4 research outputs found

    State of the Art and Future Perspectives in Smart and Sustainable Urban Development

    Get PDF
    This book contributes to the conceptual and practical knowledge pools in order to improve the research and practice on smart and sustainable urban development by presenting an informed understanding of the subject to scholars, policymakers, and practitioners. This book presents contributions—in the form of research articles, literature reviews, case reports, and short communications—offering insights into the smart and sustainable urban development by conducting in-depth conceptual debates, detailed case study descriptions, thorough empirical investigations, systematic literature reviews, or forecasting analyses. This way, the book forms a repository of relevant information, material, and knowledge to support research, policymaking, practice, and the transferability of experiences to address urbanization and other planetary challenges

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    A Bio-inspired Load Balancing Technique for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) consist of multiple distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging trade-offs. This thesis is concerned with the load balancing of Wireless Sensor Networks (WSNs). We present an approach, inspired by bees’ pheromone propagation mechanism, that allows individual nodes to decide on the execution process locally to solve the trade-off between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using a system-level simulator. The effectiveness of the algorithm is evaluated on case studies based on sound sensors with different scenarios of existing approaches on variety of different network topologies. The performance of our approach is dependant on the values chosen for its parameters. As such, we utilise the Simulated Annealing to discover optimal parameter configurations for pheromone-based load balancing technique for any given network schema. Once the parameter values are optimised for the given network topology automatically, we inspect improving the pheromone-based load balancing approach using robotic agents. As cyber-physical systems benefit from the heterogeneity of the hardware components, we introduce the use of pheromone signalling-based robotic guidance that integrates the robotic agents to the existing load balancing approach by guiding the robots into the uncovered area of the sensor field. As such, we maximise the service availability using the robotic agents as well as the sensor nodes

    A Parallel Multi-Objective Cooperative Coevolutionary Algorithm for Optimising Small-World Properties in VANETs

    No full text
    Cooperative coevolutionary evolutionary algorithms differ from standard evolutionary algorithms’ architecture in that the population is split into subpopulations, each of them optimising only a sub-vector of the global solution vector. All subpopulations cooperate by broadcasting their local partial solutions such that each subpopulation can evalu- ate complete solutions. Cooperative coevolution has recently been used in evolutionary multi-objective optimisation, but few works have exploited its parallelisation capabil- ities or tackled real-world problems. This article proposes to apply for the first time a state-of-the-art parallel asynchronous cooperative coevolutionary variant of the non- dominated sorting genetic algorithm II (NSGA-II), named CCNSGA-II, on the injection network problem in vehicular ad hoc networks (VANETs). This multi-objective optimi- sation problem, consists in finding the minimal set of nodes with backend connectivity, referred to as injection points, to constitute a fully connected overlay that will optimise the small-world properties of the resulting network. Recently, the well-known NSGA- II algorithm was used to tackle this problem on realistic instances in the city-centre of Luxembourg. In this work we analyse the performance of the CCNSGA-II when using different numbers of subpopulations, and compare them to the original NSGA-II in terms of both quality of the obtained Pareto front approximations and execution time speedup
    corecore