210 research outputs found

    Catching Cheats: Detecting Strategic Manipulation in Distributed Optimisation of Electric Vehicle Aggregators

    Full text link
    Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets set for the near future, the management of large EV fleets must be seen as a priority. Specifically, we study a scenario where EV charging is managed through self-interested EV aggregators who compete in the day-ahead market in order to purchase the electricity needed to meet their clients' requirements. With the aim of reducing electricity costs and lowering the impact on electricity markets, a centralised bidding coordination framework has been proposed in the literature employing a coordinator. In order to improve privacy and limit the need for the coordinator, we propose a reformulation of the coordination framework as a decentralised algorithm, employing the Alternating Direction Method of Multipliers (ADMM). However, given the self-interested nature of the aggregators, they can deviate from the algorithm in order to reduce their energy costs. Hence, we study the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse different possible attack vectors and propose a mathematical framework to quantify and detect manipulation. Importantly, this detection framework is not limited the considered EV scenario and can be applied to general ADMM algorithms. Finally, we test the proposed decentralised coordination and manipulation detection algorithms in realistic scenarios using real market and driver data from Spain. Our empirical results show that the decentralised algorithm's convergence to the optimal solution can be effectively disrupted by manipulative attacks achieving convergence to a different non-optimal solution which benefits the attacker. With respect to the detection algorithm, results indicate that it achieves very high accuracies and significantly outperforms a naive benchmark

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Visual Servoing

    Get PDF
    The goal of this book is to introduce the visional application by excellent researchers in the world currently and offer the knowledge that can also be applied to another field widely. This book collects the main studies about machine vision currently in the world, and has a powerful persuasion in the applications employed in the machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field. For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and researcher, they can study and learn the chapters, and then employ another application method

    Activity Report: Automatic Control 2009

    Get PDF

    Activity Report: Automatic Control 2013

    Get PDF

    From humans to humanoids: The optimal control framework

    Get PDF
    AbstractIn the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control

