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Abstract

Current statistical parametric speech synthesis (SPSS) approaches typically aim at

state/frame-level acoustic modelling, which leads to a problem of frame-by-frame

independence. Besides that, whichever learning technique is used, hidden Markov

model (HMM), deep neural network (DNN) or recurrent neural network (RNN), the

fundamental idea is to set up a direct mapping from linguistic to acoustic features.

Although progress is frequently reported, this idea is questionable in terms of

biological plausibility.

This thesis aims at addressing the above issues by integrating dynamic mech-

anisms of human speech production as a core component of F0 generation and

thus developing a more human-like F0 modelling paradigm. By introducing an

articulatory F0 generation model – target approximation (TA) – between text and

speech that controls syllable-synchronised F0 generation, contextual F0 variations

are processed in two separate yet integrated stages: linguistic to motor, and motor

to acoustic.

With the goal of demonstrating that human speech movement can be considered

as a dynamic process of target approximation and that the TA model is a valid

F0 generation model to be used at the motor-to-acoustic stage, a TA-based pitch

control experiment is conducted first to simulate the subtle human behaviour of

online compensation for pitch-shifted auditory feedback.

Then, the TA parameters are collectively controlled by linguistic features via a

deep or recurrent neural network (DNN/RNN) at the linguistic-to-motor stage. We
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trained the systems on a Mandarin Chinese dataset consisting of both statements

and questions. The TA-based systems generally outperformed the baseline systems

in both objective and subjective evaluations. Furthermore, the amount of required

linguistic features were reduced first to syllable level only (with DNN) and then

with all positional information removed (with RNN). Fewer linguistic features as

input with limited number of TA parameters as output led to less training data and

lower model complexity, which in turn led to more efficient training and faster

synthesis.

4



Acknowledgements

First of all, I would like to thank my principal supervisor, Yi Xu, for his enduring

support and patience in the past years. I am very grateful for his insightful advice

and encouragement during the tough time of my study. Thanks to my subsidiary su-

pervisor, Mark Huckvale, for helping me solve various technical problems. Thanks

to Bob Ladd (Edinburgh) for encouraging me to pursue a PhD in prosody modelling.

I will never forget my first visit to his office. Especially, I would also like to thank

Chunyu Kit (CityU HK). Without him, I probably wouldn’t get the chance to study

in the UK.

Many thanks to my friends and colleagues at UCL and Edinburgh. Special

thanks to Heng Lu and Xu Shao for accepting my visit to Nuance in California last

summer and offering my current job at Nuance in Shanghai. Thanks to my parents

and my wife Xiaoxuan Liu for everything.

Lastly, I would like to express my deepest gratitude to my motherland for

financially supporting my study at UCL.

5



Contents

List of Figures 10

List of Tables 16

1 Introduction 17

1.1 Speech Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 Concatenative synthesis . . . . . . . . . . . . . . . . . . 19

1.1.2 Statistical parametric synthesis . . . . . . . . . . . . . . . 20

1.1.3 Articulatory synthesis . . . . . . . . . . . . . . . . . . . 23

1.2 F0 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.1 Intonation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Proposed Articulatory F0 Modelling . . . . . . . . . . . . . . . . 34

2 Intonation Theories and Models – The Literature 37

2.1 Phonological Models . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 The AM theory and ToBI labels . . . . . . . . . . . . . . 37

2.1.2 The IPO approach . . . . . . . . . . . . . . . . . . . . . 40

2.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Phonetic Models . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.1 The Tilt model . . . . . . . . . . . . . . . . . . . . . . . 43

6



Contents

2.2.2 The SFC model . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Articulatory Models . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 The Fujisaki model . . . . . . . . . . . . . . . . . . . . . 48

2.3.2 The STEM-ML model . . . . . . . . . . . . . . . . . . . 49

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 The Target Approximation Model 55

3.1 The PENTA Framework . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Syllable-based Modelling . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 A Dynamical System . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Case Study: Target Distributions of Mandarin Tones . . . . . . . . 61

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Motor-to-Acoustic: Simulating Online Auditory Feedback Compensa-

tion with TA 68

4.1 Background on Auditory Feedback . . . . . . . . . . . . . . . . . 69

4.1.1 Offline learning and the DIVA model . . . . . . . . . . . 69

4.1.2 Online compensation . . . . . . . . . . . . . . . . . . . . 72

4.1.3 Stammering research and objections to ‘feedback’ control 77

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Behavioural Data . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Subjects and stimuli . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Experimental procedure . . . . . . . . . . . . . . . . . . 86

4.3.3 Pitch shifting method and apparatus . . . . . . . . . . . . 87

4.3.4 Behavioural results . . . . . . . . . . . . . . . . . . . . . 91

7



Contents

4.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 Cross-syllable compensation . . . . . . . . . . . . . . . . 101

4.4.2 Post-compensation overshooting . . . . . . . . . . . . . . 105

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5 Linguistic-to-Motor: Predicting TA Parameters with Deep and Recur-

rent Neural Networks 116

5.1 Background on F0 Modelling Approaches in SPSS . . . . . . . . 117

5.1.1 HMM-based approach . . . . . . . . . . . . . . . . . . . 117

5.1.2 DNN-based approach . . . . . . . . . . . . . . . . . . . . 119

5.1.3 RNN-based approach . . . . . . . . . . . . . . . . . . . . 121

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 DNN-based F0 Modelling with TA . . . . . . . . . . . . . . . . . 126

5.4 RNN-based F0 Modelling with TA . . . . . . . . . . . . . . . . . 128

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.2 System configurations . . . . . . . . . . . . . . . . . . . 131

5.6 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.6.1 Objective evaluation . . . . . . . . . . . . . . . . . . . . 136

5.6.2 Subjective evaluation . . . . . . . . . . . . . . . . . . . . 137

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6 Conclusions 145

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Limitations and Future Directions . . . . . . . . . . . . . . . . . 147

Bibliography 150

8



Contents

Appendix A Python Implementation of the Target Approximation Model169

9



List of Figures

1.1 Overview of statistical parametric speech synthesis (SPSS) based

on decision tree or DNN. . . . . . . . . . . . . . . . . . . . . . . 22

1.2 A 3D vocal tract model in VocalTractLab (Birkholz, 2013). . . . . 25

1.3 The workflow of training a TA-based VocalTractLab to produce

continuous speech (Prom-on, Birkholz & Xu, 2013). . . . . . . . 26

1.4 The original and synthetic spectrograms of the utterance /,jaja’jaja/

(Prom-on, Birkholz & Xu, 2013). . . . . . . . . . . . . . . . . . . 26

1.5 EMA trajectories of the three tongue sensors for the utterance

/,jaja’jaja/. Original EMA trajectories are shown as black curves

and TA-generated trajectories based on the learned articulatory

targets are shown as red curves (Prom-on, Birkholz & Xu, 2013). . 27

1.6 A two-stage speech production process. . . . . . . . . . . . . . . 35

2.1 A labelled F0 contour based on the AM theory (Xu, 2015). . . . . 38

2.2 An example of a stylised F0 contour in the IPO approach (Xu, 2015). 41

2.3 An example of a standardised F0 contour in the IPO approach

(Willems, 1983). . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 A pitch accent split into two parts, rise and fall. And the amplitude

and duration of them are parameterised (Taylor, 2009). . . . . . . 44

2.5 Five pitch accents with different tilt values (Taylor, 2009). . . . . 45

10



List of Figures

2.6 Examples of the SFC model. a: Synthesised functional contours

with different durations by trained functional generators. b: A final

F0 contour (yellow) is predicted by a superposiiton of multiple

functional contours. The original F0 contour is in green. (Figures

are digested and reproduced from Bailly & Holm (2005).) . . . . . 46

2.7 Overview of the Fujisaki model (Fujisaki, 2004). . . . . . . . . . 50

3.1 The PENTA framework (Xu, 2005). . . . . . . . . . . . . . . . . 55

3.2 Functional annotations in the PENTA framework (Xu & Prom-on,

2014). In the ‘Stress’ layer, S and U denote stressed and unstressed

syllables, respectively. In the ‘Focus’ layer, PRE, ON and POS

denote pre-focus, on-focus and post-focus, respectively. Q denotes

question in the ‘Modality’ layer. . . . . . . . . . . . . . . . . . . 56

3.3 The target approximation model. . . . . . . . . . . . . . . . . . . 59

3.4 Two-dimensional display of the extracted target parameters of the

four tones in the statement set. The X and Y axes represent

target slope and target height. Circle size represents target strength.

Tone clusters are represented by covariance error ellipses with 95%

confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Two-dimensional display of the extracted target parameters of the

four tones in the question set. The X and Y axes represent tar-

get slope and target height. Circle size represents target strength.

Tone clusters are represented by covariance error ellipses with 95%

confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . 63

11



List of Figures

4.1 A schematic diagram showing the experimental settings and the

workflow of behavioural data collection. The diagram is adapted

and optimised from the ones displayed in Cai (2012) and van Brenk,

Terband & Cai (2014). . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 The type of ring buffer that we used in FxTuner. A: Normal buffer

for comparison. B: Ring buffer with an extra ‘manipulation’ cache. 88

4.3 Example spectrograms and pitch tracking results (blue contour) of a

production-feedback pair. A: the recorded /mā má/ production of a
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Chapter 1

Introduction

Speech is the most common means of human-human communication, and speech

science research aims at achieving a clear understanding of human speech produc-

tion and perception. In recent decades, along with the advances of computer science

and machine learning, research and development in speech science are not only

paramount for understanding human speech production and perception, but also

able to facilitate human-machine interaction. This thesis follows the philosophy

that ‘better speech technology will come from better speech science’ (Huckvale,

2002, p. 1261).

The goal of the work presented in this thesis is to achieve a more human-

like fundamental frequency (F0) modelling paradigm for speech synthesis and

address the frame-by-frame independence issue in its typical statistical approaches.

Focusing on the application of a recently developed articulatory F0 production

model — target approximation (TA), the contribution of the thesis will be twofold.

First, the online compensation response to the pitch-shifted auditory feedback will

be simulated with underlying articulatory pitch control based on the TA model.

Second and more importantly, by linking the TA model to state-of-the-art deep
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1.1 Speech Synthesis

learning techniques, a two-stage articulatory-based F0 modelling system will be

implemented and its performance will be compared with the baseline systems.

In this chapter, we will start with a brief introduction to current speech synthesis

approaches and then go deep into the issues in F0 modelling.

1.1 Speech Synthesis

Speech synthesis, also known as text-to-speech or TTS, is a process of automatic-

ally converting written text to synthetic speech voice by computer. It has a broad

range of applications in human-machine interaction. Some important applications

are clinical, which may include reading systems for the blind, where a system would

read some text from a book and convert it to speech; or speaking assistive systems

for people who cannot speak, where a system would speak out what the disabled

person wants to say. In recent years, with remarkable advances in speech synthesis

and other complementary technologies such as speech recognition, natural language

understanding and generation, TTS systems are more commonly used in intelli-

gent personal assistants (e.g. Siri on iPhone), call-centre automation, reading of

news, weather reports, travel directions and a wide variety of other human-machine

interactive applications (Taylor, 2009).

A TTS system normally consists of two parts — ‘frontend’ and ‘backend’.

The frontend converts the written text of an utterance to contextual linguistic spe-

cifications, which may include words, phone sequence, part-of-speech (POS) tags,

phrase boundaries, and so on. The frontend is a natural language processing (NLP)

component, which is usually a combination of linguistic rules and statistical models,

and is usually language dependent. The backend generates speech waveform based

on the linguistic specifications given by the frontend and usually can be language

independent. When comparing speech synthesis approaches, we normally refer to
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1.1 Speech Synthesis

methodological differences between backends since different backends often share

the same frontend with a few modifications. In general, besides the old-fashioned

waveform synthesis (e.g. MITalk (Allen, Hunnicutt, Klatt, Armstrong & Pisoni,

1987)) which employed a rule-based source-filter model to produce speech wave-

form (Holmes, Mattingly & Shearme, 1964), there are currently three major speech

synthesis approaches: concatenative synthesis, statistical parametric synthesis and

articulatory synthesis.

1.1.1 Concatenative synthesis

The concatenative approach emerged earlier than the statistical parametric approach

and a number of commercial applications are still based on this approach. Today

when we mention concatenative synthesis we normally refer to the unit-selection

synthesis (Hunt & Black, 1996). The most renowned unit-selection speech syn-

thesis system Festival was created in 1997 for research purposes at the Centre for

Speech Technology Research, University of Edinburgh (Taylor, Black & Caley,

1998).

