They characterize

conditions on the distribution of preferences under which this induces higher vote shares for

the optimal policies and better information aggregation. Ellis and Piccione (2017) illustrate

that improper perception of correlations has a role in individual choice. In their setup, agents

choose assets, and may misperceive the joint returns. Maximizing subjective expected util-

ity, using these beliefs, might lead to under-valuing or over-valuing particular asset streams.

Levy and Razin (2018) suggest a framework for how sophisticated decision makers combine

multiple sources of information to form predictions, under multivariate ambiguity. They

show that there is a tradeoff betwen correlation neglect and an information-based correla-

tion bound, which affects choice behavior in nontrivial ways.

In this paper we generally focus on bivariate dependence or concordance. However, given

that our main result is in terms of arbitrary dependence, our analysis can also apply to mul-

tivariate dependence of any form. For example, tail dependence may be relevant in political

economy, where a researcher is interested in analyzing the dependence among the extreme

left (or extreme right) partisans in a particular election cycle. Moreover, we use both depen-

dence and payoff function, which may be interpreted as a first step towards incorporating not

just the level of dependence, but how a decisionmaker feels about dependence.
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The rest of the paper is organized as follows: Section 2 provides an overview of decoupling,

including our own new result. Section 3 develops an application to political economy. Section

4 concludes.

2 Background on Decoupling Results

In this section, we first illustrate the basic idea behind decoupling, since this approach is

not commonly used in economics. In order to build intuition and to provide a sense of the

scope of decoupling, we will provide 3 example areas of decoupling that may be relevant

in diverse branches of economics. We then develop a new result for application to political

economy. Heuristically speaking, the term ‘decoupling’ means taking dependent variables

and transforming them so that they become (conditionally) independent. In this way, we can

then examine dependent data, using standard techniques that are designed for independent

data. For background on decoupling, see the monograph by de la Peña and Giné (1999).

Intuition for Decoupling. The main idea behind decoupling is to create additional copies of

the dependent data, then rearrange these copies to extract conditional dependence. To begin

with, consider two sets of variables, di and yi, for i = 1, ..., n, with the same marginal distri-

butions for each i. d1, ..., dn are dependent random variables; and y1, ..., yn independent

random variables. We can now show our first result.

Example 1 of Decoupling: Linearity of Expectation. Note that for each i, yi has the

same marginal distribution as xi and,

E
n

∑

i=1

di = E
n
∑

i=1

yi . (1)

Remark: The above expression is a basic decoupling result. The left side of (1) is the

expectation of a sum of dependent random variables, while the right side is the sum of in-

dependent random variables. This expression is useful in statistics and economics, when we

require average effects on a particular set of dependent random variables, but all we know is

the corresponding result for independent counterparts of those variables. Also, the marginal

distributions are often observed or estimable, while the dependence is trickier to estimate,

see McNeil et al. (2015). So it is tractable to work with results for independent variables.
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How, in practice, can we apply decoupling? Put another way, given the dependent di ’s, how

can we obtain the independent yi ’s? One way of constructing the yi ’s is by producing n

independent copies of d1, d2, ..., dn, in the following manner:3

d(1)
1

, d(1)
2

, d(1)
3

, ...........,d(1)
n

d
(2)
1

,d(2)
2

,d(2)
3

, ..........., d
(2)
n

d(3)
1

, d(3)
2

,d(3)
3

, ..........., d(3)
n

.

.

d(n)
1

, d(n)
2

, d(n)
3

, ............,d(n)
n

Letting yi = d
(i)
i

it is easy to see that the following relations hold:

E
n
∑

i=1

di =

n
∑

i=1

Edi =

n
∑

i=1

Ed(i)
i

=

n
∑

i=1

E yi = E
n
∑

i=1

yi .

