
Optimising Darwinian Data Structures
on Google Guava

Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl Barr

Department of Computer Science,
University College London, Malet Place, London, WC1E 6BT, UK.
{m.basios,lingbo.li,fan.wu,l.kanthan,e.barr}@cs.ucl.ac.uk

Abstract. Data structure selection and tuning is laborious but can vastly
improve application performance and memory footprint. In this paper,
we demonstrate how artemis, a multiobjective, cloud-based optimisation
framework can automatically find optimal, tuned data structures and how
it is used for optimising the Guava library. From the proposed solutions
that artemis found, 27.45% of them improve all measures (execution
time, CPU usage, and memory consumption). More specifically, artemis
managed to improve the memory consumption of Guava by up 13%,
execution time by up to 9%, and 4% CPU usage.

Keywords: Search-based software engineering; Genetic improvement;
Software analysis and optimisation; Multi-objective optimisation

1 Introduction
Under the immense time pressures of industrial software development, developers
tend to avoid early-stage optimisations, yet forget to do so later. When selecting
data structures from libraries, in particular, they tend to rely on defaults and
neglect potential optimisations that alternative implementations or tuning pa-
rameters can offer. This, despite the impact that data structure selection and
tuning can have on application performance and defects [11]. For performance,
examples include the selection of an implementation that created unnecessary
temporary objects for the program’s workload [13] or selecting a combination of
Scala data structures that scaled better, reducing execution time from 45 to 1.5
minutes [10]; memory leak bugs exemplify data structure triggered defects, such
as those in the Oracle Java bug database caused by poor implementations that
retained references to unused data entries [14].

Optimisation is time-consuming, especially on large code bases. It is also
brittle. An optimisation for one version of a program can break or become
a de-optimisation in the next release. Another reason developers may avoid
optimisation are development fads that focus on fast solutions, like “Premature
Optimisation is the horror of all Evil” [6] and “Hack until it works” [4]. In
short, optimisations are expensive and their benefits unclear for many projects.
Developers need automated help.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/195311847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 M. Basios, L. Li, F. Wu, L. Kanthan, and E. Barr

AST 
Traversal

Templated 
Source 
Code

Darwinian Data 
Structures 

Store

Extracted 
Data structure 

and 
Parameters

Extractor Optimiser

Mutated 
Source Code

Mutated 
Source Code

Mutated 
Source Code

Optimised 
program 

source codeNSGA-II

Input

Program
source code

Test suite

Project

Output

Profiler

Collection 
API

Darwinian 
Data 

Structures 
Store 

Generator

Code 
Generation

Data structure selection 
and Parameter optimisation

Mutated 
Source Code

Mutated 
Source Code

Mutated 
Source Code

Mutated 
program 

source code

Evaluation

Preprocessor

Fig. 1: System Architecture of artemis.

Data structures are a particularly attractive optimisation target because they
have a well-defined interface, many are tunable, and different implementations
of a data structure usually represent a particular trade-off between time and
storage, making some operations faster but more space-consuming or slower but
more space-efficient. For instance, an ordered list makes retrieving a dataset in
sorted order fast, but inserting new elements slow, whilst a hash table allows for
quick insertions and retrievals of specific items, but listing the entire set in order
is slow. A Darwinian data structure [9] is on that admits tuning and has multiple
implementations, i.e. it is replaceable. The data structure optimisation problem
is the problem of finding optimal tuning and implementation for a Darwinian
data structure used in an input program.

In this paper, we aim to help developers perform optimisations cheaply,
focusing solving the data structure optimisation problem. We present artemis,
a cloud-based language-agnostic optimisation framework that identifies uses of
Darwinian data structures and automatically searches for optimal combinations
of implementations and tuning parameters for them, given a test suite. artemis’
search is multi-objective, seeking to simultaneously improve a program’s execution
time, memory usage and CPU usage while passing the test suite. artemis is
the first technique to apply multi-objective optimisation to the Darwinian data
structure selection and tuning problem.

2 Proposed Solution
Darwinian Data Structure Selection (DS2) problem: given a program
with a list of replaceable data structures, find the optimal combination of data
structures and their arguments, such that the runtime performance of the program
is optimised.

In order to solve the DS2 problem, we proposed a language-agnostic optimi-
sation framework, artemis. Figure 1 illustrates the architecture of artemis. It
consists of three main components: the darwinian data structures store
generator (ddssg), the extractor, and the optimiser. artemis takes
the language’s Collection api library, the user’s application source code and
a test suite as input to generate an optimised version of the code with a new
combination of data structures. A regression test suite is used to maintain the
correctness of the transformations and to evaluate the non-functional properties
of interest. artemis uses a built-in profiler that measures execution time, memory
consumption and CPU usage.



Apply Darwinian Data Structure Selection on Google Guava 3

darwinian data structure store generator (ddssg) automat-
ically builds a store of Darwinian Data Structures that can be exposed as tunable
parameters to the optimiser. ddssg uses a hierarchy graph to represent the in-
heritance relations between classes, then it groups the replaceable classes together,
as its output. artemis can automatically generate the hierarchy graph from the
source code of the library (if provided) or from the library documentation.