In this approach, segmented speech sound units (e.g. diphones) are selected from

a recorded speech database and concatenated to synthesise novel utterances. Since

the units used for synthesis are real examples of human speech, good naturalness

can be expected. Usually, there are multiple examples of a unit in the database

subject to contextual differences so that the process of synthesis can be seen as a

process of finding the most suitable unit sequence. The selection of a particular

unit is jointly determined by two functions, one is target cost, which measures

the contextual feature mismatch between a unit that we need and the units that we

have in the database; the other is join cost, which measures the acoustic mismatch

between potentially concatenated units. The challenge of unit-selection synthesis

is to balance between the two cost functions with search algorithms (e.g. Viterbi
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1.1 Speech Synthesis

search (Forney, 1973)) and find a unit sequence which requires minimal signal

processing to eliminate the glitches (join effects) between adjacent units. In the

perfect situation, for example, to resynthesise a recorded utterance in the database,

the original units of it will be selected with no signal processing needed at all and

the synthetic utterance sounds quite natural.

This kind of unit-selection TTS system can bring us the highest naturalness of

synthetic speech on the one hand, but on the other hand it requires us to build and

maintain a large database to achieve the goal. Specifically, practical issues include

how to optimise a recording script in order to obtain a cost-effective database

covering a reasonable number of multi-phone or even multi-syllable tokens, how to

segment and label units, how to efficiently search the database, how to deal with

the missing units, and so on (Clark, Richmond & King, 2007). Furthermore, since

the units are recorded beforehand and so cannot be manipulated to any great extent,

we do not have any real control over the synthetic speech. Namely, we can only

control the unit selection process and how selected units are glued together (e.g.

alleviating glitches with signal processing techniques), but cannot control the actual

content and effect of a unit. In the case of multi-speaker synthesis, the situation

would be exacerbated since most of the recorded units are highly speaker-specific

and can hardly be used interchangeably.

1.1.2 Statistical parametric synthesis

Statistical parametric speech synthesis (SPSS) (Yoshimura, Tokuda, Masuko,

Kobayashi & Kitamura, 1999) has dominated the field of TTS research in the

last decade. The success of SPSS mainly relies on the use of hidden Markov models

(HMMs) and Gaussian mixture models (GMMs) (Tokuda, Nankaku, Toda, Zen,

Yamagishi & Oura, 2013) to learn acoustic features from a large speech dataset and

then generate and output parameter sequence for unseen text during synthesis.
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1.1 Speech Synthesis

In its conventional approach, spectral and F0 features are first extracted frame-

wise from training data. Then linguistic context-dependent phone HMMs, which

represent nonstationary acoustic feature distributions with a sequence of hidden

states (usually five states per phone model), are trained on the extracted acoustic

features via the maximum likelihood (ML) estimation by using the Expectation-

Maximisation (EM) algorithm (Dempster, Laird & Rubin, 1977). State-level single

Gaussian or GMM conditional probability density functions (PDFs) are computed

accordingly. Binary decision trees are then constructed to cluster and tie contextu-

ally similar states together and set up a mapping from contextual linguistic features

(obtained from text analysis via a frontend) to HMM states. At the synthesis stage,

acoustic parameters are generated from decision-tree-selected HMM sequences

based on the maximum likelihood parameter generation (MLPG) algorithm with

both static and dynamic acoustic features (Tokuda, Yoshimura, Masuko, Kobayashi

& Kitamura, 2000). Finally, generated acoustic parameters are sent to a vocoder

(e.g. STRAIGHT by Kawahara, Masuda-Katsuse & de Cheveigne (1999)) for

synthesising waveforms. Although this HMM-based approach can generate highly

intelligible speech with flexible controllability (Zen, Tokuda & Black, 2009), the

synthesis tends to be over-smooth and is still not as good as the best-quality concat-

enative systems (Hunt & Black, 1996). This critical issue has been alleviated but

not fully resolved by a number of techniques, such as considering global variance

(GV) during synthesis (Toda & Tokuda, 2007), minimum generation error (MGE)

training (Wu & Wang, 2006), trajectory HMM modelling (Zen, Tokuda & Kitamura,

2007) and modulation spectrum post-filtering (Takamichi, Toda, Neubig, Sakti &

Nakamura, 2014).

Recently, along with its successful application in automatic speech recognition

(ASR), deep neural network (DNN) has shown its power to improve the accuracy

of statistical acoustic modelling in speech synthesis (Ling, Deng & Yu, 2013a; Lu,
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Figure 1.1 Overview of statistical parametric speech synthesis (SPSS) based on
decision tree or DNN.

King & Watts, 2013; Zen, Senior & Schuster, 2013; Zen & Senior, 2014; Qian, Fan,

Hu & Soong, 2014). In general, it overcomes some problems (e.g. complexity limit,

training data fragmentation) faced by decision-tree-based approaches by offering a

highly complex and nonlinear yet efficient mapping between linguistic features and

state-level acoustic features via a compact hierarchical structure. Figure 1.1 shows

a unified overview of such decision tree or DNN-based SPSS. Some more recent

studies demonstrate even better results by embedding the parameter generation

process inside long short-term memory1 (LSTM) based recurrent neural networks

1In contrast to ‘short-term memory’ (i.e. typical RNN), which can theoretically model sequential
events but is practically not very successful due to the gradient-vanashing problem when minimal
time lags between inputs and outputs are long, the ‘long’ version here overcomes such problem.
More details please refer to Hochreiter & Schmidhuber (1997).
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(RNNs) and directly predicting vocoder-ready acoustic parameter sequence (Fan,

Qian, Xie & Soong, 2014; Fernandez, Rendel, Ramabhadran & Hoory, 2014; Zen &

Sak, 2015). Some more innovative research investigated the possibility of directly

modelling speech at the waveform level with recurrent or convolutional neural

networks. Namely, contextual linguistic features are mapped directly to time domain

waveform signals with RNN or CNN modelling. The pilot experiments (Tokuda &

Zen, 2015; Tokuda & Zen, 2016; van den Oord, Dieleman, Zen, Simonyan, Vinyals,

Graves, Kalchbrenner, Senior & Kavukcuoglu, 2016) show that these methods are

able to generate raw speech waveforms which mimic any human voice. However,

directly predicting waveform sample-by-sample is an extremely computationally

expensive and time-consuming task, which makes their drawback very clear in real

applications. More details concerning the SPSS approaches will be reviewed in

Chapter 5 when we need to build SPSS baseline systems for F0 modelling.

The DNN/RNN-based SPSS approaches have become state-of-the-art in speech

synthesis nowadays, and some researchers believe that these approaches simulate

the process of human speech production (Fan et al., 2014; Zen, 2015). However,

comparing them to the articulatory synthesis introduced below, we can find that

the success of SPSS approaches should be mainly owed to the advance of machine

learning techniques. From a methodological perspective, what SPSS approaches

have achieved so far is not even close to the reality of speech production.

1.1.3 Articulatory synthesis

The basic methodology of articulatory synthesis is to produce speech by simulating

principles of speech production. Articulatory synthesis is a direct reflection of our

current knowledge in speech science with aims of building bionic vocal tract models

and replicating the articulation process. Theoretically, this approach has the poten-

tial to simulate every aspect of human speech production. Important issues involved
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1.1 Speech Synthesis

in articulatory synthesis include the difficulties in accurately measuring vocal tract

and real articulatory process (e.g. through X-ray, magnetic resonance imaging

(MRI) or electromagnetic articulography (EMA)) as well as the computational

complexity needed in controlling the artificial articulators to produce speech.

A typical articulatory synthesiser is composed of three main parts:

• a vocal tract model constructed based on the measurements of real vocal tract

• a mechanism to control the artificial articulators

• an acoustic model of glottal excitation (sound source) and vocal tract reson-

ance (filter)

Different from the waveform synthesis, which directly specifies sound source

parameters, formant frequencies and bandwidths, articulatory synthesis allows us

to actually adjust the shape of vocal tract and control the movements of different

artificial articulators by means of a small set of articulatory parameters. In a 3D

vocal tract model, an area function is used to describe how the cross sectional area of

the vocal tract tube varies between the glottis and lips. During production, temporal

and spatial variations of the articulatory parameters change the area function so that

speech waveform can be calculated by the acoustic model based on the sequence of

area functions.

VocalTractLab developed by Birkholz, Jackèl & Kröger (2006) is a represent-

ative of such articulatory synthesisers. It consists of a detailed 3D model of the

vocal tract (Figure 1.2) that can be configured to fit the anatomy of any specific

speaker, an advanced self-oscillating model of the vocal folds and an accurate

method for the aeroacoustic simulation of the speech signal. VocalTractLab is

capable of generating a full range of speech sounds (e.g. voiced vowels; voiceless

consonants including fricatives and plosives; consonant-vowel coarticulation) by

controlling vocal tract shapes, aerodynamics and voice quality (Birkholz, 2013).
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Figure 1.2 A 3D vocal tract model in VocalTractLab (Birkholz, 2013).

What is directly relevant to this thesis is that, inspired by the target approx-

imation (TA) model (Xu & Wang, 2001; Prom-on, Xu & Thipakorn, 2009) in

F0 production, VocalTractLab recently adopted the concept of sequential target

approximation as the mechanism to control the dynamics of the articulators (Birk-

holz, Kröger & Neuschaefer-Rub, 2011). In their experiment of reproducing

EMA-measured movement trajectories of the constrictors (lower lip, tongue tip and

tongue dorsum) and the jaw, the model-generated trajectories closely matched the

observed ones, which supported the hypothesis that articulatory movement can be

considered as a dynamic process of target approximation.

Based on this finding, Prom-on, Birkholz & Xu (2013) successfully trained a

TA-based VocalTractLab to produce several simple continuous utterances for the

first time. In that experiment, surface acoustics of natural speech and manually

annotated segmental boundaries were used and underlying targets were optimised

with bounded ‘analysis-by-synthesis’. Namely, candidate targets were used to

actually synthesise speech sounds round by round and were continuously optimised

by correcting errors found between synthetic samples and their natural counterparts.

Figure 1.3 displays the workflow of this experiment.

25



1.1 Speech Synthesis

Figure 1.3 The workflow of training a TA-based VocalTractLab to produce continu-
ous speech (Prom-on, Birkholz & Xu, 2013).

Figure 1.4 The original and synthetic spectrograms of the utterance /,jaja’jaja/
(Prom-on, Birkholz & Xu, 2013).

The learned articulatory targets were able to generate utterances that approx-

imate to the original both acoustically (Figure 1.4) and articulatorily (Figure 1.5).

From the latter we can see that the trajectories generated by the TA model with the

learned articulatory targets are very close to the EMA trajectories.
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Figure 1.5 EMA trajectories of the three tongue sensors for the utterance /,jaja’jaja/.
Original EMA trajectories are shown as black curves and TA-generated trajectories
based on the learned articulatory targets are shown as red curves (Prom-on, Birkholz
& Xu, 2013).

Speech production is a rather complex motor control process and our knowledge

about it is still limited. Therefore, articulatory synthesis remains as a very difficult

task at present. While progress is being made slowly and so far articulatory systems

are still impractical for general use, some advances of this approach may already

be useful to other speech synthesis approaches. For example, studies by Toda,

Black & Tokuda (2004), Ling, Richmond, Yamagishi & Wang (2008), Ling, Rich-

mond, Yamagishi & Wang (2009), Ling, Richmond & Yamagishi (2012) and Ling,

Richmond & Yamagishi (2013b) tried to integrate EMA features into HMM-based
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speech synthesis to achieve articulatory control. The work presented in this thesis,

which intends to make direct use of the sequential target approximation model for

F0 modelling in TTS, is another attempt.

1.2 F0 Modelling

1.2.1 Intonation

The frequency of vocal fold vibration is called fundamental frequency (F0), which

is a physical property of speech. Pitch, as another commonly used term, is the

psychophysical (perceptual) correlate of F0. These two terms are often used in-

terchangeably in many contexts. Fundamental frequencies are normally described

as F0 contours, and patterns of such contours are referred to as intonation. Inton-

ation plays an important role in human-human communication. The functions of

intonation include but are not limited to (van Santen, Mishra & Klabbers, 2008):

• Structuring utterance and resolving syntactic ambiguities

• Conveying pragmatic information, e.g. emphasis, contrast, focus, etc.

• Providing cues of the emotional state of the speaker

• Serving as a continuity guide in noisy environments

A phonological defination of intonation is given in Ladd (2008, p. 4): ‘Intona-

tion, as I will use the term, refers to the use of suprasegmental phonetic features to

convey “post-lexical” or sentence-level pragmatic meanings in a linguistically struc-

tured way.’ There are at least two points that we should note from this definition.