    ๊ตฌ์กฐ๋กœ๋ด‡์„ ์œ„ํ•œ ๊ฐ•๊ฑดํ•œ ๊ณ„์ธต์  ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ๋ฐ•์ข…์šฐ.Over the last several years, robotics has experienced a striking development, and a new generation of robots has emerged that shows great promise in being able to accomplish complex tasks associated with human behavior. Nowadays the objectives of the robots are no longer restricted to the automaton in the industrial process but are changing into explorers for hazardous, harsh, uncooperative, and extreme environments. As these robots usually operate in dynamic and unstructured environments, they should be robust, adaptive, and reactive under various changing operation conditions. We propose online hierarchical optimization-based planning and control methodologies for a rescue robot to execute a given mission in such a highly unstructured environment. A large number of degrees of freedom is provided to robots in order to achieve diverse kinematic and dynamic tasks. However, accomplishing such multiple objectives renders on-line reactive motion planning and control problems more difficult to solve due to the incompatible tasks. To address this problem, we exploit a hierarchical structure to precisely resolve conflicts by creating a priority in which every task is achieved as much as possible according to the levels. In particular, we concentrate on the reasoning about the task regularization to ensure the convergence and robustness of a solution in the face of singularity. As robotic systems with real-time motion planners or controllers often execute unrehearsed missions, a desired task cannot always be driven to a singularity free configuration. We develop a generic solver for regularized hierarchical quadratic programming without resorting to any off-the-shelf QP solver to take advantage of the null-space projections for computational efficiency. Therefore, the underlying principles are thoroughly investigated. The robust optimal solution is obtained under both equality and inequality tasks or constraints while addressing all problems resulting from the regularization. Especially as a singular value decomposition centric approach is leveraged, all hierarchical solutions and Lagrange multipliers for properly handling the inequality constraints are analytically acquired in a recursive procedure. The proposed algorithm works fast enough to be used as a practical means of real-time control system, so that it can be used for online motion planning, motion control, and interaction force control in a single hierarchical optimization. Core system design concepts of the rescue robot are presented. The goals of the robot are to safely extract a patient