17 research outputs found

    Optimising Darwinian Data Structures on Google Guava

    Get PDF
    Data structure selection and tuning is laborious but can vastly improve application performance and memory footprint. In this paper, we demonstrate how artemis, a multiobjective, cloud-based optimisation framework can automatically find optimal, tuned data structures and how it is used for optimising the Guava library. From the proposed solutions that artemis found, 27.45% of them improve all measures (execution time, CPU usage, and memory consumption). More specifically, artemis managed to improve the memory consumption of Guava by up 13%, execution time by up to 9%, and 4% CPU usage

    Darwinian Data Structure Selection

    Get PDF
    Data structure selection and tuning is laborious but can vastly improve an application's performance and memory footprint. Some data structures share a common interface and enjoy multiple implementations. We call them Darwinian Data Structures (DDS), since we can subject their implementations to survival of the fittest. We introduce ARTEMIS a multi-objective, cloud-based search-based optimisation framework that automatically finds optimal, tuned DDS modulo a test suite, then changes an application to use that DDS. ARTEMIS achieves substantial performance improvements for \emph{every} project in 55 Java projects from DaCapo benchmark, 88 popular projects and 3030 uniformly sampled projects from GitHub. For execution time, CPU usage, and memory consumption, ARTEMIS finds at least one solution that improves \emph{all} measures for 86%86\% (37/4337/43) of the projects. The median improvement across the best solutions is 4.8%4.8\%, 10.1%10.1\%, 5.1%5.1\% for runtime, memory and CPU usage. These aggregate results understate ARTEMIS's potential impact. Some of the benchmarks it improves are libraries or utility functions. Two examples are gson, a ubiquitous Java serialization framework, and xalan, Apache's XML transformation tool. ARTEMIS improves gson by 16.516.5\%, 1%1\% and 2.2%2.2\% for memory, runtime, and CPU; ARTEMIS improves xalan's memory consumption by 23.523.5\%. \emph{Every} client of these projects will benefit from these performance improvements.Comment: 11 page

    Evaluation of genetic improvement tools for improvement of non-functional properties of software

    Get PDF
    Genetic improvement (GI) improves both functional properties of software, such as bug repair, and non-functional properties, such as execution time, energy consumption, or source code size. There are studies summarising and comparing GI tools for improving functional properties of software; however there is no such study for improvement of its non-functional properties using GI. Therefore, this research aims to survey and report on the existing GI tools for improvement of non-functional properties of software. We conducted a literature review of available GI tools, and ran multiple experiments on the found open-source tools to examine their usability. We applied a cross-testing strategy to check whether the available tools can work on different programs. Overall, we found 63 GI papers that use a GI tool to improve nonfunctional properties of software, within which 31 are accompanied with open-source code. We were able to successfully run eight GI tools, and found that ultimately only two ---Gin and PyGGI--- can be readily applied to new general software

    MAGPIE: Machine Automated General Performance Improvement via Evolution of Software

    Get PDF
    Performance is one of the most important qualities of software. Several techniques have thus been proposed to improve it, such as program transformations, optimisation of software parameters, or compiler flags. Many automated software improvement approaches use similar search strategies to explore the space of possible improvements, yet available tooling only focuses on one approach at a time. This makes comparisons and exploration of interactions of the various types of improvement impractical. We propose MAGPIE, a unified software improvement framework. It provides a common edit sequence based representation that isolates the search process from the specific improvement technique, enabling a much simplified synergistic workflow. We provide a case study using a basic local search to compare compiler optimisation, algorithm configuration, and genetic improvement. We chose running time as our efficiency measure and evaluated our approach on four real-world software, written in C, C++, and Java. Our results show that, used independently, all techniques find significant running time improvements: up to 25% for compiler optimisation, 97% for algorithm configuration, and 61% for evolving source code using genetic improvement. We also show that up to 10% further increase in performance can be obtained with partial combinations of the variants found by the different techniques. Furthermore, the common representation also enables simultaneous exploration of all techniques, providing a competitive alternative to using each technique individually.Comment: 19 page

    Genetic Programming + Proof Search = Automatic Improvement

    Get PDF
    Search Based Software Engineering techniques are emerging as important tools for software maintenance. Foremost among these is Genetic Improvement, which has historically applied the stochastic techniques of Genetic Programming to optimize pre-existing program code. Previous work in this area has not generally preserved program semantics and this article describes an alternative to the traditional mutation operators used, employing deterministic proof search in the sequent calculus to yield semantics-preserving transformations on algebraic data types. Two case studies are described, both of which are applicable to the recently-introduced `grow and graft' technique of Genetic Improvement: the first extends the expressiveness of the `grafting' phase and the second transforms the representation of a list data type to yield an asymptotic efficiency improvement

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement (GI) uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of GI back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. GI has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between GI and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Genetic Improvement of Software: a Comprehensive Survey

    Get PDF
    Genetic improvement uses automated search to find improved versions of existing software. We present a comprehensive survey of this nascent field of research with a focus on the core papers in the area published between 1995 and 2015. We identified core publications including empirical studies, 96% of which use evolutionary algorithms (genetic programming in particular). Although we can trace the foundations of genetic improvement back to the origins of computer science itself, our analysis reveals a significant upsurge in activity since 2012. Genetic improvement has resulted in dramatic performance improvements for a diverse set of properties such as execution time, energy and memory consumption, as well as results for fixing and extending existing system functionality. Moreover, we present examples of research work that lies on the boundary between genetic improvement and other areas, such as program transformation, approximate computing, and software repair, with the intention of encouraging further exchange of ideas between researchers in these fields

    Multi-Objective Improvement of Android Applications

    Full text link
    Non-functional properties, such as runtime or memory use, are important to mobile app users and developers, as they affect user experience. Previous work on automated improvement of non-functional properties in mobile apps failed to address the inherent trade-offs between such properties. We propose a practical approach and the first open-source tool, GIDroid (2023), for multi-objective automated improvement of Android apps. In particular, we use Genetic improvement, a search-based technique that navigates the space of software variants to find improved software. We use a simulation-based testing framework to greatly improve the speed of search. GIDroid contains three state-of-the-art multi-objective algorithms, and two new mutation operators, which cache the results of method calls. Genetic improvement relies on testing to validate patches. Previous work showed that tests in open-source Android applications are scarce. We thus wrote tests for 21 versions of 7 Android apps, creating a new benchmark for performance improvements. We used GIDroid to improve versions of mobile apps where developers had previously found improvements to runtime, memory, and bandwidth use. Our technique automatically re-discovers 64% of existing improvements. We then applied our approach to current versions of software in which there were no known improvements. We were able to improve execution time by up to 35%, and memory use by up to 33% in these apps.Comment: 32 pages, 8 Figure
    corecore