One is suprasegmental, which indicates that intonation cannot be accounted for

strictly based on the segmental structure of an utterance. Instead, it should be seen

as a property of larger units of speech (e.g. syllable, word and phrase). The other is
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‘post-lexical’, by which it means that intonation as a phonological concept excludes

lexical features (e.g. tones as used in tonal languages, in which pitch contours are

used to distinguish one word from another). However, since this thesis is intended

to achieve an articulatory modelling of pitch contour that can be used universally

for speech synthesis, we adopt the expression ‘F0 modelling’ more often instead

of the restricted ‘intonation modelling’ to indicate that the modelling is for both

lexical and post-lexical pitch patterns.

With the progress of speech synthesis, the intelligibility of synthetic speech

nowadays is satisfactory in most cases. The naturalness of synthetic intonation,

which directly affects the overall quality of synthetic speech, has become the biggest

issue in speech synthesis and has attracted extensive research.

1.2.2 Issues

Regardless of F0 modelling approaches, a shared technical issue in this field is the

difficulty in F0 measurement. The accuracy of F0 can be affected by the phonatory

state of a speaker (e.g. creaking and breathiness) and the environmental noise

during recording. In some TTS systems, multiple pitch trackers are often used to

offer more than one pitch estimate to the same utterance so that a relatively reliable

pitch contour can be ultimately obtained by averaging across multiple estimations.

Besides that, there are many other voicing and segmental perturbation problems

that are not easy to tackle. However, even if a pitch contour is accurately extracted,

it is still difficult to tell which feature of it should be seen as a segmental effect

and which should be taken as an intonational variation intended by the speaker to

convey information.

Regarding the issues in terms of F0 modelling methodology, the approaches can

be divided into two types: one is model-based and the other is statistical data-driven.
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Model-based

As the name suggests, this type of F0 modelling tries to apply existing intonation

models to TTS systems. While intonation has been studied intensively in the past

decades, different schools of thought have emerged and consensus has never been

reached. The controversies among the schools actually show that our theoretical

understanding of intonation is still incomplete. And this has actually limited the

success of speech synthesis. Over the time, the influential theories and models

include, but are not limited to, the Autosegmental-Metrical (AM) theory (Pierrehum-

bert, 1980) with ToBI annotation scheme (Silverman, Beckman, Pitrelli, Ostendorf,

Wightman, Price, Pierrehumbert & Hirschberg, 1992), the Fujisaki model (Fujisaki,

1983), the IPO approach (’t Hart, Collier & Cohen, 1990), the Tilt model (Taylor,

1992; Taylor, 2000), the STEM-ML model (Kochanski & Shih, 2003), the SFC

model (Bailly & Holm, 2005) and the TA model (Xu, 2005; Prom-on et al., 2009).

Before we bring up more details about these theories and models in Chapter 2 and

Chapter 3, some issues can be discussed here.

One of the major issues for the phonological theories (e.g. AM and IPO) is

that they are qualitative and symbolic so their usage in speech synthesis is heavily

dependent on accurate annotations. For example, when the ToBI labels are adopted

to mark intonational events defined in the AM theory (pitch accents, phrase accents

and boundary tones), the consistency among annotators is critical for training TTS

models. Practically, although the place of accents can usually be agreed by different

annotators, making distinctions between different accent types is not always as

easy as the originally illustrated examples (Syrdal & McGory, 2000). Although

some tools have been developed to automate the annotation process (e.g. AuToBI

by Rosenberg (2010)), manual correction is still needed (the reported accuracy for

pitch accent type classification was around 70%).
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Compared to the phonological theories, the phonetic models (e.g. Tilt and SFC)

may look less problematic. An advantage of them over the phonological ones is

that they are quantitative and parametric (using continuous parameters rather than

imposing categorical classification on the intonational events). So, they are capable

of directly modelling most of the surface intonational events. However, a main

drawback of these models is also clear: no matter linear or superpositional, they

are only concerned with the intonational events, with the underlying mechanism

of F0 contour formation largely ignored. As a consequence, in the Tilt model, for

example, the pitch accents and boundary tones are modelled piecewise and then

inter-connected by linear interpolation. Moreover, as the Tilt model was developed

for English, it may not be directly applied to other languages with much more

complex pitch patterns (Taylor, 1992).

In terms of the articulatory models (e.g. Fujisaki and STEM-ML), while the

physiological process of F0 production has been taken into consideration, they are

mathematically and physically too complex with potentially redundant degrees of

freedom (DOF), which directly leads to training difficulty. Although they are able

to produce some example utterances with careful tuning, large-scale application

in TTS is still not feasible. As pointed out by Hirose, Sato, Asano & Minematsu

(2005), the Fujisaki model is actually a variation of dynamic-system model such as

the one proposed by Ross & Ostendorf (1999). The difference is that the Fujisaki

model made several physiological assumptions to constrain the DOF. However,

the constraints are not enough and the Fujisaki model still suffers from the DOF

problem with many interactive variables involved and which makes it difficult to

train. In Hirose et al. (2005), for example, further constraints were applied on the

location of commands in the Fujisaki model in order to enable an application. A

valuable comment can be found in Taylor (2009, p. 253) when introducing the

dynamic-system model by Ross & Ostendorf (1999): ‘The dynamic-system model
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is a natural choice for statistical generation of F0 contours since it is well suited

to the job of generating continuous trajectories. If it has any weaknesses, we can

point to the facts that the state trajectories are limited to being those of a first-order

filter, ..., and the training process can be quite intricate’. The TA model, which

will be introduced and applied later in this thesis, has addressed these issues by

providing a high-order dynamical system with very limited DOF based on our latest

understanding of speech production.

Statistical data-driven

Satisfactory results in F0 modelling have not been achieved in statistical parametric

speech synthesis (Ling, Kang, Zen, Senior, Schuster, Qian, Meng & Deng, 2015).

The major issue in this approach is that the F0 contours are modelled frame-by-

frame independently (i.e. observation probabilities suddenly change when moving

from one state to another), which is mainly due to the discrete nature of the hidden

state space in the HMM model. As a consequence, the generated F0 contours would

be piecewise and unnatural if no further processing is provided. The aforementioned

MLPG algorithm (Tokuda et al., 2000) was targeted exactly at this problem and

managed to output smooth contours by taking into account the learned dynamics of

F0. However, this solution is not perfect since it requires going though the whole

utterance again after the acoustic features are predicted, which causes much delay,

let alone the smoothing process is implicit and uncontrollable.

Besides that, all previous studies tried to consider numerous contextual prosodic

factors (e.g. phone position in phrase/sentence) in an attempt to better represent

longer-term F0 patterns. Hierarchical and additive constraint methods have also

been developed either by modelling prosodic components at different phonetic

levels (Qian, Liang & Soong, 2008; Wang, Ling, Zhang & Dai, 2008; Zen &

Braunschweiler, 2009; Lei, Wu, Soong, Ling & Dai, 2010; Qian, Wu, Gao &
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Soong, 2011; Wu & Soong, 2012) or by relying on discrete cosine transform (DCT)

to capture suprasegmental F0 patterns (Teutenberg, Watson & Riddle, 2008; Wu,

Qian, Soong & Zhang, 2008; Yin, Lei, Qian, Soong, He, Ling & Dai, 2014; Yin,

Lei, Qian, Soong, He, Ling & Dai, 2016).

Furthermore, sequential training criteria minimising errors between utterance-

level F0 trajectories rather than independent F0 frames were developed for both the

conventional HMM-based (Wu & Wang, 2006) and the DNN-based approaches

(Fan, Qian, Soong & He, 2015; Wu & King, 2015; Wu & King, 2016a) to ensure

that the inter-frame relationship is not lost at the training stage. Recent RNN-based

approaches, on the other hand, offer a direct solution of sequence-to-sequence

mapping so that the correlations between contiguous frames are not ignored and

the dynamic process of speech production is always implicitly embedded.

What is common in these approaches, however, is that they treat articulatory

mechanisms of F0 production only implicitly. Even in studies that try to integrate

articulatory features into speech synthesis (Toda et al., 2004; Ling et al., 2008, 2009,

2012, 2013b), articulatory mechanisms are treated as unknown. A fundamental

idea of these approaches is to set up a direct mapping from linguistic features to

acoustic features, and such acoustic features can be multi-level with considerable

hierarchical constraints. This idea, however, is questionable in terms of its ‘biolo-

gical plausibility’. Namely, do we human really produce speech with so much detail

considered at the same time? Or, do we actually only consider intended linguistic

meanings and the final speech outputs are natural realisations that are physically

and physiologically constrained? The answer should be obvious.

Furthermore, from our perspective, overusing machine learning techniques is

becoming a trend in the field. This should by no means be encouraged, although

sometimes it may bring us the best results. Recent CNN-based waveform modelling

approach (e.g. WaveNet by van den Oord et al. (2016)) is such an example. While
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it is indeed able to produce very natural speech that captivates our ears, the com-

putation cost of it can be unreasonably high.2 Despite that acceleration methods

are being explored (Paine, Khorrami, Chang, Zhang, Ramachandran, Hasegawa-

Johnson & Huang, 2016), it is difficult to call it the final solution of TTS. After all,

the human speech production process is by no means as straightforward as ‘text to

speech’.

1.3 Proposed Articulatory F0 Modelling

In this thesis we explore an articulatory approach of F0 modelling that aims at

achieving a more human-like complete speech production paradigm and addressing

the frame-by-frame independence issue in SPSS approaches. By introducing an

articulatory F0 generation model — target approximation (TA) — between text

and speech that controls dynamical F0 generation, contextual F0 variations are

processed in two separate yet integrated stages:

• I. Linguistic-to-motor: contextual linguistic features are associated to motor

parameters of the TA model

• II. Motor-to-acoustic: F0 contours are dynamically generated by TA-based

articulatory simulation

With the TA model, the syllable is considered as the basic F0 modelling unit

instead of frame or phone as commonly used in other approaches. As mentioned

in Section 1.2.2, the TA model is superior to other similar articulatory models in

that it is implemented as a high-order dynamical system but with only a limited

number of DOF. This design is based on the understanding that basic human

speech movement can be considered as a dynamic process of target approximation

2The authors of WaveNet reported that it took about 90 minutes to synthesise 1 second of speech
on a laptop.
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with syllable-synchronised control (Xu & Wang, 2001; Prom-on et al., 2009).

More importantly, unlike common dynamical system models, those F0 movements

not occurring in natural utterances are largely avoided in the TA model. While

some other articulatory synthesis studies have found TA to be a valid mechanism

to drive the actual movements of articulators (Section 1.1.3), in this thesis we

further supply a TA-based pitch control experiment based on the online auditory

feedback compensation behaviour found in empirical research. The purpose of

this experiment is not only to demonstrate the capability and flexibility of TA, but

also to show its validity to be used at the motor-to-acoustic stage of our proposed

system.

We simulate the human-like two-stage F0 production process by linking the

TA model to a DNN, which learns the ‘linguistic-to-motor’ mapping given the

‘motor-to-acoustic’ mapping provided by TA (Figure 1.6). By predicting syllable-

synchronised TA motor parameters instead of frame-by-frame acoustic features,

the unnatural sudden fluctuations in F0 trajectories are avoided. The possibility of

adopting a gated recurrent unit (GRU) based RNN to help TA capture higher than

the syllable level articulatory dynamics of F0 production is also explored.

Linguistic AcousticMotor
DNN/RNN TA

Learning Articulation

Figure 1.6 A two-stage speech production process.

Some previous studies have also experimented with the TA model before (Zhang,

Wang, Yu & Wu, 2010; Pang, Wu & Cai, 2012; Na & Garner, 2013; Gao, Ling,

Chen & Dai, 2014). However, the model was either incorporated into a hierarch-

ical structure or used in a post-filtering way but seldom used on its own. While

its efficacy has been demonstrated, the potential of the TA model was not fully

utilised. This thesis aims to offer a canonical implementation of the TA model and
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apply it directly to TTS to test its potential to further enhance synthesis quality in

combination with the latest DNN and RNN learning methods.

The rest of the thesis is organised as follows. A selection of influential intonation

theories and models are reviewed in Chapter 2, followed by Chapter 3 dedicated

to introducing the TA model. Chapter 4 describes the TA-based simulation for

online auditory feedback compensation in pitch, which contributes to the motor-to-

acoustic stage. Chapter 5 reviews existing F0 modelling approaches in SPSS first

and then completes the two-stage F0 modelling process by linking the TA model

to DNN/RNN and building systems to evaluate the performance of the proposed

articulatory F0 modelling approach. Chapter 6 is a general conclusion of the thesis.
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Chapter 2

Intonation Theories and Models –

The Literature

In this chapter, we will review some of the most influential theories and models of

intonation proposed over the decades. Based on methodological differences, they

are divided into phonological, phonetic and articulatory.

