100 research outputs found

    Adapting Prosody in a Text-to-Speech System

    Get PDF

    Fundamental frequency modelling: an articulatory perspective with target approximation and deep learning

    Get PDF
    Current statistical parametric speech synthesis (SPSS) approaches typically aim at state/frame-level acoustic modelling, which leads to a problem of frame-by-frame independence. Besides that, whichever learning technique is used, hidden Markov model (HMM), deep neural network (DNN) or recurrent neural network (RNN), the fundamental idea is to set up a direct mapping from linguistic to acoustic features. Although progress is frequently reported, this idea is questionable in terms of biological plausibility. This thesis aims at addressing the above issues by integrating dynamic mechanisms of human speech production as a core component of F0 generation and thus developing a more human-like F0 modelling paradigm. By introducing an articulatory F0 generation model – target approximation (TA) – between text and speech that controls syllable-synchronised F0 generation, contextual F0 variations are processed in two separate yet integrated stages: linguistic to motor, and motor to acoustic. With the goal of demonstrating that human speech movement can be considered as a dynamic process of target approximation and that the TA model is a valid F0 generation model to be used at the motor-to-acoustic stage, a TA-based pitch control experiment is conducted first to simulate the subtle human behaviour of online compensation for pitch-shifted auditory feedback. Then, the TA parameters are collectively controlled by linguistic features via a deep or recurrent neural network (DNN/RNN) at the linguistic-to-motor stage. We trained the systems on a Mandarin Chinese dataset consisting of both statements and questions. The TA-based systems generally outperformed the baseline systems in both objective and subjective evaluations. Furthermore, the amount of required linguistic features were reduced first to syllable level only (with DNN) and then with all positional information removed (with RNN). Fewer linguistic features as input with limited number of TA parameters as output led to less training data and lower model complexity, which in turn led to more efficient training and faster synthesis

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Data Analysis Methods for Software Systems

    Get PDF
    Using statistics, econometrics, machine learning, and functional data analysis methods, we evaluate the consequences of the lockdown during the COVID-19 pandemics for wage inequality and unemployment. We deduce that these two indicators mostly reacted to the first lockdown from March till June 2020. Also, analysing wage inequality, we conduct analysis separately for males and females and different age groups.We noticed that young females were affected mostly by the lockdown.Nevertheless, all the groups reacted to the lockdown at some level

    Speech-driven animation using multi-modal hidden Markov models

    Get PDF
    The main objective of this thesis was the synthesis of speech synchronised motion, in particular head motion. The hypothesis that head motion can be estimated from the speech signal was confirmed. In order to achieve satisfactory results, a motion capture data base was recorded, a definition of head motion in terms of articulation was discovered, a continuous stream mapping procedure was developed, and finally the synthesis was evaluated. Based on previous research into non-verbal behaviour basic types of head motion were invented that could function as modelling units. The stream mapping method investigated in this thesis is based on Hidden Markov Models (HMMs), which employ modelling units to map between continuous signals. The objective evaluation of the modelling parameters confirmed that head motion types could be predicted from the speech signal with an accuracy above chance, close to 70%. Furthermore, a special type ofHMMcalled trajectoryHMMwas used because it enables synthesis of continuous output. However head motion is a stochastic process therefore the trajectory HMM was further extended to allow for non-deterministic output. Finally the resulting head motion synthesis was perceptually evaluated. The effects of the “uncanny valley” were also considered in the evaluation, confirming that rendering quality has an influence on our judgement of movement of virtual characters. In conclusion a general method for synthesising speech-synchronised behaviour was invented that can applied to a whole range of behaviours

    Modelling talking human faces

    Get PDF
    This thesis investigates a number of new approaches for visual speech synthesis using data-driven methods to implement a talking face. The main contributions in this thesis are the following. The accuracy of shared Gaussian process latent variable model (SGPLVM) built using the active appearance model (AAM) and relative spectral transform-perceptual linear prediction (RASTAPLP) features is improved by employing a more accurate AAM. This is the first study to report that using a more accurate AAM improves the accuracy of SGPLVM. Objective evaluation via reconstruction error is performed to compare the proposed approach against previously existing methods. In addition, it is shown experimentally that the accuracy of AAM can be improved by using a larger number of landmarks and/or larger number of samples in the training data. The second research contribution is a new method for visual speech synthesis utilising a fully Bayesian method namely the manifold relevance determination (MRD) for modelling dynamical systems through probabilistic non-linear dimensionality reduction. This is the first time MRD was used in the context of generating talking faces from the input speech signal. The expressive power of this model is in the ability to consider non-linear mappings between audio and visual features within a Bayesian approach. An efficient latent space has been learnt iii Abstract iv using a fully Bayesian latent representation relying on conditional nonlinear independence framework. In the SGPLVM the structure of the latent space cannot be automatically estimated because of using a maximum likelihood formulation. In contrast to SGPLVM the Bayesian approaches allow the automatic determination of the dimensionality of the latent spaces. The proposed method compares favourably against several other state-of-the-art methods for visual speech generation, which is shown in quantitative and qualitative evaluation on two different datasets. Finally, the possibility of incremental learning of AAM for inclusion in the proposed MRD approach for visual speech generation is investigated. The quantitative results demonstrate that using MRD in conjunction with incremental AAMs produces only slightly less accurate results than using batch methods. These results support a way of training this kind of models on computers with limited resources, for example in mobile computing. Overall, this thesis proposes several improvements to the current state-of-the-art in generating talking faces from speech signal leading to perceptually more convincing results

    Silent Speech Interfaces for Speech Restoration: A Review

    Get PDF
    This work was supported in part by the Agencia Estatal de Investigacion (AEI) under Grant PID2019-108040RB-C22/AEI/10.13039/501100011033. The work of Jose A. Gonzalez-Lopez was supported in part by the Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship (IJCI-2017-32926).This review summarises the status of silent speech interface (SSI) research. SSIs rely on non-acoustic biosignals generated by the human body during speech production to enable communication whenever normal verbal communication is not possible or not desirable. In this review, we focus on the first case and present latest SSI research aimed at providing new alternative and augmentative communication methods for persons with severe speech disorders. SSIs can employ a variety of biosignals to enable silent communication, such as electrophysiological recordings of neural activity, electromyographic (EMG) recordings of vocal tract movements or the direct tracking of articulator movements using imaging techniques. Depending on the disorder, some sensing techniques may be better suited than others to capture speech-related information. For instance, EMG and imaging techniques are well suited for laryngectomised patients, whose vocal tract remains almost intact but are unable to speak after the removal of the vocal folds, but fail for severely paralysed individuals. From the biosignals, SSIs decode the intended message, using automatic speech recognition or speech synthesis algorithms. Despite considerable advances in recent years, most present-day SSIs have only been validated in laboratory settings for healthy users. Thus, as discussed in this paper, a number of challenges remain to be addressed in future research before SSIs can be promoted to real-world applications. If these issues can be addressed successfully, future SSIs will improve the lives of persons with severe speech impairments by restoring their communication capabilities.Agencia Estatal de Investigacion (AEI) PID2019-108040RB-C22/AEI/10.13039/501100011033Spanish Ministry of Science, Innovation and Universities under Juan de la Cierva-Incorporation Fellowship IJCI-2017-3292
    • 

    corecore