Example 2 of Decoupling: Sampling with Replacement. Applied researchers often

deal with not only dependent data but also functions of dependent data. Hence a natural

step to move beyond the linear model in (1) is to consider functions of dependent data. In

this regard, an important early result is that of Hoeffding (1963), who provided a complete

decoupling inequality, comparing sampling without replacement to sampling with replace-

ment. The argument is as follows. First, let {S} be a set with N elements . Let d1, ..., dn be a

sample without replacement and y1, ..., yn a sample with replacement from the same popula-

tion. Then, for every continuous and convex function Φ, Hoeffding shows that the following

inequality holds for all n ≤ N:

EΦ(
n
∑

i=1

di)≤ EΦ(
n
∑

i=1

yi). (2)

3For further details on this approach, see de la Peña (1990).
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Note that yi has the same marginal distribution as di, and that {di} is a sequence of depen-

dent variables while {yi} is a set of dependent random variables.4

Example 3 of Decoupling: Unions and Maxima. Some branches of economics rely on

order statistics in order to develop appropriate pricing, for example, in auction implementa-

tion.5 We therefore develop decoupling for the more general case of finite unions of dependent

variables, and then specialize it to a particular order statistic, namely the maximum, and

functions of the maximum.

Theorem 2.1. (Decoupling Finite Unions of Dependent Variables). Let {D i} be a sequence

of arbitrarily dependent events and {Yi} a sequence of independent events with P(D i)= P(Yi)

for all i ≥ 1. Then,

P

(

n
⋃

i=1

D i

)

≤
e

e−1
P

(

n
⋃

i=1

Yi

)

, (3)

and the result is sharp.

Corollary 2.1 (Decoupling the Maximum). Let {di} be a sequence of arbitrarily dependent

variables and {yi} a sequence of independent variables with Yi having the same distribution

as {di} for all i ≥ 1. Then

P

(

max
1≤i≤n

di > t

)

≤
e

e−1
P

(

max
1≤i≤n

yi > t

)

. (4)

Proposition 2.2 (Decoupling Functions of the Maximum). Let f (x), x ≥ 0, be a continuous

increasing function. Let {di} be a sequence of arbitrarily dependent variables and {yi} a

sequence of independent variables with yi having the same distribution as {di} for all i ≥ 1.

Then

E f

(

max
1≤i≤n

di

)

≤
e

e−1
E f

(

max
1≤i≤n

yi

)

. (5)

With the above examples in hand, we now turn to our main development of decoupling,

namely, decoupling concave functions of summed dependent variables. This development

has straightforward implications for microeconomics and political economy, as we shall see

in Section 3.

Decoupling with a Concave Function of Dependent Variables. In economic analy-

sis, it often falls on the researcher to move beyond treating the raw dependent data, and

instead work with an objective function attached to these data. These functions often have

4Shao (2000) extended the result in (2) to the case when the di ’s are negatively associated random

variables and the yi ’s is a sequence of independent variables with di having the same distribution as

yi for every i.
5We are grateful to Ronny Razin for pointing out the auction context.
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shape restrictions, and may include utility functions in economic theory, or loss functions in

econometrics. For example, in the echo chamber context of Section 3 below, voter polls may

feature dependent data, and the pollster is interested in the mean, variance or some utility

function attached to these data. Sometimes the function is concave (in consumer theory), at

other times it is convex (in producer theory). We present our result for concave functions.6

Motivated by these considerations, our main new result is below:

Theorem 2.2. Let d1, ..., dn be a sequence of arbitrarily dependent random variables. Let

y1, ..., yn be a sequence of independent random variables such that for all i, yi has the same

distribution as di. Then, for all concave increasing functions Φ(·) with Φ(0)= 0 we have

EΦ(
n
∑

i=1

di)≤
e

e−1
EΦ(

n
∑

i=1

yi). (6)

Remarks. Note that inequality (6) holds for all n, and hence can be used in situations when

the number of variables is arbitrarily large. Moreover, the inequality features a universal

constant: it does not matter the type of dependence. Our result has natural applications

in statistics and economics, because concave utility functions are often used to capture risk

aversion (Mas-Colell et al. (1995), Chapter 6), and dependence is linked to lack of diversi-

fication (Markowitz (1952)). Heuristically, equation (6) can be thought of as capturing the

following type of situation. When faced with summed, dependent data, a risk averse re-

searcher’s payoff must exceed what it would be if faced with independent data. However,

this payoff is restricted to be at most 1.5 times higher. Hence there is a price to pay for fac-

ing summed dependent (multivariate) data, similar to the probability premium required for

variable (univariate) data.7

Illustration in Statistics and Bank Portfolios. We now present a simple illustration of

the above Theorem. We provide the main application in the next section. Here, we focus

on the chi-square distribution, since it is widely used in statistical inference, for example

in hypothesis testing.8 Let the di ’s be dependent chi-square random variables with mean

1. Under the Theorem’s maintained assumptions, then, the yi ’s are independent chi-square

random variables with mean 1. Hence
∑n

i=1
yi is distributed as chi-square with mean n. Now

6The result for convex functions is similar to (6) and omitted for brevity. It is available from the

authors upon request. A version of (6) was first introduced by de la Peña (1990).
7For the premium required by a risk averse individual facing univariate data, see Mas-Colell et al.