To get the hierarchy graph from the source code, ddssg traverses the ast
of each file of the library and looks for class declaration expressions. It extracts
the classes and stores them as points of a graph. Whenever it finds a special
keyword, such as extends or implements in Java, it creates an edge in the graph
that represents this relationship. After the graph construction is finished, a graph
traversal is used to automatically generate a store of equivalent implementations
for each interface; e.g., {List, ArrayList, LinkedList}. Those implementations
will be considered as replaceable during code execution and will be exposed as
parameters to the optimiser.

extractor takes as input the program source code, identifies potential
locations of the code that contain darwinian data structures, and provides
as output a list of parameters (Extracted Data Structures and Parameters in
Figure 1) and a templated version of the code which replaces the data structure
with data structure type identifiers (Templated Source Code in Figure 1).

In order to determine which parts of the code contain darwinian data
structures, the extractor firstly generates an Abstract Syntax Tree (ast) from
the input source code. It then traverses the ast to discover potential data structure
transformations based on a store of data structures generated from ddssg. For
example, when an expression node of the ast contains a LinkedList expression,
the extractor marks this expression as a potential darwinian data structure
that can take values from the available List implementations: LinkedList or
ArrayList. The extractor generates a templated copy of the ast, with all
discovered darwinian data structures replaced by template identifiers (holes).

optimiser is to find a combination of data structures that improves the
performance of the initial program. Because we aim to optimise various conflict-
ing performance objectives, we consider this as a multi-objective optimisation
problem, thus the optimiser uses a multi-objective Genetic Algorithm [2] to
search for optimal solutions [12,7,1,8].

We use an array of integers to represent the tuning parameters. Each parameter
may refer either to an equivalent data structure or a parameter of the data
structure such as the initial size. Together with the templated ast generated
from the optimiser, artemis can rebuild the program with a different set of
data structures. For each iteration of the algorithm, NSGA-II progresses by firstly
applying tournament selection, followed by a uniform crossover and a uniform
mutation operation. In our experiments, we designed fitness functions to capture
execution time, memory consumption and CPU usage. After fitness evaluation, a
standard NSGA-II non-dominated selection is applied to form the next generation.
This process is repeated until the solutions converge. Finally, all non-dominating
solutions in the final population are provided as solutions.



4 M. Basios, L. Li, F. Wu, L. Kanthan, and E. Barr

A program may contain a large number of data structures from which only
some are darwinian. Moreover, some of those darwinian data structures
can affect the performance of the program more than others. There are data
structures that store only a few items and be called only a few times during
program execution and, as a consequence, changing them will most probably not
provide any significant improvement.

In our implementation, we have introduced a preprocessing step that auto-
matically instruments the program to provide profiling details when it is executed
the first time. The instrumented code is run before the optimisation begins and
it generates a database with the most costly parts of codes worth optimising.
This information is used by the extractor to determine if a data structure is
worth being considered as a darwinian data structure. This preprocessing step
is mostly useful for very large programs where there is a large number of data
structures involved.

3 Experiments and Results
To assess how effectively artemis can improve a program’s performance, we
used Guava1 as an instance of its application. Guava is an open-source set of
common libraries for Java. It consists of 252, 688 Lines of Code, which are tested
by 1, 674, 425 test cases with 61.7% branch coverage. We conducted experiments
with Oracle JDK 1.8 and Ubuntu 16.04 on top of machines featuring 8 cores and
14GB of DRAM. We used JVM profiling tools for performance measurements.
To mitigate instability and incorrect results [3], we differentiate VM start-up
and steady-state. We do repeated measurements for 30 times and record the
measurements before and after doing the optimisations. Also we use Mann
Whitney U test to examine if the improvement is statistically significant. For
the settings of the optimisation algorithm, we used an initial population size of
30 and a maximum number of 900 function evaluations. These numbers were
chosen after a few calibration experiments to ensure the best performance of the
algorithm.

For the rest of this section, we asked four Research Questions and provided
answers with supportive results in each of the following paragraphs.
RQ1 What is the improvement that artemis provides for each objective?

We ask this question to understand how much improvement artemis can
achieve on each of the objectives and how the other objectives are affected. Firstly,
we compute the mean response time and report the 95% confidence interval.
We use effect size [5] for measuring the performance impact. To quantify the
effects we use Cohen’s d [5] strength values: small (0.2 < d ≤ 0.5), medium
(0.5 < d ≤ 0.8) and large (0.8 < d). In Figure 2 we plot the mean values for the
optimal solutions that contain at least one large improvement for one of the three
measurements. The maximum improvement for each measure is 9% execution
time, 13% memory usage and 4% CPU usage.
RQ2 How many provided solutions strictly dominate the original program?

1 https://github.com/google/guava

https://github.com/google/guava


Apply Darwinian Data Structure Selection on Google Guava 5

●
●

●

● ● ●

●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

● ●

●

●
● ●

● ●
●

●

●

●

●

●

●

96

99

102

1 3 5 7 9 11 13 15 17 19 21
Optimal solutions (versions of Guava library) generated by ARTEMIS

R
el

at
iv

e 
pe

rf
or

m
an

ce
 v

al
ue

 (
%

)

●●● ●●● ●●●CPU usage execution time memory usage

Fig. 2: Optimal solutions with large improvement in at least one measure.