2.1 Phonological Models

2.1.1 The AM theory and ToBI labels

Originating from Liberman (1975) and Liberman & Prince (1977), the

Autosegmental-Metrical (AM) theory (Goldsmith, 1990; Ladd, 2008) is a phon-

ological theory of intonation. It first formally appeared in Pierrehumbert’s PhD

thesis (Pierrehumbert, 1980), so that is also known as the Pierrehumbert model.

Together with its later extensions (Beckman & Pierrehumbert, 1986; Pierrehumbert

& Hirschberg, 1990), the AM theory is treated as the first established intonation

research framework.
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The AM theory describes intonation as a linear sequence of high and low tones.

The fundamental intonation units in the theory, as argued by Pierrehumbert, are

simply H (high) and L (low) tones defined with respect to the current F0 range.

These two types of tones are building blocks of pitch accents, phrase accents and

boundary tones. Pitch accents can be formed by single tone (H*, L*), or by double

tones (H*+L, H+L*, L+H*, L*+H). The star sign ‘*’ in each pitch accent marks

the tone that actually align with the stressed syllable. An intermediate phrase is

composed of one or more pitch accents. An intonational phrase, which is the

largest prosodic unit, is composed of one or more intermediate phrases. Boundary

tones are additional tones defined at intonational phrase boundaries, which are

single tones marked with ‘%’ (%H, %L, H%, L%) to indicate the alignment

to the onset or offset of the intonational phrase, respectively. The path of pitch

movement between the last pitch accent to the boundary tone in an intonational

phrase is represented by phrase accent, which is a single tone followed by a ‘-’

sign (H-, L-). A collection of finite state grammar rules were further defined by

Pierrehumbert to specify the possible combinations of pitch accents, phrase accents

and boundaries tones. Figure 2.1 shows a labelled example F0 contour.
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Figure 2: Schematic illustration of three linear models of prosody: 
Nuclear tone, AM and IPO, using the sentence in Figure 1 as an 
example. 

Figure 2.1 A labelled F0 contour based on the AM theory (Xu, 2015).

Early applications of this phonological model were rule-based, which require

some heuristics definined by experts. In Pierrehumbert (1981), some phonetic

realization rules (interpolation rules) were developed to generate F0 contours based
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on the model. Given the tonal representation of an utterance determined by the

finite state grammar, the target F0 values of tones can be specified first based on the

metrical prominence of the associated syllables and the F0 values of the preceding

tones. Then, the interpolation rules can be applied to connect these target F0 values

to generate an F0 contour (van Santen et al., 2008). Later in the unit-selection

system developed by Black & Hunt (1996), statistical data-driven approach was

used to generate F0 contours based on the ToBI labels (see below).

It is worth mentioning that there is a downdrift phenomenon commonly observed

in F0 contours across languages (’t Hart & Cohen, 1973; ’t Hart & Collier, 1975;

Ladd, 1984; Liberman & Pierrehumbert, 1984; Fujisaki & Kawai, 1988; Cooper

& Sorensen, 2012). Namely, there is sometimes an overall left-to-right downward

trend of the F0 contour in an utterance. While this phenomenon is regarded by

most theories as an automatic physiological effect arising from the reduction of

sub-glottal pressure during production, Pierrehumbert attributed it to a phonological

effect downstep, which can be controlled by the speaker. The effect was first

proposed to be triggered by the use of H L H sequence in Pierrehumbert (1980),

and then rectified as by H+L pitch accent alone in Pierrehumbert & Hirschberg

(1990).

ToBI (Tones and Break Indices) is a standard annotation scheme based on the

Pierrehumbert model for transcribing intonation of English (Silverman et al., 1992).

There are three parallel labelling tiers in ToBI including a tone tier, a break index tier

and a miscellaneous tier. The tone tier allows users to specify the intonation events

defined in the Pierrehumbert model. The break index tier is used to mark breaks

ranging from 0 to 4, which indicates the strength of association between adjacent

words at phrase boundaries (e.g. 0 for no boundary, 3 for intermediate phrase

boundary and 4 for intonational phrase boundary) (van Santen et al., 2008). The
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miscellaneous tier is an assistive tier for marking unintended pauses, disfluencies

and so on.

ToBI is very influential since it provides a complete framework for intonation

labelling for the first time, which allows different researchers to follow the same

standard to conduct experiments based on the Pierrehumbert model. Moreover,

ToBI also enables statistical modelling of intonation in speech synthesis. For

example, in unit-selection synthesis, Black & Hunt (1996) used linear regression to

predict three target F0 values (start, mid-vowel and end) for every syllable based on

the intonation features (e.g. stress and syllable position) represented by ToBI labels.

To the present, some DNN-based TTS systems are still using ToBI annotations as

input features to assist intonation modelling.

2.1.2 The IPO approach

The IPO approach (’t Hart & Cohen, 1973; ’t Hart & Collier, 1975; ’t Hart et al.,

1990), developed at the Institute of Perception Research (IPO), is a perception-

oriented model of intonation. An influential notion made by this approach is that

not all aspects of intonation are perceptually important to the human ear, and only

those important are worth modelling. The important aspects of intonation in the

IPO approach are perceptually relevant pitch movements rather than pitch levels, so

that the intonation unit here is different from the level tones considered in the AM

theory. There are two important procedures in the IPO approach, stylisation and

standardisation.

In the stylisation procedure, the original F0 contours are fitted linearly by a

series of piecewise straight lines known as close-copy contours, which represent

the perceptually relevant pitch movements. Note that this procedure is interactive.

A human listener is required to replace the F0 contours with a minimum number

of straight lines and compare the intonation between the resynthesised utterance
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Arnold, 1961; Palmer, 1922; Wells, 2006), the AM (Autosegmental-
Metrical) theory (Ladd, 2008), also known as the Pierrehumbert model 
(Pierrehumbert, 1980; Pierrehumbert and Beckman, 1988), and the IPO 
model (‘t Hart et al., 1990). Thus for the F0 contour shown in Figure 1, 
these models would have representations similar to those shown in Figure 
2. 
 

 

 

 

Figure 2: Schematic illustration of three linear models of prosody: 
Nuclear tone, AM and IPO, using the sentence in Figure 1 as an 
example. 

Figure 2.2 An example of a stylised F0 contour in the IPO approach (Xu, 2015).

and the original. The close-copy contours can be accepted once the resynthesised

utterance is perceptually equal to the original. Figure 2.2 shows an example result

of this procedure, in which the red straight lines are close-copy contours.
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Figure 9.9 An example of a standardised contour in the Dutch system. The dashed lines denote
the three declination lines and the thicker solid line shows the path of the F0 contour. The first
excursion to the top declination line is a head accent (British school). The second accent, which
rises to the top line and then falls to the baselines, is a fall accent. The rise at the end is a
continuation rise.

boundaries and between accents, Pierrehumbert argued that intonation could be described
in terms of patterns of two basic tones, which she called H (high) and L (low). Pitch
accents can be represented as either a single or a double tone. Every pitch accent has a
starred tone (*), which signals that it is that tone which is directly associated with the
accented syllable. The possible pitch accents are H*, L*, H* + L, H + L*, L + H* and
L* + H. At phrase boundaries, boundary tones can be found, which are marked with a
%. Phrase tones are used to show the path of the contour from the last (nuclear) accent
to the phrase boundary, marked with a -.

Unlike in the British-school analysis, there is no strict division of the contour into
regions such as head and nucleus. Both nuclear and pre-nuclear accents can be any one
of the six types described above. The nucleus accent is distinguished because the phrase
and boundary tones that follow it allow a much larger inventory of intonational effects.

Each tone forms a target from which F0 contours can be realised by using interpolation
rules. As with many other theories, the AM model retains the idea of a declination
baseline, but says that the downdrift commonly observed in F0 contours is mainly due
to the phonological effect of downstep, which again is controllable by the speaker. In
her original work, Pierrehumbert proposed that the downstep effect is triggered by the
speaker’s use of a sequence of H L H tones, using evidence from African tone languages
as justification (see Figure 9.8 for examples of downstepping and non-downstepping
contours).

The history of the AM model is particularly interesting in that it has a dual character
of being intended as a “pure” linguistic theory in the MIT, Chomsky/Halle phonology
tradition and as a working model for the Bell Labs TTS system. It is important to
realise that, from a theoretical linguistic point of view, the model as just described is
not intended to be a “complete” model of intonation as used in human communication.

Figure 2.3 An example of a standardised F0 contour in the IPO approach (Willems,
1983).

In the standardisation procedure, the close-copy contours obtained in the styl-

isation procedure are collectively analysed and classified into an inventory of basic

patterns, which are discrete, phonetically defined types of F0 rises and falls. Then

an intonation grammar can be defined to specify possible and permissible combina-

tions of the F0 rises and falls and used for speech synthesis. Besides that, downdrift

is also considered in the IPO approach by specifying three declination lines (high,

middle and low). The rising and falling F0 contours are realised between these lines.
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Figure 2.3 shows an example of a standardised contour, in which the dashed lines

are the three declination lines and the solid lines between them are the standardised

F0 contours.

The assumption of perceptual importance of the IPO approach is a valuable

contribution to our knowledge. However, the modelling process defined by the IPO

approach is not as straightforward as the AM theory, which makes it rarely be used

in real TTS applications.

2.1.3 Discussion

There are two shared properties between the two phonological models. The first

is that they are both qualitative, symbolic and defined as descriptive schemes

of intonation. This leads to an issue that both of them have to rely on accurate

annotations. However, annotation is always an error-prone task, and it is also very

difficult to achieve high consistency among human annotators. For example, in the

case displayed in Figure 2.1 for the AM theory, the question mark after the first ‘H’

indicates that the annotator is not sure about this particular decision so that further

negotiations and checks are required. As for the IPO approach, the situation is even

worse since the stylisation procedure which involves resynthesis and comparison so

that it is more time-consuming, labour-intensive and error-prone. Although there

are automatic tools available (e.g. AuToBI by Rosenberg (2010)), the tools need to

be trained first on ‘correctly’ annotated training data. The second is that they both

only consider the downdrift of F0 contour over a sentence. However, F0 contours

can be much varied with various pragmatic meanings conveyed (e.g. the downdrift

can be reversed at the end of yes/no questions). And the inclusion of complex

pragmatics is exactly what current TTS systems lack.

A major difference between the two phonological models is that, the level

tones are used as targets by the AM theory to mark intonation events, whereas more
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interpretable pitch movements are favoured by the IPO approach. As a consequence,

the AM theory has to rely on phonetic realization rules and linear interpolation to

generate continuous F0 contours, whereas rules used by the IPO approach are more

focused on controlling overall shape of F0 contours.

Rule-based modelling approach is easy to implement, efficient and able to

produce consistent F0 contours. However, its disadvantages are also clear. It is

highly dependent on expert rules, the naturalness is not sufficient and the variability

of generated contours is not rich. On the one hand, there is always a lack of rules in

rule-based systems. But on the other hand, designing and maintaining sophisticated

rules is a rather challenging task. Nevertheless, rule-based systems can be used to

directly test our theories so that are helpful for a better understanding of intonation.

2.2 Phonetic Models

2.2.1 The Tilt model

Developed by (Taylor, 1992; Taylor, 2000), Tilt is a phonetic model of intonation.

The aim of the model is to provide a parameterised representation of intonation

events for practical engineering use in speech synthesis. It is purely descriptive,

with linguistic concerns (e.g. the AM theory) and biological plausibility (e.g.

the Fujisaki model) ignored (Taylor, 2009). Instead of developing a fixed set of

categories for intonation events as in the AM theory, the Tilt model represents the

intonation events with a set of continuous parameters. Taylor (2009, p. 242) argues

that the evidence for the particular categories defined in the AM theory is weak:

‘With verbal language, phonetically we have a continuous space, either articulatory

or acoustic, but cognitively this is divided up into a discrete set of phonological

units, i.e. phonemes. The AM model follows the same policy with intonation, but ...

there was no equivalent to the minimal-pair test to decide how the phonetic space
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should be divided up’ (in terms of intonation). This argument is also held by many

other intonation models with a direct parametric representation of F0 contours,

including the target approximation model (Chapter 3) used in this thesis.

Similar to the AM theory, the types of intonation event considered in the Tilt

model are pitch accent and boundary tone, and they also occur in a linear fashion.

Between events, connections are made by linear interpolations. For each event, the

amplitude (Eq. (2.1)) and duration (Eq. (2.2)) of its rise and fall are parameterised

(Figure 2.4). This leads to a sub-model of Tilt called the rise/fall/connection model

(Taylor & Black, 1994).