and to dispose a dangerous object instead of humans. The upper body is designed humanoid in form with replaceable modularized dual arms. The lower body is featured with a hybrid tracked and legged mobile platform to simultaneously acquire versatile manipulability and all-terrain mobility. Thus, the robot can successfully execute a driving task, dangerous object manipulation, and casualty extraction missions by changing the pose and modularized equipments in an optimized manner. Throughout the dissertation, all proposed methods are validated through extensive numerical simulations and experimental tests. We highlight precisely how the rescue robot can execute a casualty extraction and a dangerous object disposal mission both in indoor and outdoor environments that none of the existing robots has performed.์ตœ๊ทผ์— ๋“ฑ์žฅํ•œ ์ƒˆ๋กœ์šด ์„ธ๋Œ€์˜ ๋กœ๋ด‡์€ ๊ธฐ์กด์—๋Š” ์ธ๊ฐ„๋งŒ์ด ํ•  ์ˆ˜ ์žˆ์—ˆ๋˜ ๋ณต์žกํ•œ ์ผ์„ ๋กœ๋ด‡ ๋˜ํ•œ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ํŠนํžˆ DARPA Robotics Challenge๋ฅผ ํ†ตํ•ด ์ด๋Ÿฌํ•œ ์‚ฌ์‹ค์„ ์ž˜ ํ™•์ธํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋กœ๋ด‡๋“ค์€ ๊ณต์žฅ๊ณผ ๊ฐ™์€ ์ •ํ˜•ํ™”๋œ ํ™˜๊ฒฝ์—์„œ ์ž๋™ํ™”๋œ ์ผ์„ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋˜ ์ž„๋ฌด์—์„œ ๋” ๋‚˜์•„๊ฐ€ ๊ทนํ•œ์˜ ํ™˜๊ฒฝ์—์„œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ์œ„ํ—˜ํ•œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ์ „ํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋ž˜์„œ ์‚ฌ๋žŒ๋“ค์€ ์žฌ๋‚œํ™˜๊ฒฝ์—์„œ ์•ˆ์ „ํ•˜๊ณ  ์‹œ์˜ ์ ์ ˆํ•˜๊ฒŒ ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ๋Š” ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๋Œ€์•ˆ ์ค‘์—์„œ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์€ ๋Œ€์ฒ˜ ๋ฐฉ์•ˆ์œผ๋กœ ๋กœ๋ด‡์„ ์ƒ๊ฐํ•˜๊ฒŒ ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ด๋Ÿฌํ•œ ๋กœ๋ด‡์€ ๋™์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ถˆํ™•์‹ค์„ฑ์— ๋Œ€ํ•ด ๊ฐ•๊ฑดํ•ด์•ผํ•˜๊ณ , ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ ๋Šฅ๋™์ ์œผ๋กœ ๋ฐ˜์‘์„ ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋กœ๋ด‡์ด ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๊ฐ•๊ฑดํ•˜๋ฉด์„œ๋„ ์ ์‘์ ์œผ๋กœ ๋™์ž‘ํ•  ์ˆ˜ ์žˆ๋Š” ์‹ค์‹œ๊ฐ„ ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ๋™์ž‘ ๊ณ„ํš ๋ฐ ์ œ์–ด ๋ฐฉ๋ฒ•๊ณผ ๊ตฌ์กฐ ๋กœ๋ด‡์˜ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ธ๊ฐ„์€ ๋งŽ์€ ์ž์œ ๋„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ์œผ๋ฉฐ, ํ•˜๋‚˜์˜ ์ „์‹  ๋™์ž‘์„ ์ƒ์„ฑํ•  ๋•Œ ๋‹ค์–‘ํ•œ ๊ธฐ๊ตฌํ•™ ํ˜น์€ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ •์˜ํ•˜๊ณ , ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ข…ํ•ฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•™์Šต์„ ํ†ตํ•ด ๊ฐ ๋™์ž‘ ์š”์†Œ๋“ค์„ ์ตœ์ ํ™”ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ƒํ™ฉ ์— ๋”ฐ๋ผ ๊ฐ ๋™์ž‘ ์š”์†Œ์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜๊ฑฐ๋‚˜ ๋ถ„๋ฆฌํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ตœ์ ์˜ ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ œ์–ดํ•œ๋‹ค. ์ฆ‰, ์ƒํ™ฉ์— ๋”ฐ๋ผ ์ค‘์š”ํ•œ ๋™์ž‘์š”์†Œ๋ฅผ ์šฐ์„ ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋Š” ๋ถ€๋ถ„ ํ˜น์€ ์ „์ฒด์ ์œผ๋กœ ํฌ๊ธฐํ•˜๊ธฐ๋„ ํ•˜๋ฉด์„œ ๋งค์šฐ ์œ ์—ฐํ•˜๊ฒŒ ์ „์ฒด ๋™์ž‘์„ ์ƒ์„ฑํ•˜๊ณ  ์ตœ์ ํ™” ํ•œ๋‹ค. ์ธ๊ฐ„๊ณผ ๊ฐ™์ด ๋‹ค์ž์œ ๋„๋ฅผ ๋ณด์œ ํ•œ ๋กœ๋ด‡ ๋˜ํ•œ ๊ธฐ๊ตฌํ•™๊ณผ ๋™์—ญํ•™์  ํŠน์„ฑ์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ์„ธ๋ถ€ ๋™์ž‘ ํ˜น์€ ์ž‘์—…์„ ์ž‘์—…๊ณต๊ฐ„(task space) ํ˜น์€ ๊ด€์ ˆ๊ณต๊ฐ„(configuration space)์—์„œ ์ •์˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์šฐ์„ ์ˆœ์œ„์— ๋”ฐ๋ผ ์ด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ๊ฒฐํ•ฉํ•˜์—ฌ ์ „์ฒด ๋™์ž‘์„ ์ƒ ์„ฑํ•˜๊ณ  ์ œ์–ดํ•  ์ˆ˜ ์žˆ๋‹ค. ์„œ๋กœ ์–‘๋ฆฝํ•˜๊ธฐ ์–ด๋ ค์šด ๋กœ๋ด‡์˜ ๋™์ž‘ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋™์ž‘๋“ค ์‚ฌ์ด์— ์šฐ์„ ์ˆœ์œ„๋ฅผ ๋ถ€์—ฌํ•˜์—ฌ ๊ณ„์ธต์„ ์ƒ์„ฑํ•˜๊ณ , ์ด์— ๋”ฐ๋ผ ๋กœ๋ด‡์˜ ์ „์‹  ๋™์ž‘์„ ๊ตฌํ˜„ํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์˜ค๋žซ๋™์•ˆ ์—ฐ๊ตฌ๊ฐ€ ์ง„ํ–‰๋˜์–ด ์™”๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜๋ฉด ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋†’์€ ๋™์ž‘๋ถ€ํ„ฐ ์ˆœ์ฐจ์ ์œผ๋กœ ์‹คํ–‰ํ•˜์ง€๋งŒ, ์šฐ์„ ์ˆœ์œ„๊ฐ€ ๋‚ฎ์€ ๋™์ž‘์š”์†Œ๋“ค๋„ ๊ฐ€๋Šฅํ•œ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ตœ์ ์˜ ํ•ด๋ฅผ ์ฐพ์„ ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ง€๋งŒ ๊ด€์ ˆ์˜ ๊ตฌ๋™ ๋ฒ”์œ„์™€ ๊ฐ™์€ ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ๊นŒ์ง€ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด์„œ๋Š” ์•„์ง๊นŒ์ง€ ๋งŽ์€ ๋ถ€๋ถ„์ด ๋ฐ ํ˜€์ง„ ๋ฐ”๊ฐ€ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๋“ฑ์‹๊ณผ ๋ถ€๋“ฑ์‹์œผ๋กœ ํ‘œํ˜„๋˜๋Š” ๊ตฌ์†์กฐ๊ฑด ํ˜น์€ ๋™์ž‘์š”์†Œ๋ฅผ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ๋™์‹œ์— ํฌํ•จ์‹œํ‚ค๊ณ , ํŠน์ด์ ์ด ์กด์žฌํ•˜๋”๋ผ๋„ ๊ฐ•๊ฑด์„ฑ๊ณผ ์ˆ˜๋ ด์„ฑ์„ ๋ณด์žฅํ•˜๋Š” ๊ด€์ ˆ๊ณต๊ฐ„์—์„œ์˜ ์ตœ์ ํ•ด๋ฅผ ํ™•๋ณดํ•˜๋Š”๋ฐ ์ง‘์ค‘ํ•œ๋‹ค. ์™œ๋‚˜ํ•˜๋ฉด ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋กœ๋ด‡์€ ์‚ฌ์ „์— ๊ณ„ํš๋œ ๋™์ž‘์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๊ฒƒ์ด ์•„๋‹Œ ๋ณ€ํ™”ํ•˜๋Š” ํ™˜๊ฒฝ์กฐ๊ฑด์— ๋”ฐ๋ผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋™์ž‘์„ ๊ณ„ํšํ•˜๊ณ  ์ œ์–ดํ•ด์•ผ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ํŠน์ด์ ์ด ์—†๋Š” ์ž์„ธ๋กœ ๋กœ๋ด‡์„ ํ•ญ์ƒ ์ œ์–ดํ•˜๊ธฐ๊ฐ€ ์–ด๋ ต๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ด๋ ‡๊ฒŒ ํŠน์ด์ ์„ ํšŒํ”ผํ•˜๋Š” ๋ฐฉํ–ฅ์œผ๋กœ ๋กœ๋ด‡์„ ์ œ์–ดํ•˜๋Š” ๊ฒƒ์€ ๋กœ๋ด‡์˜ ์šด์šฉ์„ฑ์„ ์‹ฌ๊ฐํ•˜๊ฒŒ ์ €ํ•ด์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ํŠน์ด์  ๊ทผ๋ฐฉ์—์„œ์˜ ํ•ด์˜ ๊ฐ•๊ฑด์„ฑ์ด ๋ณด์žฅ๋˜์ง€ ์•Š์œผ๋ฉด ๋กœ๋ด‡ ๊ด€์ ˆ์— ๊ณผ๋„ํ•œ ์†๋„ ํ˜น์€ ํ† ํฌ๊ฐ€ ๋ฐœ์ƒํ•˜์—ฌ ๋กœ๋ด‡์˜ ์ž„๋ฌด ์ˆ˜ํ–‰์ด ๋ถˆ๊ฐ€๋Šฅํ•˜๊ฑฐ๋‚˜ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์†์ƒ์„ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๋‚˜์•„๊ฐ€ ๋กœ๋ด‡๊ณผ ํ•จ๊ป˜ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ์‚ฌ๋žŒ์—๊ฒŒ ์ƒํ•ด๋ฅผ ๊ฐ€ํ•  ์ˆ˜๋„ ์žˆ๋‹ค. ํŠน์ด์ ์— ๋Œ€ํ•œ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์šฐ์„ ์ˆœ์œ„ ๊ธฐ๋ฐ˜์˜ ๊ณ„์ธต์  ์ตœ์ ํ™”์™€ ์ •๊ทœํ™” (regularization)๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” (RHQP: Regularized Hierarchical Quadratic Program) ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃฌ๋‹ค. ๋ถ€๋“ฑ์‹์ด ํฌํ•จ๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”์— ์ •๊ทœํ™”๋ฅผ ๋™์‹œ์— ๊ณ ๋ คํ•จ์œผ๋กœ์จ ์•ผ๊ธฐ๋˜๋Š” ๋งŽ์€ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ  ํ•ด์˜ ์ตœ์ ์„ฑ๊ณผ ๊ฐ•๊ฑด์„ฑ์„ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ ์™ธ๋ถ€์˜ ์ตœ์ ํ™” ํ”„๋กœ๊ทธ๋žจ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ  ์ˆ˜์น˜์  ์ตœ์ ํ™” (numerical optimization) ์ด๋ก ๊ณผ ์šฐ์„ ์ˆœ์œ„์— ๊ธฐ๋ฐ˜์„ ๋‘๋Š” ์—ฌ์œ ์ž์œ ๋„ ๋กœ๋ด‡์˜ ํ•ด์„ ๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ๊ทน๋Œ€ํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ด์ฐจ ํ”„๋กœ๊ทธ๋žจ(quadratic programming)์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ด์™€ ๋™์‹œ์— ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ์ด๋ก ์  ๊ตฌ์กฐ๋ฅผ ์ฒ ์ €ํ•˜๊ฒŒ ๋ถ„์„ํ•œ๋‹ค. ํŠนํžˆ ํŠน์ด๊ฐ’ ๋ถ„ํ•ด (singular value decomposition)๋ฅผ ํ†ตํ•ด ์ตœ์ ํ•ด์™€ ๋ถ€๋“ฑ์‹ ์กฐ๊ฑด์„ ์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๋ผ๊ทธ๋ž‘์ง€ ์Šน์ˆ˜๋ฅผ ์žฌ๊ท€์ ์ธ ๋ฐฉ๋ฒ•์œผ๋กœ ํ•ด์„์  ํ˜•ํƒœ๋กœ ๊ตฌํ•จ์œผ๋กœ์จ ๊ณ„์‚ฐ์˜ ํšจ์œจ์„ฑ์„ ์ฆ๋Œ€์‹œํ‚ค๊ณ  ๋™์‹œ์— ๋ถ€๋“ฑ์‹์˜ ์กฐ๊ฑด์„ ์˜ค๋ฅ˜ ์—†์ด ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™”๋ฅผ ํž˜์ œ์–ด๊นŒ์ง€ ํ™•์žฅํ•˜์—ฌ ํ™˜๊ฒฝ๊ณผ ๋กœ๋ด‡์˜ ์•ˆ์ „ํ•œ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜์—ฌ ๋กœ๋ด‡์ด ์ ์ ˆํ•œ ํž˜์œผ๋กœ ํ™˜๊ฒฝ๊ณผ ์ ‘์ด‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋ถˆํ™•์‹ค์„ฑ์ด ์กด์žฌํ•˜๋Š” ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ ๋น„์ •ํ˜• ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ๊ตฌ์กฐ๋กœ๋ด‡์˜ ํ•ต์‹ฌ ์„ค๊ณ„ ๊ฐœ๋…์„ ์ œ์‹œํ•œ๋‹ค. ๋น„์ •ํ˜• ํ™˜๊ฒฝ์—์„œ์˜ ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ์ด๋™ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•  ์ˆ˜ ์žˆ๋Š” ํ˜•์ƒ์œผ๋กœ ๋กœ๋ด‡์„ ์„ค๊ณ„ํ•˜์—ฌ ๊ตฌ์กฐ ๋กœ๋ด‡์œผ๋กœ ํ•˜์—ฌ๊ธˆ ์ตœ์ข… ๋ชฉ์ ์œผ๋กœ ์„ค์ •๋œ ์ธ๊ฐ„์„ ๋Œ€์‹ ํ•˜์—ฌ ๋ถ€์ƒ์ž๋ฅผ ๊ตฌ์กฐํ•˜๊ณ  ์œ„ํ—˜๋ฌผ์„ ์ฒ˜๋ฆฌํ•˜๋Š” ์ž„๋ฌด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•œ๋‹ค. ๊ตฌ์กฐ ๋กœ๋ด‡์— ํ•„์š”ํ•œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋Š” ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด์™€ ์œ„ํ—˜๋ฌผ ์ฒ˜๋ฆฌ ์ž„๋ฌด์— ๋”ฐ๋ผ ๊ต์ฒด ๊ฐ€๋Šฅํ•œ ๋ชจ๋“ˆํ˜•์œผ๋กœ ์„ค๊ณ„ํ•˜์—ฌ ๊ฐ๊ฐ์˜ ์ž„๋ฌด์— ๋”ฐ๋ผ ์ตœ์ ํ™”๋œ ๋งค๋‹ˆํ“ฐ ๋ ˆ์ดํ„ฐ๋ฅผ ์žฅ์ฐฉํ•˜์—ฌ ์ž„๋ฌด๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋‹ค. ํ•˜์ฒด๋Š” ํŠธ๋ž™๊ณผ ๊ด€์ ˆ์ด ๊ฒฐํ•ฉ๋œ ํ•˜์ด๋ธŒ๋ฆฌ๋“œ ํ˜•ํƒœ๋ฅผ ์ทจํ•˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ฃผํ–‰ ์ž„๋ฌด์™€ ์กฐ์ž‘์ž„๋ฌด์— ๋”ฐ๋ผ ํ˜•์ƒ์„ ๋ณ€๊ฒฝํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜•์ƒ ๋ณ€๊ฒฝ๊ณผ ๋ชจ๋“ˆํ™”๋œ ๋งค๋‹ˆํ“ฐ๋ ˆ์ดํ„ฐ๋ฅผ ํ†ตํ•ด์„œ์กฐ์ž‘ ์„ฑ๋Šฅ๊ณผ ํ—˜ํ•œ ์ง€ํ˜•์—์„œ ์ด๋™ํ•  ์ˆ˜ ์žˆ๋Š” ์ฃผํ–‰ ์„ฑ๋Šฅ์„ ๋™์‹œ์— ํ™•๋ณดํ•˜์˜€๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ๊ตฌ์กฐ๋กœ๋ด‡์˜ ์„ค๊ณ„์™€ ์‹ค์‹œ๊ฐ„ ๊ณ„์ธต์  ์ œ์–ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋น„์ •ํ˜• ์‹ค๋‚ด์™ธ ํ™˜๊ฒฝ์—์„œ ๊ตฌ์กฐ๋กœ๋ด‡์ด ์ฃผํ–‰์ž„๋ฌด, ์œ„ํ—˜๋ฌผ ์กฐ์ž‘์ž„๋ฌด, ๋ถ€์ƒ์ž ๊ตฌ์กฐ ์ž„๋ฌด๋ฅผ ์„ฑ๊ณต์ ์œผ๋กœ ์ˆ˜ ํ–‰ํ•  ์ˆ˜ ์žˆ์Œ์„ ํ•ด์„๊ณผ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์ž…์ฆํ•จ์œผ๋กœ์จ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ œ์•ˆํ•œ ์„ค๊ณ„์™€ ์ •๊ทœํ™”๋œ ๊ณ„์ธต์  ์ตœ์ ํ™” ๊ธฐ๋ฐ˜์˜ ์ œ์–ด ์ „๋žต์˜ ์œ ์šฉ์„ฑ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Motivations 1 1.2 Related Works and Research Problems for Hierarchical Control 3 1.2.1 Classical Approaches 3 1.2.2 State-of-the-Art Strategies 4 1.2.3 Research Problems 7 1.3 Robust Rescue Robots 9 1.4 Research Goals 12 1.5 Contributions of ThisThesis 13 1.5.1 Robust Hierarchical Task-Priority Control 13 1.5.2 Design Concepts of Robust Rescue Robot 16 1.5.3 Hierarchical Motion and ForceControl 17 1.6 Dissertation Preview 18 2 Preliminaries for Task-Priority Control Framework 21 2.1 Introduction 21 2.2 Task-Priority Inverse Kinematics 23 2.3 Recursive Formulation of Null Space Projector 28 2.4 Conclusion 31 3 Robust Hierarchical Task-Priority Control 33 3.1 Introduction 33 3.1.1 Motivations 35 3.1.2 Objectives 36 3.2 Task Function Approach 37 3.3 Regularized Hierarchical Optimization with Equality Tasks 41 3.3.1 Regularized Hierarchical Optimization 41 3.3.2 Optimal Solution 45 3.3.3 Task Error and Hierarchical Matrix Decomposition 49 3.3.4 Illustrative Examples for Regularized Hierarchical Optimization 56 3.4 Regularized Hierarchical Optimization with Inequality Constraints 60 3.4.1 Lagrange Multipliers 61 3.4.2 Modified Active Set Method 66 3.4.3 Illustrative Examples of Modified Active Set Method 70 3.4.4 Examples for Hierarchical Optimization with Inequality Constraint 72 3.5 DLS-HQP Algorithm 79 3.6 Concluding Remarks 80 4 Rescue Robot Design and Experimental Results 83 4.1 Introduction 83 4.2 Rescue Robot Design 85 4.2.1 System Design 86 4.2.2 