A solution is said to strictly dominate another if it outperforms the other
in all measures. If artemis can provide solutions that strictly dominate the
original program, those solutions can be very valuable because they represent
options to improve the program without sacrificing anything. The number of
strictly dominating solution for Guava was 14 out of 51 final solutions. Those 14
solutions provide a wide range of options for users to choose depending on their
favour of different objectives.
RQ3 What is the cost of using artemis?

This question asks about the computational cost of artemis. An extremely
high computational cost may make the system impractical to use in real-world
situations. Therefore we measured its cost on Guava subject in terms of machine
hours. In this study, a Microsoft Azure D4-v2 machine, which costs £0.41 per
hour2, was used to conduct all experiments. This cost of using is negligible
compared to a human software engineer. Moreover, artemis transforms the
selection of data structure and sets the parameter on source code level, which
means such optimisation does not need to be carried frequently.
RQ4 How many Darwinian data structures does artemis optimise?

We ask this question to understand what changes have been made to the
program. To minimise the search space we applied artemis only to the most used
code in Guava as identified by the preprocessor. As a result, artemis extracted
only 6 Darwinian data structures in total from the Guava library. Across all the
optimal solutions artemis produced, 1 to 6 data structures were changed in each,
with a median of 3 data structures uses. For instance, artemis replaced HashMap
with LinkedHashMap in 42 of the 135 changes across all optimal solutions.

4 Conclusions
In this paper, we introduced artemis, a novel multi-objective search-based
framework that automatically selects and optimises the data structures and their
arguments in a given program. artemis is language agnostic, meaning it can
be easily adapted to any programming language. On a large real-world system,

2 https://azure.microsoft.com/en-gb/pricing/

https://azure.microsoft.com/en-gb/pricing/


6 M. Basios, L. Li, F. Wu, L. Kanthan, and E. Barr

Guava, artemis found 9% improvement on execution time, 13% improvement on
memory consumption and 4% improvement on CPU usage separately, and 27.45%
of the final solutions provides improvement without sacrificing other objectives.
Lastly, we estimated the cost of optimising Guava in machine hours. With a price
of £0.41 per machine hour, the cost of optimising a real-world system such as
Guava in this study is less than £7.85. Therefore, we conclude that artemis is a
practical tool for optimising the data structures in large real-world programs.

References

1. Haitao Dan, Mark Harman, Jens Krinke, Lingbo Li, Alexandru Marginean, and
Fan Wu. Pidgin Crasher: Searching for Minimised Crashing GUI Event Sequences,
pages 253–258. Springer International Publishing, Cham, 2014.

2. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

3. Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rigorous java
performance evaluation. ACM SIGPLAN Notices, 42(10):57–76, 2007.

4. Brett Hardin. Companies with “hacking” cultures fail. https://blog.bretthard.
in/companies-with-hacking-cultures-fail-b8907a69e3d, 2016. [Online; ac-
cessed 25-February-2017].

5. Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines
for empirical research in software engineering. IEEE Transactions on software
engineering, 28(8):721–734, 2002.

6. Donald E. Knuth. Structured programming with go to statements. ACM Comput.
Surv., 6(4):261–301, December 1974.

7. William B Langdon, Marc Modat, Justyna Petke, and Mark Harman. Improving 3d
medical image registration cuda software with genetic programming. In Proceedings
of the 2014 GECCO, pages 951–958. ACM, 2014.

8. Lingbo Li, Mark Harman, Fan Wu, and Yuanyuan Zhang. SBSelector: Search Based
Component Selection for Budget Hardware, pages 289–294. Springer International
Publishing, Cham, 2015.

9. Basios Michail, Lingbo Li, Fan Wu, Leslie Kanthan, Donald Lawrence, and Earl
Barr. Darwinian data structure selection. arXiv preprint arXiv:1706.03232, 2017.

10. Ronald J. Nowling. Gotchas with Scala Mutable Collections and Large
Data Sets. http://rnowling.github.io/software/engineering/2015/07/01/
gotcha-scala-collections.html, 2015. [Online; accessed 18-February-2017].

11. Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: adaptive selection of
collections. In ACM Sigplan Notices, volume 44, pages 408–418. ACM, 2009.

12. Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. Deep parameter
optimisation. In Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation, pages 1375–1382. ACM, 2015.

13. Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
Go with the flow: profiling copies to find runtime bloat. ACM Sigplan Notices,
44(6):419–430, 2009.

14. Guoqing Xu and Atanas Rountev. Precise memory leak detection for java software
using container profiling. In Software Engineering, 2008. ICSE’08. ACM/IEEE
30th International Conference On, pages 151–160. IEEE, 2008.

https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
https://blog.bretthard.in/companies-with-hacking-cultures-fail-b8907a69e3d
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html
http://rnowling.github.io/software/engineering/2015/07/01/gotcha-scala-collections.html

	Lecture Notes in Computer Science
	Introduction
	Proposed Solution
	Experiments and Results
	Conclusions