Amplitude = A = |Arise|+ |Afall| (2.1)

Duration = D = |Drise|+ |Dfall| (2.2)9.3 Intonation theories and models 243

rise
amplitude amplitude

fall

rise
duration

fall
duration

Figure 9.12 A pitch accent split into rise and fall components.

lower in the pitch range, or occurs earlier or later with respect to the accented syllable).
This then gives a total of six parameters, four describing the shape of the event and two
describing how it aligns. This basic model (called the rise/fall/connection model [439])
models contours accurately but is not particularly amenable to linguistic interpretation.
The Tilt model itself is a transformation of the four parameters for each event (rise and
fall amplitude, and rise and fall duration) into the three Tilt parameters. Amplitude and
duration are given by

Amplitude = A = |Arise| + |Afall|
Duration = D = |Drise| + |Dfall|

The Tilt parameter itself is used to define the general shape of the event, independently
of its amplitude, duration and alignment. To find its value, we first calculate an interim
value, the Tilt amplitude, which is found by taking the ratio of the difference of the rise
and fall amplitudes and the sum of the rise and fall amplitudes:

tiltamp = |Arise| − |Afall|
|Arise| + |Afall|

We do likewise for duration:

tiltdur = |Drise| − |Dfall|
|Drise| + |Dfall|

These two quantities are highly correlated, which allows us to combine them into the
single final Tilt parameter:

tilt = tiltamp + tiltdur

2

Figure 9.13 shows a number of event shapes for various values of the Tilt parameter.

Figure 2.4 A pitch accent split into two parts, rise and fall. And the amplitude and
duration of them are parameterised (Taylor, 2009).

A tilt parameter can be calculated to represent the shape of an intonation event.

Two interim tilt parameters, tiltamp (Eq. (2.3)) and tiltdur (Eq. (2.4)), are calculated

first and then combined into the final tilt parameter (Eq. (2.5)).
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tiltamp =
|Arise| − |Afall|
|Arise|+ |Afall|

(2.3)

tiltdur =
|Drise| − |Dfall|
|Drise|+ |Dfall|

(2.4)

tilt =
tiltamp + tiltdur

2
(2.5)

The range of the tilt parameter is [−1, 1]. −1 indicates a pure fall, 1 indicates a

pure rise and 0 indicates a symmetrical bell shape. Figure 2.5 shows an array of

pitch accents with different tilt values.

244 Synthesis of prosody

+1 +0.5 0.0 −0.5 −1.0

Figure 9.13 Five pitch accents with differing values of tilt, from +1 (pure rise) to −1 (pure fall).

9.3.7 Comparison

Many other models have been proposed in addition to the above, but the models described
are perhaps the most popular and at least cover the range of models available. An entire
book could be devoted to discussing the philosophical, historical, theoretical and practical
issues surrounding why one model has the features it does and why it might be better
or worse than another model. For now, however, we will simply describe some of the
differences among models in order to help the reader understand why these differences
occur.

Purpose
Not all models were designed for the same purposes. The AM models are usually not
described as models at all, but as theories of how intonation actually works in human
communication. Issues such as cross-language studies and links with other components
of human grammar and so on are particularly important in this group of models. The
Fujisaki model is often said to be biologically justifiable, meaning that it mimics the
actual articulation of the human production mechanisms. The Tilt model is described
only in practical terms, as a tool to get the job done, and has no claim to model any aspect
(cognitive or biological) of human behaviour. These different approaches are of course
quite common in all areas of language study; what is of note is that intonation seems to
be one of the few areas where engineering and scientific approaches still have enough
commonality to constitute a single field.

Phonological versus phonetic versus acoustic
The AM model is phonological, the INTSINT model is phonetic and the Fujisaki and
Tilt models are acoustic. While these differences are obviously important, one should
be wary of attributing too much significance to them as being statements about what the
model developers think is the “real” nature of intonation. For example, Hirst proposed
INTSINT as an intonational equivalent to the IPA that would allow researchers to label
what intonation information a contour contained independently of linguistic theory, in just
the same way as a phonetician might make detailed transcriptions of verbal phenomena.
Once this has been done, a phonological theory can be built using these transcriptions
as data, so it is not correct to say that Hirst thinks intonation is “phonetic” in character.
Likewise, in the AM model, there is the assumption that production includes phonetic

Figure 2.5 Five pitch accents with different tilt values (Taylor, 2009).

Besides the parameters describing the shape of an intonation event, there are two

extra parameters describing the event position in the time-F0 plane when applying

the Tilt model (van Santen et al., 2008). Moreover, in order to practically apply the

Tilt model for TTS, the tilt events need to be labelled in the dataset so that automatic

tilt analysis can apply to extract tilt parameters. Dusterhoff & Black (1997) used the

Tilt model to predict F0 contours based on the tilt events derived from ToBI labels.

Reddy & Rao (2013) and Reddy & Rao (2016), in their use of the Tilt model for

neural network based concatenative synthesis, treated each syllable as an intonation

event and used the extracted tilt parameters as an input feature in addition to other

linguistic and production constraints. Their studies show that, with the inclusion of

tilt parameters, the system performance significantly improved in both objective

and subjective evaluations.
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2.2.2 The SFC model

The Superposition of Functional Contours (SFC) model (Bailly & Holm, 2005) is a

functional model of intonation. The functional approach of intonation modelling

assumes that the defining properties of intonational patterns are communicative

meanings rather than surface forms (phonetic properties). In other words, unlike

the phonological models that categorise intonation events based on their acoustic

similarity (e.g. high and low in the AM theory), the SFC model classifies F0

contours into functional contours (FC) based on different communicative mean-

ings they convey. The communicative meanings are regarded as metalinguistic

functions including segmentation, hierarchisation, emphasis and attitude. Each

functional contour directly encodes a particular metalinguistic function. Especially,

the functions are independent and may have various scope, so that it is possible

that different functions affect the same part of an utterance. In this situation, the

functional contours need to be combined together to form a final surface F0 contour.

a b

Figure 2.6 Examples of the SFC model. a: Synthesised functional contours with
different durations by trained functional generators. b: A final F0 contour (yellow)
is predicted by a superposiiton of multiple functional contours. The original F0
contour is in green. (Figures are digested and reproduced from Bailly & Holm
(2005).)

The realisation of surface F0 contours in the SFC model is achieved by su-

perposition of learned functional contours. Superposition means that a final F0
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contour is obtained by overlaying one functional contour onto another, which is

different from previous linear models. Syllable is the basic modelling unit in the

SFC model, and each syllable is described by three F0 values (at 10%, 50%, and

90%) and a duration value. In Bailly & Holm (2005), each metalinguistic function

is assigned a neural network as generator. The generators are trained on a database

labelled with functions and able to produce the globally learned functional contours

during synthesis. Figure 2.6a shows two sets of contours synthesised by generators

of ‘assertion’ (DC) and ‘questions’ (QS), respectively. To produce an utterance,

the synthesised functional contours are superposed one by one subject to different

scopes. Figure 2.6b shows such an example. The SFC model has been applied

for F0 modelling in TTS systems for several languages including French (Bailly

& Holm, 2005), German (Bailly & Gorisch, 2006) and Mandarin Chinese (Chen,

Bailly, Liu & Wang, 2004).

2.2.3 Discussion

In contrast to phonological models, phonetic models are quantitative and parametric,

and they make F0 modelling a direct data-driven task for the first time so that stat-

istical learning algorithms can apply. The Tilt model, for example, actually stands

between categorical representations of phonology (e.g. tones in the AM theory) and

surface F0 contours. Therefore, the F0 modelling process for TTS also becomes

two-staged. At the first stage, phonological and other linguistic representations can

be mapped to tilt parameters. At the second stage, tilt parameters can be mapped to

F0 contours through F0 generation formulation defined by the Tilt model. However,

it might be risky to transform F0 contours to sets of model parameters. On the one

hand, parameters of a phonetic model may become meaningless if they can not be

clearly clustered and linked to phonological representations. And on the other hand,
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if the mapping between model parameters and linguistic features is too complex, it

might be difficult for a statistical algorithm to learn successfully (Sun, 2002).

The phonetic models start to benefit from the data-driven machine learning

approach and are able to generate more natural intonation with more variations.

However, this approach critically relies on labelled datasets. The labelling process

of intonation events in the Tilt model is still a tedious and error-prone task, despite

that an automated process is available (Taylor, 1998). Relying on statistical learning

algorithms is also risky, very strange F0 contours may also be generated if the

dataset is not balanced.

Beside that, F0 modelling based on phonetic models may not be accurate

enough. For example, the Tilt model only cares about the recognised intonation

events in an F0 contour with transitions between them either ignored or simply

filled by linear interpolations, which makes it lose a great amount of details in the

original contour. Moreover, it is reported that we are perceptually sensitive to the

alignment between pitch movements and syllables or segmental boundaries (Kohler,

1990; d’Imperio & House, 1997; van Santen et al., 2008), but the Tilt model is not

strictly aligned to these boundaries. Although the SFC model is syllable-based,

its superpositional modelling manner makes it difficult to manipulate surface F0

contours effectively or achieve very high modelling accuracy.

2.3 Articulatory Models

2.3.1 The Fujisaki model

The Fujisaki model (Fujisaki & Hirose, 1982; Fujisaki, 1983; Fujisaki & Hirose,

1984) is also a superpositional model of intonation. However, the aim of the model

is not only to describe F0 contours accurately, but also to simulate some aspects of

the physiological process of speech production, i.e. the control mechanism of vocal
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fold vibration. The Fujisaki model is composed of a phrase component controlled

by phrase commands and an accent component controlled by accent commands.

And the final F0 contour of an utterance is considered to be the result of accent

components overlaying onto phrase components on a logarithmic scale.

Figure 2.7 shows an overview of the Fujisaki model. The model works on

the logarithmic domain of F0.1 The overall F0 contour shape of an utterance is

characterised by the phrase commands, which are modelled as pulses leading to

local F0 maxima followed by slow decays. The contours resulted from phrase

commands are connected sequentially. Detailed pitch accents (rises and falls) are

realised by accents commands, which are modelled as step functions. The resulting

accent contours are then added on to the phrase contours to form the final F0

contour.

The Fujisaki model was originally developed for Japanese, but soon became

popular and used for many other languages with improved controllability (Mixdorff,

2004). The determination of command positions is a persistent issue in the Fujisaki

model, which prevents the Fujisaki model from being effectively trainable or used

for large scale TTS systems. Several attempts (Mixdorff, 2000; Hirose et al., 2005;

Kameoka, Yoshizato, Ishihara, Kadowaki, Ohishi & Kashino, 2015; Torres &

Gurlekian, 2016) were made to learn the parameters in the Fujisaki model from

large corpus automatically and reliably.

2.3.2 The STEM-ML model

The STEM-ML (Soft TEMplate Markup Language) model (Kochanski & Shih,

2000; Kochanski & Shih, 2003) is also an intonation model built from the per-

spective of physiology. However, its primary goal is not to simulate the physical

mechanism of vocal fold vibration. Instead, the model strives to find the relationship
1This is because human hearing perception (and all other senses) works on a logarithmic scale

(Fechner, 1966). As a consequence, most quantitative F0 models work on the logarithmic domain.

49



2.3
A

rticulatory
M

odels

ACCENT COMMANDS

PHRASE COMMANDS

t

F0(t)

Ap

Aa FUNDAMENTAL
FREQUENCY
CONTOUR

PHRASE
COMPONENTSPHRASE

CONTROL
MECHANISM

Gp(t)

ACCENT
COMPONENTS

ACCENT
CONTROL
MECHANISM

Ga (t)

Fbloge
Fb

t

t

loge

loge

Figure 3:A functional model for the process of generatingF0 contours.

For the rest of this paper we shall re-define anF0 contour to be
the contour of the logarithm ofF0(t), viz. logF0(t).

Based on these assumptions, a model is constructed for the
generation process of theF0 contours of utterances of Common
Japanese, and is shown in Fig. 3.

In this model, theF0 contour can be expressed by

loge F0(t) = loge Fb +

I∑

i=1

ApiGp(t− T0i)

+
J∑

j=1

Aaj{Ga(t− T1j)−Ga(t− T2j)}
(1)

Gp(t) =

{
α2t exp(−αt), t ≥ 0,
0, t < 0,

(2)

Ga(t) =

{
min[1− (1 + βt) exp(−βt), γ], t ≥ 0,
0, t < 0.

(3)

whereGp(t) represents the impulse response function of
the phrase control mechanism andGa(t) represents the step re-
sponse function of the accent control mechanism. The symbols
in these equations indicate

Fb : baseline value of fundamental frequency,
I : number of phrase commands,
J : number of accent commands,
Api : magnitude of theith phrase command,
Aaj : amplitude of thejth accent command,
T0i : timing of theith phrase command,
T1j : onset of thejth accent command,
T2j : end of thejth accent command,
α : natural angular frequency of the phrase control

mechanism,
β : natural angular frequency of the accent control

mechanism,
γ : relative ceiling level of accent components.