Variable Configuration Mobile Platform 92 4.2.3 Dual Arm Manipulators 95 4.2.4 Software Architecture 97 4.3 Performance Verification for Hierarchical Motion Control 99 4.3.1 Real-Time Motion Generation 99 4.3.2 Task Specifications 103 4.3.3 Singularity Robust Task Priority 106 4.3.4 Inequality Constraint Handling and Computation Time 111 4.4 Singularity Robustness and Inequality Handling for Rescue Mission 117 4.5 Field Tests 122 4.6 Concluding Remarks 126 5 Hierarchical Motion and Force Control 129 5.1 Introduction 129 5.2 Operational Space Control 132 5.3 Acceleration-Based Hierarchical Motion Control 134 5.4 Force Control 137 5.4.1 Force Control with Inner Position Loop 141 5.4.2 Force Control with Inner Velocity Loop 144 5.5 Motion and Force Control 145 5.6 Numerical Results for Acceleration-Based Motion and Force Control 148 5.6.1 Task Specifications 150 5.6.2 Force Control Performance 151 5.6.3 Singularity Robustness and Inequality Constraint Handling 155 5.7 Velocity Resolved Motion and Force Control 160 5.7.1 Velocity-Based Motion and Force Control 161 5.7.2 Experimental Results 163 5.8 Concluding Remarks 167 6 Conclusion 169 6.1 Summary 169 6.2 Concluding Remarks 173 A Appendix 175 A.1 Introduction to PID Control 175 A.2 Inverse Optimal Control 176 A.3 Experimental Results and Conclusion 181 Bibliography 183 Abstract 207๋ฐ•

    Kinematics and Robot Design II (KaRD2019) and III (KaRD2020)

    Get PDF
    This volume collects papers published in two Special Issues โ€œKinematics and Robot Design II, KaRD2019โ€ (https://www.mdpi.com/journal/robotics/special_issues/KRD2019) and โ€œKinematics and Robot Design III, KaRD2020โ€ (https://www.mdpi.com/journal/robotics/special_issues/KaRD2020), which are the second and third issues of the KaRD Special Issue series hosted by the open access journal robotics.The KaRD series is an open environment where researchers present their works and discuss all topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. It aims at being an established reference for researchers in the field as other serial international conferences/publications are. Even though the KaRD series publishes one Special Issue per year, all the received papers are peer-reviewed as soon as they are submitted and, if accepted, they are immediately published in MDPI Robotics. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on โ€œmechanisms and roboticsโ€.KaRD2019 together with KaRD2020 received 22 papers and, after the peer-review process, accepted only 17 papers. The accepted papers cover problems related to theoretical/computational kinematics, to biomedical engineering and to other design/applicative aspects
    • โ€ฆ
    corecore