(1995), Chapter 6.
8The chi-square distribution arises naturally when analyzing averages that are squared. For de-

tails on the chi-square’s role in the sampling distribution of estimators, see DeGroot and Schervish

(2012), Chapter 8. For the chi-square in hypothesis testing, see Johnston and DiNardo (1997), Chap-

ter 5. For its role in goodness of fit tests for categorical data, see Agresti (1996).
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applying the theorem, we have that for concave increasing functions Φ, the following bound

holds:

EΦ(d1+ ...+dn)≤
e

e−1
EΦ(y1 + ...+ yn)

≤
e

e−1
EΦ(χ2(n)). (7)

The above bound reduces analysis of multiple data, with unknown dependence, to a single

chi-square with known structure. This construction is useful in a purely statistical setting

when assessing dependent data.

Perhaps more interestingly for the current paper, the bound in (7) can be applied in economic

settings. Consider a situation where a regulator requires related banks to sum up their

(dependent) losses, and the regulator or bank is risk averse and therefore has a concave loss

function. To be concrete, let n = 2, so that there are two banks, say, Citibank and Deutsche

Bank. And let the payoff function Φ be quadratic utility. In this situation, the bound in

(7) says that, under the maintained assumptions, a risk averse regulator can get the worst

case scenario by the right hand side of (7). This is helpful because the joint distribution

and dependence of the left hand side (the raw losses of Citibank and Deutsche Bank) are

unknown. Nevertheless, the regulator can place a meaningful, worst-case scenario bound,

no matter the dependence. This worst case scenario corresponds to just a scalar e
e−1

times

the payoff she would require in a known case, if Citibank and Deutsche Bank were truly

diversified.

Note that although the right-hand side proportion e
e−1

is constant, sample size n still matters.

The reason is that sample size shows up in the right side, namely, the degrees of freedom of

the chi-square distribution.9 Thus, the present example has a benchmark chi-square with

mean n = 2. But if the portfolio comprised, say, 100 banks, then the benchmark would be a

chi-square with mean n = 100. Nevertheless, the import is that, relative to the independence

or fully-diversified case (right hand side) the price of independence is larger by a constant

factor of e
e−1

.

9More generally, although the proportion on the right hand side is constant, the level in this type

of decoupling bound will reflect sample size n. The reason is that the independent benchmark will be

related to the product of n independent marginals.
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3 Application to An Echo Chamber

We now define a statistical echo chamber, and demonstrate our main application of decou-

pling in political economy. Intuitively, an echo chamber comprises a set of variables that

become more dependent each time they are observed. Standard methods of inference and

estimation require independence of the relevant variables. Hence, researchers who face echo

chambers may wish to glean a sense of the loss in subjective payoff from assuming the data

are independent, when in fact there is dependence. The problem is compounded by the fact

that the researcher will not know what k is, i.e. how much dependence has grown. Hence

there is ambiguity about the amount of increase in dependence. For example, we might con-

sider a utility function for a risk-averse policymaker (e.g. Prime Minister David Cameron on

the eve of the 2016 Brexit vote) who faces voters with correlation neglect. We will apply the

above new theorem to establish a proposition.

As mentioned in the literature review of Section 1, our approach is complementary to re-

lated research. Some of that research treats interdependence via stochastic ordering (see

Meyer and Strulovici (2015)). Other research assesses divergence between dependent data

and a benchmark using entropy-related multivariate divergence measures (Miller and Liu

(2002)).

Price of Independence. We use the term price of independence to denote the proportional

increase in resources that a researcher with a given payoff or loss function f would pay, at

most, in order to deal with independent data, instead of dependent data.