Parametersα andβ are assumed to be constant at least within
an utterance, while the parameterγ is set equal to0.9. A rapid
downfall ofF0, often observed at the end of a sentence and oc-
casionally at a clause boundary, can be regarded as the response
of the phrase control mechanism to a negative impulse for re-
setting the phrase component.

By the technique of Analysis-by-Synthesis, it is possible
to decompose a givenF0 contour into its constituents, i.e., the
phrase components and the accent components, and estimate
the magnitude and timing of their underlying commands by de-
convolution, as shown in Fig. 4.

The two positive phrase commands correspond to the sub-
ject phrase and the predicate phrase, respectively, while the neg-
ative phrase command toward the end of the utterance corre-
sponds to the utterance-final fall inF0. The accent commands,
which are always positive in the case of Common Japanese, cor-
respond to the prosodic words. The model-generatedF0 con-
tour is so close to the measuredF0 contour that they are per-
ceptually indistinguishable in synthetic speech.

Thus the model can predict and generate from a set of com-
mands, not just a few points on theF0 contour such as its peaks
and valleys subjectively selected, but the entire contour. More-
over, the close agreement of the model’s output with the mea-
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Figure 4: Analysis-by-Synthesis of anF0 contour of the
Japanese declarative sentence: Aoi aoinoewa yamanouenoieni
aru. The figure illustrates the optimum decomposition of a given
F0 contour into the phrase and accent components, and also
shows the underlying commands for these components.

Figure 2.7 Overview of the Fujisaki model (Fujisaki, 2004).
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between articulatory effort and prosodic ambiguity based on the assumption that

there is always a balance between the two. The key assumptions made by the model

can be summarised as (van Santen et al., 2008):

• Syllables are preplanned during speech production and there are soft templates

underlying them.

• Speakers are able to balance between the articulatory effort they are making

and the possible prosodic ambiguity caused. Namely, at critical intonation

events a speaker may maximise his articulatory effort because these events

convey important information that should be delivered clearly (high cost

of ambiguity), whereas at less important intonation events a speaker may

lower his articulatory effort to a certain degree because that is harmless to

communication (low cost of ambiguity).

The overall F0 contour of an utterance is considered as a sequence of connected

local pitch accents, represented as the abovementioned soft templates that can be

learned from a dataset. ‘Soft’ implies that certain distortions are allowed in the

case that some ‘interactions’ occur at the joins of connected templates. Note that a

template can be affected by both the preceding and the following templates so that

both carry-over and anticipatory coarticulations are considered. A tagging system

is proposed in Kochanski & Shih (2003) to label pitch accents for the model. A key

parameter in the model is strength, which effectively controls pitch accent shape.

Strength is a correlate of articulatory effort. If its value is high, which suggests

high cost of ambiguity so that high articulatory effort is made, the accent template

remains unchanged and is fully realised as the surface F0 contour; if its value is

low, which suggests the cost of ambiguity is low so that a compromise is made and

a surface F0 contour that deviates from the template is realised. In other words,

the STEM-ML model simulates F0 contours as deviations from underlying accent
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templates under the influence of surrounding accents (Xu, 2015). The STEM-

ML has been experimented in TTS systems for Mandarin Chinese (Kochanski &

Shih, 2001), Cantonese (Lee, Kochanski, Shih & Li, 2002) and English (Shih &

Kochanski, 2003).

2.3.3 Discussion

Our knowledge about the physiological process of speech production is rather

limited, which makes current articulatory models immature. On the one hand,

observations on glottal excitation and vocal tract resonance are already well studied.

But on the other hand, the motor control and coordination mechanisms of laryngeal

movements still remain unclear. Under this background, the Fujisaki model is

actually an incomplete articulatory model with vocal fold vibration well thought

and simulated but with speech timing less considered and open to be explored.

As summarised by Kameoka et al. (2015), automatic estimating parameters of the

Fujisaki model from raw F0 contour has been a long-term difficulty since both levels

and timings of its phrase and accent commands need to be explored at the same

time. To address this issue, they approximated the deterministic formulation of

the Fujisaki model with an HMM-based discrete-time stochastic translation so that

automatic parameter estimation becomes possible through the iterative expectation-

maximisation (EM) algorithm (Dempster et al., 1977; Feder & Weinstein, 1988).

Nevertheless, this valuable solution can only be seen as a bypass with the core

timing issue faced by the Fujisaki model unchanged.

In terms of the template based STEM-ML model, its main advantage is the

ability to model the anticipatory coarticulation while most other models can only

handle the carry-over coarticulation. Namely, when a template is produced, it is

not only affected by the past template but also by the future as long as there is a

following template available. However, it is usually not easy to define a reasonable

52



2.4 Summary

number of templates and successfully relate them to phonological representations at

the same time. Moreover, from our perspective, the STEM-ML model cannot really

be seen as an articulatory model since it only focuses on the effort and resulting

contour variations of F0 production with the whole physiological process largely

ignored.

2.4 Summary

A number of F0 models were introduced in this chapter. The phonological models

are theoretically successful in the sense that they inspired extensive research in the

field and helped us gain a better understanding of intonation. The phonetic models

are practically influential since they are relatively easy to implement and have been

shown useful in real TTS applications. The articulatory models are not only useful

but also can be seen as milestones along our way towards complete articulatory

speech synthesis systems.

From a modelling point of view, whether these models are necessary in real TTS

applications is currently debatable. The main reason is that all these models are

either problematic to train or not accurate enough to be reliably used to handle F0

synthesis alone. Given that state-of-the-art machine learning techniques can already

synthesise speech at the frame level without relying on any speech production

model, nowadays F0 contours generated by these models can only be considered as

constraints to aid F0 modelling in TTS.

However, from our perspective, human speech production involves systematic

motor movements and surface speech signals are simply acoustic realisations of

underlying motor movements. Instead of being used to constrain and aid modelling,

a mature model of speech production should be articulatory-oriented, faithful to

the reality and accurate enough. It should be capable of dominating the modelling
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process and generating reliable speech signals on its own. This thesis on articulatory

F0 modelling is an initial attempt in this direction.

54



Chapter 3

The Target Approximation Model

3.1 The PENTA Framework

Figure 3.1 The PENTA framework (Xu, 2005).

The target approximation (TA) model is the core component of the parallel

encoding and target approximation (PENTA) framework (Xu, 2005), serving as its

dynamic F0 generator. As illustrated in Figure 3.1, the PENTA framework treats

F0 modelling from an articulatory-functional view of speech, in which multiple

communicative functions can be encoded in parallel as joint contributors to a single

invariant underlying pitch target for each syllable. Note that this functional approach

is different from the one in the SFC model (Section 2.2.2), where each function has

an independent contour.
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3.1 The PENTA Framework

As shown in Figure 3.1, the PENTA framework assumes that the input into

the F0 production process should be well-defined communicative functions with

specific meanings but no phonetic specifications. Figure 3.2 displays an example of

functional annotations in the PENTA framework, in which essential function com-

binations are obtained and their parameters can then be learned through stochastic

learning (Xu & Prom-on, 2014).

Figure 3.2 Functional annotations in the PENTA framework (Xu & Prom-on, 2014).
In the ‘Stress’ layer, S and U denote stressed and unstressed syllables, respectively.
In the ‘Focus’ layer, PRE, ON and POS denote pre-focus, on-focus and post-focus,
respectively. Q denotes question in the ‘Modality’ layer.

In current TTS systems, however, only some of the common contextual lin-

guistic features are clear-cut communicative functions, while many others are

purely contextual. In order to set up a universal platform to compare the proposed

TA-based approach with other typical SPSS approaches, the application of the TA

model in this thesis does not exactly follow PENTA’s strict functional assumptions,

but rather makes use of all the common contextual linguistic features in current

TTS systems, at least as the starting point. Later on in this thesis, the reduction

of the number of contextual linguistic features needed turned out to a move in the

direction of getting closer to the functional assumption of PENTA.
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3.2 Syllable-based Modelling

In conventional SPSS approaches, all the acoustic features (e.g. MGC, F0 and

duration) are jointly modelled at the HMM state level. For example, an F0 contour

is formed by a sequence of signal frames generated separately subject to learned

state-level Gaussian distributions. In recent deep learning approaches, frame-level

acoustic features are treated as the targets to be learned and predicted by DNN or

RNN. In a recent study, although hierarchical F0 modelling was implemented with

DNN, frame-level F0 residual modelling was still used (Yin et al., 2016).

However, human speech production is unlikely to be coordinated at such a small

time scale. Rather, as a complex motor control behaviour, speech production is

organised on a serial gesture basis with much longer host units (MacNeilage, 1970;

Saltzman & Munhall, 1989; Levelt, Roelofs & Meyer, 1999; Xu & Liu, 2006).

It is further explained in the frame/content theory (MacNeilage & Davis, 1993;

Davis & MacNeilage, 1995; MacNeilage, 1998) that the constitution of syllable is

associated with the cyclicity of continual rhythmic mouth open-close alternation,

which actually evolves from ingestive cyclicities (e.g. chewing). And ‘much of the

patterning of infant babbling is a direct result of production of syllabic “frames”

by means of rhythmic mandibular oscillation’, ‘intra-syllabic and inter-syllabic

“content” of the syllable-like cycles’ are gained through social interaction at a

later stage. Furthermore, prosody studies suggest that characteristics of F0 are

suprasegmental (e.g. lexical tones hosted by syllables in tonal languages, stress,

focus and other intonation patterns), which are encoded either superpositionally

(Fujisaki, 1983) or in a parallel manner (Xu, 2005; Xu, 2007).

Among the existing F0 models, a number of them are syllable-based. For

example, in concatenative synthesis Black & Hunt (1996) used linear regression

to predict three target F0 values (start, mid-vowel and end) for every syllable with

ToBI annotations (Pierrehumbert & Hirschberg, 1990; Silverman et al., 1992)
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representing stress and syllable position as features. The SFC model (Section 2.2.2)

assumes that each syllable-level F0 contour can be obtained from superposition

of multiple simple functional contours and its practical application in Mandarin

Chinese showed positive results (Chen et al., 2004). Reddy & Rao (2013, 2016), in

their use of the Tilt model (Taylor, 1992; Taylor, 2000) in concatenative synthesis

treated each syllable as an intonation event with the tilt parameters extracted from

each syllable. Empirically, models using syllable as the basic modelling unit often

produce more natural sounding F0 contours (Sun, 2002; Raidt, Bailly, Holm &

Mixdorff, 2004).

As discussed by Xu & Prom-on (2015), from the perspectives of both motor

control of articulatory movements and the acquisition of speech production skills,

syllable plays an important role of reducing the degrees of freedom (DOF) by

synchronising multiple articulatory movements. Xu & Liu (2006) proposed that,

because of its much slower speed than segmental movement, pitch articulation has

to use the entire syllable as its temporal domain of execution. This also means

that within each syllable, F0 in adjacent time frames are highly correlated with

each other, with a very strong right-to-left dependency that could be captured by a

mechanical model such as target approximation, as will be explained next.

3.3 Formulation

The development of the TA model was inspired by empirical findings about tonal

dynamics. The basic concept of the TA model (Xu & Wang, 2001), shown in

Figure 3.3, is that continuous surface F0 contours are the results of successive, non-

overlapping articulatory (laryngeal) movements, each approaching an underlying

target associated with a host syllable.
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Figure 3.3 The target approximation model.

The TA model was qualitative at the time of its proposal (Xu & Wang, 2001).

The concept of the TA model is then algorithmically implemented as the quantitative

target approximation (qTA) model by Prom-on et al. (2009). In this model, a target

can be either static or dynamic, which can be represented by a simple linear equation

x(t) = mt+ b, (3.1)

where m and b represent the spatial properties of the target in terms of target height

and slope, respectively, and t is time relative to the onset of the host syllable.

The realisation of the target is through a third-order critically damped linear

system defined by the following equation

f0(t) = x(t) + (c1 + c2t+ c3t
2)e−λt, (3.2)

where f0(t) is the complete form of the fundamental frequency in semitones, x(t) is

the forced response and the polynomial and the exponential are the natural response.

λ is the rate of target approximation, i.e., how rapidly the target is approached,

which controls the strength of target approximation movement. The transient

coefficients c1, c2 and c3 are jointly determined by the initial F0 dynamic state of

the syllable, consisting of F0 level, velocity as well as acceleration transferred from
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3.3 Formulation

the offset of the preceding syllable (as such they are not free parameters):

c1 = f0(0)− b, (3.3)

c2 = f ′
0(0) + c1λ−m, (3.4)

c3 = (f ′′
0 (0) + 2c2λ− c1λ

2)/2. (3.5)

At the end of the syllable, the final F0 dynamic state is transferred to the next

syllable to become its initial state, which results in a smooth and continuous F0

trajectory across the syllable boundary (Figure 3.3).