For a given payoff function f , we define the price of independence PI as an upper bound. This

bound is based on the ratio of expected values of this function of dependent variables di to

the same function of independent variables yi . Specifically,

PI ≤
E f (d1, ...di, ...dn)

E f (y1, ..., yi, ..., yn)
. (8)

Our definition of the price of independence PI encompasses general functions of dependent

variables, such as order statistics and sums. In particular, it may be of interest in some

branches of finance to consider f (d1, ...di, ...dn) = maxi(di) and f (d1, ...di, ...dn) =
∑

i di, in

which case the corresponding prices of independence are
Emaxi (di )
Emaxi (yi )

and
Ef (

∑

i di )

Ef (
∑

i yi )
, respectively.

The fact that the price of independence for maxima can be computed in this manner for the

maximum is surprising, given that Emaxi(di) can be a large quantity. In our application

below, we will focus on the sum. PI is unit free, and therefore can be expressed in currency

such as dollars or pounds. Moreover, PI does not depend on sample size. We can also ex-

8



tend the above definition of PI to be the sup over marginals, or sup over concave functions.

Specifically, we can define a normalized price of independence P̂ I, as

P̂ I = sup
{gi}

n
i=1

PI, (9)

where {g i}
n
i=1

denotes the set of common marginal distributions for di and yi . This extension

may be relevant for conservative decisionmakers facing multivariate ambiguity.

If evaluating the same set of m dependent variables {di}
m
i=1

that are observed at repeated pe-

riods indexed by k, for k = 1, ..,K , we can also define the total price of independence. Specif-

ically, we define the price of independence PItotal for the entire set of K observations, as

simply the sum of the prices of independence over all periods:

PItotal
=

K
∑

k=1

PI(k). (10)

Intuition for Echo Chamber. Before defining an echo chamber, we provide a few words

of intuition. The echo chamber definition in (11) below is a basic attempt to capture rudi-

mentary features of the following scenario: a researcher or policymaker observes data on

citizens or assets at periodic intervals, say, monthly, where the variables become increasingly

correlated. For example, she may observe assets in a period of systemic risk. Alternatively,

she may observe monthly polling data in the buildup to an important vote, where the envi-

ronment features biased perceptions such as correlation neglect, and increasing partisanship

(Ortoleva and Snowberg (2015); Levy and Razin (2015)). In the latter, voting, case, our echo

chamber formalizes a salient feature of partisan politics, where members of a political party

(say, Labour in the UK) read the same newspapers and receive similar news feeds. Sup-

pose the voters were polled at the beginning of each month, shortly after the government’s

plan to hold a vote on Brexit was announced. At the first poll, say, in January 2016, mem-

bers of the Labour party would have some dependence in their views. In February, after

one month of discussion among themselves, members of the political party would plausibly

display stronger views, having had time to harden their resolve. A similar increase in de-

pendence would occur in March, and so on. This scenario embodies the type of increasing

dependence that we study. In such situations of unknown dependence, a policymaker will

face difficulty in evaluating the polling data, and in ascertaining how much the echo cham-

ber effect costs her.

Definition: Statistical Echo Chamber. Consider an m-dimensional vector of dependent,

nonnegative variables d≡ d1, ..., dm, and a vector of independent variables y≡ y1, ..., ym, with

the same marginal distributions as d, i.e. f i(di) = g i(yi), for all i = 1, ..., m. To fix ideas, d

9



may refer to the returns on m different stocks in a portfolio, or m different voters that are

polled periodically. As in the Introduction, let τ(k) denote average dependence during month

k, across the marginals {di}
m
i=1

of d. Let dk denote the kth observation of the vector d. We

define an echo chamber Ck(d) as a set of K > 1 observations of d, where at each observation

k = 1, ...,K on the vector d, dependence τ(k) exceeds that of the previous observation k−1.

That is, τ(k)≥ τ(k−1), for all k > 1. In particular, a k-replica echo chamber Ck(d) of dependent

variables d is defined as

Ck(d) = {dk
|τ(k)≥ τ(k−1), k = 1, ...,K }. (11)

The echo chamber definition in (11) features a weak inequality for the increase in depen-

dence. We do not require that dependence among voters strictly increases despite their gath-

ering more information. We merely indicate that dependence does not decrease.

Challenges in an Echo Chamber. Suppose that the data {di}
m
i=1

are observed monthly.

The echo chamber researcher or policymaker is interested in the quantity
∑m

i=1
di, the sum of

numbers in {di}
m
i=1

, each month. The sum is a key quantity in many economic contexts. For

example, in voting, for each poll month k in the year 2016, the quantity
∑m

i=1
di measures the

total number of individuals that say they would vote ‘Yes’ for Brexit in the UK (or vote for

Hillary Clinton or Donald Trump in the USA).10 Perhaps more naturally, rather than provid-

ing a ‘Yes-No’ vote, the voters could be report an intensity of preference for each candidate

or platform, by responding to the following questionaire: ‘on a scale of 1 to 5 (with 5 being

the highest level of interest), report how interested you are in voting ‘Yes’ for this proposal or

candidate’. Thus
∑m

i=1
di represents the amount of ‘expressed interest’ in a particular vote,

where the sample includes groups of voters with large or increasing (unknown) dependence.11

Building on our Introduction and above discussion, below is a problem a policymaker might

wish to address, if operating in an echo chamber environment.

Echo Chamber Problem: How much is it worth to a conservative researcher or policymaker, to

analyze independent data, instead of echo chamber data?

In order to address the above challenge, we require a behavioral result, which character-

izes choices of individuals faced with ambiguity. This Lemma summarizes a widely used

approach (see Gilboa and Schmeidler (1989)) to ameliorate ambiguity, and places it in the

context of ambiguous dependence. Essentially, a decisionmaker facing ambiguous depen-

10Alternatively, the term
∑m

i=1
di can represent equally weighted returns in a portfolio of m assets.

11Note that the above formulation is in terms of average dependence measured by Kendall’s tau.

Since the result in (6) applies to all types of dependence, we could also include downside risk or tail

dependence, i.e. dependence at the extremes of the distribution. Such dependence corresponds to

far-right or far-left partisan dependence in a voting context from politics.

10



dence computes for each k, the price of independence. Being ambiguity-averse, she takes the

worst evaluation as the one to be counted.

Lemma 3.1 (Choice of conservative individual facing ambiguous dependence). When faced

with ambiguity on dependence, a max-min or conservative individual will choose the worst-

case dependence and optimize according to that scenario. Similarly, if faced with unknown

time to a boundary crossing event with dependent data, a conservative individual will choose

the expected upper limit of the boundary crossing time.

The following Proposition describes how a researcher or policymaker may price the unknown

dependence in an echo chamber. A major challenge is that the policymaker will not know

the form of dependence (e.g. symmetric vs asymmetric), nor how much time dependence

has been increasing (the value of k relative to K ). The Proposition shows that despite these

considerations, a policymaker can establish a meaningful premium for dependence.

Proposition 3.1 (Decoupling and Price of Independence in an Echo Chamber). Suppose

that a risk-averse policymaker with continuous payoff function u observes an echo chamber

Ck as defined in (11) above. The policymaker does not know the value of k, and displays a

conservative attitude towards ambiguous dependence. Then the policymaker’s total price of

independence is proportional to K, the maximal echo chamber period.

Proof: Observe that a risk averter’s objective function u is concave (see Definition 6.C.1,

Mas-Colell et al. (1995)), and has u(0)= 0. Therefore we can apply Theorem 2.2, with Φ= u.

· To compute the price of independence at each month k, expression (8) says PI(k)≤
Eu(

∑k
i=1 di )

Eu(
∑k

i=1
yi )

=

e
e−1

, each k, where the latter equality follows from Theorem 1, expression (6).

· By Lemma 1, if the policymaker does not know how long the echo chamber has been de-

veloping (i.e. does not know what the current month k is), she will apply her worst-case

scenario, namely, that dependence has plateaud to the maximal τ, where τ(k) = τ(K ). Hence

she assumes k =K , when calculating the total price of independence.

To compute the total price of independence for the conservative policymaker, we use the ex-

pression for PItotal from (10). This involves multiplying the monthly PI(k) from above by

the maximal index: PItotal =
∑K

k=1
PI(k)= K ·

e
e−1

. ■

Discussion of Proposition 3.1. The price of independence is similar to the probability premium

required by risk averse individuals facing risky bets. Intuitively, if dependence is unknown

and harmful for inference, a conservative researcher will choose the worst case scenario and

hence the maximal price of independence. If the policymaker has information that a depen-

dence plateau is far away, i.e. it is very early and correlation neglect has not set in, then she

may not require as high a premium. Conversely, if the echo chamber is known to have been

developing for some time, the bound is more likely to be sharp.
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4 Concluding Remarks

Echo chambers are potentially problematic to analyze since they display unknown, poten-

tially increasing dependence with each observation. Such phenomena occur in politics (see

Levy and Razin (2015); Ortoleva and Snowberg (2015)), where partisan voters increasingly

coalesce in their opinions, as time passes. We offer an approach to deal with evaluating the

ambiguous dependence in echo chambers, based on the theory of decoupling in probability.