In short, the process of F0 production is simulated by the TA model at the

syllable level by controlling just three motor parameters (m, b and λ), and this

process forms a deterministic ‘motor-to-acoustic’ mapping.1

Previously, TA as an articulatory model has been shown to be highly effective in

a variety of F0 modelling tasks, including synthesising utterance F0 contours with

stochastic learning (Prom-on et al., 2009; Xu & Prom-on, 2014) and simulating

speakers’ online compensation in response to the pitch-shifted auditory feedback

(Liu & Xu, 2015). Beyond F0 modelling, the core idea of the TA model has been

successfully used in simulating consonant-vowel articulatory trajectories recorded

by electromagnetic articulography (EMA) (Birkholz et al., 2011) and training an

articulatory synthesiser to learn invariant underlying targets of vowels and glides,

without speaker normalization, and use them to generate highly natural synthetic

speech (Birkholz, 2013).

1Note that TA is only an F0 model with inertia, carry-over coarticulation and some other aspects
of F0 production effectively simulated. This does not imply a fully active ‘motor-to-acoustic’
process.
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3.4 A Dynamical System

The key feature of the TA model is that it implements an inertia-based deterministic

dynamical system with finite dimensions so that it is capable of neatly simulating

the dynamical process of in-syllable F0 production as well as cross-syllable tran-

sient effects. This means that TA is fundamentally different from mathematical

transformation functions, e.g. discrete cosine transform (DCT) as used in other

studies (Teutenberg et al., 2008; Wu et al., 2008; Yin et al., 2014, 2016).

As a dynamical system, on the one hand TA exhibits a strong stateful generation

nature (i.e. with built-in time dependency), and on the other hand it can be easily

controlled by syllable-specific parameters (i.e. underlying targets). The stateful

nature of the TA model differs from the independent HMM state based modelling

in that it implements a physically plausible, systematic and syllabically uniform

modelling. The easy controllability makes it possible to directly manipulate the

dynamic process of F0 production on-the-fly (Liu & Xu, 2015). Also, it implies

a crucial possibility that TTS systems using the TA model as F0 generator can be

effectively and systematically controlled in real time during synthesis. Although

this feature will not contribute much to this thesis, it will probably be useful in

various adaptation tasks for speech synthesis in the future.

3.5 Case Study: Target Distributions of Mandarin

Tones

From a modelling point of view, a model can be considered valuable only if its

parameters are learnable. Namely, in our case, the prerequisite that different

tones and intonations can be accurately learned and predicted by machine learning

algorithms is that the underlying targets of them are able to exhibit clear patterns. To
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3.5 Case Study: Target Distributions of Mandarin Tones

this end, TA target parameters of a Mandarin Chinese spontaneous speech dataset

are extracted and examined in this section.

The dataset consisted of 641 statements and 387 questions recorded from a

female native Mandarin speaker, and which was also used to train and test different

F0 modelling systems in Chapter 5. Syllable segmentations were derived from

phone segmentations obtained through force alignment. Syllables between 100 ms

and 350 ms in length were used in this study since they were seen to be more stably

produced. Shorter or longer syllables may contain more creaky or breathy effects

so that interpolation and smoothing are necessary, but such interventions should be

avoided in this study. Note that what we want to see here are the targets extracted

directly from raw F0 contours. Optimal target parameters were extracted through

the Levenberg-Marquardt nonlinear least-squares method (Moré, 1978) provided

by the LIMFIT Python package (Newville, Stensitzki, Allen & Ingargiola, 2014).

More details of the extraction process are provided in Section 5.5.2.

150 100 50 0 50 100 150
Target slope (st/s)

40

20

0

20

40

T
a
rg

e
t 

h
e
ig

h
t 

(s
t)

High

Rising

Low

Falling

Figure 3.4 Two-dimensional display of the extracted target parameters of the four
tones in the statement set. The X and Y axes represent target slope and target
height. Circle size represents target strength. Tone clusters are represented by
covariance error ellipses with 95% confidence interval.
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Figure 3.5 Two-dimensional display of the extracted target parameters of the four
tones in the question set. The X and Y axes represent target slope and target height.
Circle size represents target strength. Tone clusters are represented by covariance
error ellipses with 95% confidence interval.

Four basic Mandarin tone types were considered in this study, which are High,

Rising, Low and Falling. The number of the four tones labelled as statement are

600, 1094, 390 and 77, respectively. And the number of the four tones labelled as

question are 106, 176, 51 and 80, respectively. Note that only part of the syllables

in the question set were considered as question-related and labelled as question.

As shown in both Figure 3.4 and Figure 3.5, target parameters of each tone are

clearly clustered and the tone clusters are generally separated from each other. This

demonstrates that there are clear TA target patterns with respect to the four tones in

Mandarin Chinese.

In terms of intonation difference, tone targets extracted from the statement set

and those from the question set were compared. All the three target parameters

(slope, height and strength) were compared in pairs between statement and question.

Table 3.1 shows statistical results of the comparison, in which p values were

obtained through the Wilcoxon rank-sum test (Mann & Whitney, 1947). We found

that target heights of all the four tones in the question set are statistically higher than
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Table 3.1 Statistical comparison of tone targets between the statement (S) set and the question (Q) set. Parameters in the question set that
are significantly different from those in the statement set are in bold.

Tone
Target Slope Target Height Target Strength

S-Mean Q-Mean p S-Mean Q-Mean p S-Mean Q-Mean p

High 1.2 −6.1 2.0× 10−5 16.3 20.1 2.4× 10−14 28.0 32.6 1.2× 10−5

Rising 69.7 68.6 0.69 −2.4 4.5 1.9× 10−29 25.6 32.9 1.5× 10−7

Low 38.6 32.0 0.18 −5.5 −0.7 7.3× 10−4 23.3 24.4 0.18
Falling −56.1 −54.9 0.70 21.1 24.0 3.1× 10−4 40.3 37.7 0.27
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those in the statement set. This suggests that TA targets of all the four tones need to

be raised to a higher level in order to realise higher intonation contours to convey

interrogative meanings, which stays in line with previous studies on tone-intonation

relations in Mandarin Chinese (Shen, 1990; Yuan, 2006; Liu & Xu, 2006). Besides

that, target approximation strength values of High and Rising tones in the statement

set are also significantly higher than those in the statement set, which suggests more

strength is needed for these two tones when producing questions. The significant

decrease of High tone slope in the question set is unexpected. However, according

to Liu & Xu (2014), target slope is a less sensitive (or stable) parameter than

the other two and such change in it may not lead to much surface pitch contour

deviation.

3.6 Summary

Details of the quantitative implementation of the TA model were introduced in this

chapter. Compared to other existing models, the TA model has at least three unique

features (Xu, Lee, Prom-on & Liu, 2015): a) unitary dynamic targets, which are

different from contour targets as in the SFC or STEM-ML models; b) unidirectional

sequential target approximation (no overlap of movements as in the task dynamic

model (Saltzman & Munhall, 1989) or return phase in a movement as in the Fujisaki

model); c) high-order state transfer across target approximation movements, which

overcomes one of the weaknesses of the dynamic-system model proposed by Ross

& Ostendorf (1999) in producing complex contours. Besides that, full synchrony of

pitch targets with syllables serves as the core assumption about speech articulation

of the entire PENTA framework, which should always be highlighted.

The TA model is based on our latest understanding of the physical process of

pitch control and has made a salient contribution to the field. However, it might
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still be ambitious to say that the model is correct on every aspect or can be directly

applicable to other languages. There were a serial debates between the TA model

and the phonological school of intonation modelling (Arvaniti & Ladd, 2009; Xu

et al., 2015; Arvaniti & Ladd, 2015), in which several arguments were raised and a

number of caveats of the TA model were discussed.

First of all, Arvaniti & Ladd (2009) held the assumption that ‘not every syl-

lable has to have specification for pitch’, which was their major disgreement with

the TA model. And similar assumptions can also be found in other models like

Fujisaki (1983) and Hirst (2005). This assumption is based on the fact that in

non-tonal languages (e.g. English and Greek), many syllables appear unspecified

for pitch. Namely, there are syllables in these languages that are neither stressed

nor prominent, but exhibit high F0 variability. The Fujisaki model addresses this

issue by assigning a single command to the time interval of a string of unstressed

syllables. Whereas the TA model treats every syllable fully specified with its own

target. Although no consensus has been made, the TA model actually benefits from

this syllable-synchrony assumption and effectively escapes from the unfixed timing

issue as practically faced by other models.

The second challenging argument is that for utterances with very different

lengths their linguistic functions can be very similar, which might be problematic

for the TA model. At this point, there are two possible situations. One is that

different utterance lengths are caused by different number of syllables, and the other

is that the long utterances contain prolonged syllables. For the former situation,

contextual information such as syllable position in phrase/sentence turned out to be

very helpful in our previous implementations (e.g. Xu & Prom-on (2014)), although

such information seems not ‘functional’. For the latter situation, while we have to

admit this is a drawback and the TA model cannot handle it well with its original
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design, a temporary solution is to treat the prolonged syllables as special cases and

assign them two consecutive targets.

The third is the lack of additional articulatory mechanisms in the current TA

model. As also mentioned by Xu & Prom-on (2014), coarticulation mechanisms

like anticipatory raising (Gandour, Potisuk & Dechongkit, 1994; Potisuk, Gandour

& Harper, 1997; Xu, 1999), post-low bouncing (Chen & Xu, 2006) and consonantal

perturbation (Silverman, 1986) require further research and extra components may

need to be introduced.

In addition to the above mentioned, we also found some other practical issues

when applying the TA model to real TTS systems. Discussions of them are provided

in Chapter 6.
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Chapter 4

Motor-to-Acoustic: Simulating

Online Auditory Feedback

Compensation with TA

Speech production is one of the most complex human motor behaviours involving

highly precise coordination of various articulatory movements. From a great num-

ber of empirical studies, many interesting phenomena have been found and some

of which exhibit a very high complexity in terms of spatiotemporal variations. As

introduced in the background section below, online feedback compensation is one

of such cases. The aim of this chapter is to investigate how articulation is controlled

online in response to the shifted auditory feedback during pitch production. Differ-

ent from other studies targeting at complete sensorimotor control mechanisms (e.g.

the state feedback control framework by Houde & Nagarajan (2011)), this study

focuses on the details of resulting motor changes when control commands are given.

Namely, our focus is to study how reactive surface pitch perturbations are formed

based on the assumption that pitch movements are realisations of underlying target

approximation processes.
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4.1 Background on Auditory Feedback

4.1.1 Offline learning and the DIVA model

The study of auditory feedback in speech production can be traced back to early

studies of Lombard in 1911. Lombard (1911) and later research by Lane & Tranel

(1971) showed that when speakers’ hearing ability was blocked by noise, they were

still able to produce normal speech. If the volume of noise was increased, speakers

would increase their volume accordingly. Later, Cowie, Douglas-Cowie & Kerr

(1982) and Lane & Webster (1991) reported their findings that even after years of

deafness, adult speakers were still able to produce intelligent speech.

As a contrast, children who were pre-lingually deaf could not manage to learn

how to speak (Ross & Giolas, 1978; Oller & Eilers, 1988; Raphael, Borden & Harris,

2011). Through extensive comparison of vocal development in deaf and hearing

infants, Oller & Eilers (1988) showed that the deaf infants’ ways of babbling are

different from those of the hearing infants. This study showed that the traditional

belief that auditory feedback plays only a minor role in the babbling stage of

speech acquisition is erroneous. Instead, auditory feedback is critical for children’s

development of speech acquisition through its interaction with babbling. This notion

is also supported by other early studies (Smith, 1975; Borden, 1979; Osberger &

McGarr, 1982). More recently, Koopmans-van Beinum, Clement, Den Dikkenberg-

Pot et al. (2001) classified early infant vocalizations by using canonical babbling as

the cue and traced the lack of auditory perception in deaf infants. Their analysis

revealed that auditory feedback is a prerequisite for the coordination of articulatory

system and the subsequent development of speech acquisition. Nevertheless, this

finding does not support that auditory feedback plays an equally important role in

adulthood. However, as we will see in the next section, auditory feedback does

affect adult speech production in a subtle way.
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Later, based on these findings some articulatory synthesis models were proposed

to simulate the early stage of human speech acquisition. For example, Kröger,

Kannampuzha & Neuschaefer-Rube (2009) trained a neurocomputational model of

speech production and perception with a computer-implemented vocal tract, capable

of producing and perceiving isolated vowels, vowel-consonant (VC) and consonant-

vowel (CV) syllables. The virtual infant KLAIR (Huckvale, Howard & Fagel, 2009;

Huckvale, 2011) that simulates spoken language acquisition through imitative

interactions between a virtual infant and its caregiver. The Elija model (Howard &

Messum, 2011) that avoids the imitative mechanism by simply associating Elija’s

discrete motor actions to caregiver’s natural responses with a designed rewarded

exploration. What is common in these models is that the produced speech signals

are perceived via auditory feedback by the infant so that they can be paired with

corresponding speech actions to train a feedforward speech production model.