Our approach is complementary to other approaches, such as those involving stochastic or-

ders (Meyer and Strulovici (2015)) and multivariate divergence measures based on entropy

considerations (Miller and Liu (2002)).

We develop a new inequality, which we then use to establish a maximal price to pay to com-

pensate a researcher or decisionmaker for being in a political echo chamber. We show that

a conservative decisionmaker would pay roughly 50% more than if the data were in fact in-

dependent. Hence there is a price to pay for facing summed dependent (multivariate) data,

similar to the probability premium required for variable (univariate) data. For a given set of

marginal information, this bound can be reformulated as the sup over all possible joint dis-

tributions connecting the marginals. This latter interpretation may tie our result to theories

of decisionmaking under (multivariate) ambiguity.

Our main result in (6) treats arbitrary dependence, hence our analysis can also apply to mul-

tivariate dependence of any form. For example, tail dependence may be relevant in political

economy, where a researcher is interested in analyzing the dependence among the extreme

left (or extreme right) partisans in a particular election cycle. The decoupling approach may

have applications to other areas of decision theory and political economy.
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A Proofs and Additional Results

Proof of Theorem 2.1: Let P(D i )= P(Yi )= pi . P
(

⋃n
i=1

D i

)

≤ min
{

∑n
i=1

pi , 1
}

= s. Without loss of generality, we can assume

that
∑n

i=1
pi ≤ 1. Therefore,

P
(
⋃n

i=1 Yi

)

= 1− P
(
⋂n

i=1 Y c
i

)

= 1−
∏n

i=1 P(Y c
i

)= 1−
∏n

i=1(1− pi )=

= 1−
∏n

i=1(1− pi )≤ 1−
∏n

i=1 elog(1−pi )
≤ 1− e

−
∑n

i=1
pi ,

by a Taylor expansion. After verifying that s
1−e−s is increasing. To see that f (s) ≡ s

1−e−s is increasing for the stated range

s ∈ (0,1), we differentiate it to obtain

f ′(s)=
(1) · (1− e−s)− s · (−1)(−e−s)

(1− e−s)2
=

1− e−s − se−s

(1− e−s)2
.

The function f (s) is increasing if f ′(s)≥ 0. Examining the expression for f ′(s), its denominator is always positive. Therefore f (s)

is increasing once the numerator is positive. The numerator is positive if 1− e−s (1+ s) ≥ 0, or equivalently, since s ≥ ln(1+ s).

for 0< s< 1, we get

P
(

⋃n
i=1

D i

)

P
(

⋃n
i=1

E i

) ≤
s

1− e−s
≤

e

e−1
.

The sharpness of the inequality (as n tends to infinity) can be easily verified by letting P(Yi )=
1
n for i =1, ...,n.

Proof of Theorem: 2.2 We will show the proof for expression (6), concave increasing functions with Φ(0)= 0.

Let d i ’s be a sequence of arbitrarily dependent non-negative random variables. Let yi independent of the sequence of

d i ’s and that the yi ’s are independent with yi having the same distribution as d i for all i. From de la Peña (1990), and

Makarychev and Sviridenko (2018) it follows that for all concave functions Φ(·),

EΦ(π
∑n

i=1
d i)≤ EΦ(

∑n
i=1

yi).
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The left hand side can be bounded from below by using conditional expectations.

EΦ(π
n
∑

i=1

d i)=
∞
∑

k=0

EΦ(k
∑n

i=1
d i)e

−1

k!
≥

∞
∑

k=1

EΦ(
∑n

i=1
d i)e

−1

k!
= EΦ(

n
∑

i=1

d i)e
−1

∞
∑

k=1

1

k!
=

EΦ(
n
∑

i=1

d i)e
−1(e−1).
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