A more complete and influential model developed based on the babbling-

feedback interaction is the DIVA1 model (Guenther, 1995; Guenther & Perkell,

2004; Guenther, Ghosh & Tourville, 2006; Tourville & Guenther, 2011). Taking

the speech-related brain activation patterns observed in the functional magnetic

resonance imaging (fMRI) experiments into consideration, the DIVA model tries

to simulate the process of learning speech sound production through babbling and

imitation. It is designed to reflect the integration of auditory, somatosensory and

motor information represented in the cerebral cortex during speech production.2

The DIVA model originates from a concept proposed in Guenther (1995) called

speech sound map, which is the key component in this neural model. Phoneme,

syllable, or even syllable sequence are all accepted as ‘speech sound’, among which

syllable is treated as the most typical unit represented by a single ‘model neuron’ in

1DIVA stands for ‘Directions Into the Velocities of the Articulators’ according to Cai (2012).
2Strictly speaking, bone-conducted feedback is missing in all the above-mentioned models.

Please refer to Section 4.1.3 for more detailed discussion.
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the speech sound map. Note that in DIVA experiments, text scripts are carefully

designed and produced speech sounds are normally controlled to a fixed length,

so that syllable boundaries remain relatively stable and the segmentation issue is

avoided. Therefore, the model neurons can always be mapped to its corresponding

speech signal correctly. The model neurons are abstract, but they are assumed to

correspond to a small population of real neurons in the cortex. The activation of

such model neurons leads to motor commands driving two control subsystems.

• Feedforward control system: learning to project directly from the articulatory

control units to the speech sounds

• Feedback control system: mapping detected sensory errors into corrective

motor commands during learning

At the babbling stage, the feedforward system simply generates random and

reduplicated motor, auditory and somatosensory information, by which the feedback

control system is activated to tune the projections in the speech sound map according

to the detected sensory errors. The two control systems are weighted and trained

interactively at the same time during the babbling stage. Namely, when one system

is more weighted than the other, the babbling trial will be dominated by it and work

more like a training process for production or for motor commands correction. The

purpose of this stage is to simulate the infant babbling stage, during which the

motor-sound pairs obtained through random self-production can be collected as

training data to train both the feedforward and feedback control systems.

At the imitation stage, syllable-specific learning occurs when an infant is presen-

ted with a new speech sound to learn. The model first learns an auditory target

for that new sound, represented as a time-varying acoustic signal. This leads to an

activation of previously unused speech sound map neurons for that sound. Then, the

projections between the model neurons and corresponding motors are tuned via the

71



4.1 Background on Auditory Feedback

feedback control system. As described by Tourville & Guenther (2011), the readout

of the feedforward system will result in auditory errors, and the system must employ

the auditory feedback control system to transform auditory errors into corrective

motor commands via the feedback control map. This map (the transformation from

auditory errors to corrective motor commands) will be less functional when the

DIVA model reach a ‘mature’ state. As highlighted in Guenther et al. (2006), after

the babbling stage the DIVA model is capable of producing a typical syllable with

perceptually negligible amount of acoustic errors within as few as 6 imitation trials.

An important note is that the DIVA model is based on the hypothesis that speech

movements are planned. As a consequence, the learning process of the DIVA model

is totally offline, i.e. it adopts the feedback control map to tune the feedforward

map based on the errors in the auditory feedback collected after each production.

The learning paradigm established by the DIVA model is believed to be close

to the reality of infant speech learning (Guenther & Vladusich, 2012). However,

the actual performance of the DIVA model in terms of perceptual quality is not

very impressive. Currently, it can only produce steady-state vowels with acceptable

intelligibility but low naturalness. The reason is that the DIVA model lacks a

dynamic speech production module to make multisyllabic articulation. More

discussions on the DIVA model are provided in the following sections.

4.1.2 Online compensation

After speaking skill is gained, people can speak normally without relying on imme-

diate auditory feedback. However, there is evidence showing that auditory feedback

still affects adult speech production. In the past decades, a number of studies have

shown that auditory feedback plays an important role in the online control of speech

F0. These studies investigated feedback response in various tasks, including singing

(Natke, Donath & Kalveram, 2003), glissando (Burnett & Larson, 2002), sustained

72



4.1 Background on Auditory Feedback

vowels (Hain, Burnett, Kiran, Larson, Singh & Kenney, 2000; Larson, Burnett,

Bauer, Kiran & Hain, 2001; Bauer & Larson, 2003; Sivasankar, Bauer, Babu &

Larson, 2005), prolonged vowels (Jones & Munhall, 2000; Jones & Munhall, 2002),

nonsense syllables (Natke & Kalveram, 2001; Donath, Natke & Kalveram, 2002)

and normal speech (Elman, 1981; Kawahara, 1993; Burnett, Freedland, Larson

& Hain, 1998; Larson, 1998; Xu, Larson, Bauer & Hain, 2004; Chen, Liu, Xu &

Larson, 2007; Chang, Niziolek, Knight, Nagarajan & Houde, 2013). In the exper-

iments of these studies, unexpected pitch shifts were applied online to the voice

of the human subjects before being fed back to their ears. In response to the pitch

shifts, subjects involuntarily made compensatory F0 adjustments (in the opposite

direction of pitch shift) with short latencies (100-150 ms on average according

to Xu et al. (2004) and Liu & Larson (2007)). Meanwhile, other studies found

similar feedback compensation in formants (Gracco, Ross, Kalinowski & Stuart,

1994; Houde & Jordan, 1998; Houde & Jordan, 2002; Purcell & Munhall, 2006a;

Purcell & Munhall, 2006b; Villacorta, Perkell & Guenther, 2007; Tourville, Reilly

& Guenther, 2008; Munhall, MacDonald, Byrne & Johnsrude, 2009; MacDonald,

Goldberg & Munhall, 2010; Katseff, Houde & Johnson, 2012; Cai, 2012; Niziolek,

Nagarajan & Houde, 2013).

It is worth noting that, based on experimental findings, Houde & Jordan (1998),

Houde & Jordan (2002), Jones & Munhall (2000) and Jones & Munhall (2002)

further argued that a long-term effect is retained beyond the course of such online

compensation, and speakers’ sensorimotor mapping between articulatory motor

space and acoustic space is adapted upon it. Their research findings suggest that

there is an online learning mechanism through auditory feedback compensation.

And such online learning not only applies to adults, but also should occur when

infants learn to speak. That is, online learning occurs when they are imitating their

parents. However, recent studies on auditory feedback compensation in children
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by van Brenk, Terband & Cai (2014), Terband, van Brenk & van Doornik-van

der Zee (2014) and Terband & van Brenk (2015) suggest that the proportion of

subjects showing compensatory response is smaller in the child group (aged 4-9

years) than in the young adult group (aged 19-29 years). Moreover, the experiments

on 2-year-olds (toddlers) and 4-years-olds by MacDonald, Johnson, Forsythe,

Plante & Munhall (2012) showed that the 2-year-olds did not response to the

auditory perturbations at all. The 4-years-olds, on the other hand, responded to

the perturbations but with a larger token-to-token variability than adults. Although

limitations remain (e.g. experiment results on very young children may not be

always reliable), these findings suggest that the online compensation behaviour may

be developed just around the age of 4 years. More importantly, online compensation

is possibly not involved in the early learning stage of speech acquisition (babbling)

and instead it is only used by more mature speakers as a mechanism of vocal

behaviour maintenance (Brainard & Doupe, 2000).

Characteristics of auditory feedback compensation can be summarised as fol-

lows:

• General existence: Auditory feedback compensation not only occurs for

fundamental frequency (F0) but also for formants. In terms of F0 studies:

Cowie et al. (1982) first provided clinical evidence showing that without the

presence of auditory feedback, the control of pitch deteriorates soon after pa-

tients’ deafness; from the perspective of neuroscience, Guenther et al. (2006)

and Chang et al. (2013) showed that there is a sensorimotor cortical network

underlying auditory feedback-based control of vocal pitch; Liu, Russo & Lar-

son (2010) and Liu, Chen, Jones, Huang & Liu (2011) reported more findings

about age-related differences in compensation of F0 feedback perturbation

and Chen, Liu, Jones, Huang & Liu (2010) reported sex-related differences.

In terms of formant studies: Gracco et al. (1994) demonstrated that the speak-
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ers will change their articulation to shift the spectrum in speech according to

the spectral shifts introduced in their auditory feedback; furthermore; Houde

& Jordan (1998) showed that control of the production of vowels adapts to

perturbations of auditory feedback; Cai (2012) reported differences between

stuttering and normal speakers in formant compensation.

More recently, Niziolek et al. (2013) provided evidence showing that auditory

feedback compensation not only exists in altered speech, but also during nor-

mal speech production. Through magnetoencephalographic imaging (MEG-I)

experiments, they reported findings suggesting that compensatory mechanism

is also employed in natural, unaltered speech, and less-prototypical utter-

ances. This kind of utterances actually make up a large proportion of natural

speech, which are processed as containing potential errors. And feedback-

driven speech error correction is occurring to correct these potential errors

constantly on a small scale.

• Online vs. delay: There is a debate about whether online compensation

can actually happen since the delay of auditory feedback may exceed the

temporal domain of the target linguistic units (e.g. syllables). In Mandarin

speech, Xu (1997) and Xu (1999) reported that the mean duration of a

simple consonant-vowel (CV) syllable is about 180 ms. In some studies, the

observed compensation response latencies were about 150 ms in experiments

when German speakers compensate for the mismatch between intended and

feedback pitch during production of nonsense syllables (Natke & Kalveram,

2001; Donath et al., 2002; Natke et al., 2003), which is shorter than the

reported mean syllable duration. However, Jones & Munhall (2002) found

that Mandarin speakers’ compensatory changes in voice F0 are around 200 ms,

which is longer than the mean syllable duration. Therefore, some researchers

were convinced that these latencies were too slow to allow speakers to control
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F0 effectively within single syllables. Instead, the compensations should

occur on a suprasegmental level in the context of prosody.

On the other hand, in studies for nonspeech tasks, reported response latencies

were as short as 76 ms for pitch compensation (Burnett & Larson, 2002),

114 ms (Hain et al., 2000) and 130 ms (Larson et al., 2001) for sustained

vowel compensation. Xu et al. (2004) analysed the reasons that had caused

the discrepancies in previous experiments and designed improved F0 com-

pensation experiment in Mandarin demonstrating that the majority of the

compensatory changes occurred significantly sooner (143 ms) than the mean

syllable duration (180 ms). In some conditions, latencies were short enough

(130 ms) for the response to correct for perturbations within single syllables.

In addition, in the above-mentioned MEG-I experiment, Niziolek et al. (2013)

provided evidence showing that during normal speech production the auditory

feedback is used strictly online (e.g. compensation occurs within single vow-

els) by speakers to correct errors, and they found an online ‘vowel centring’

phenomenon that spontaneous compensation constantly occurs during vowel

production. Note that this vowel centring behaviour was found to be fairly

irregular. While its underlying mechanism is still unknown, a reasonable

account is that there is a rectification behaviour against the tiny perturbations

caused by various factors during speech production.

Despite these debates, it is still worthwhile to investigate how suprasegmental

compensation (across syllable boundaries) works. In general, in previous

studies as long as a response to perturbation occurs within the course of

connected running speech, it is treated as an online compensation. Espe-

cially, from the perspective of motor control, the cross-syllable compensation

behaviour which requires more complicated underlying sensorimotor adjust-

ments involving longer term effects is more interesting than the in-syllable
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compensation. Similarly, Cai, Ghosh, Guenther & Perkell (2011), in their

investigation on spatiotemporal complexity of online formant control, studied

both in-syllable and cross-syllable phenomena. More details on this research

are introduced in the next section.

• Partial compensation for altered speech: Partial compensation phenomena

can be widely found in Jones & Munhall (2000), Xu et al. (2004), Jones &

Munhall (2005) and Liu et al. (2010) for F0, and Houde & Jordan (2002),

Purcell & Munhall (2006a) and Pile, Dajani, Purcell & Munhall (2007) for

formants. By using a stepwise feedback alteration design, Katseff et al. (2012)

reported comprehensive results demonstrating that subjects only partially

compensated for experimentally induced changes to their auditory feedback

(they never compensate for formant shifts, on average, more than 40%, e.g.

a subject whose F1 feedback is raised by 200 Hz will produce vowels with

an F1 no more than 80 Hz lower than usual) and they compensated more for

small feedback shifts than for larger shifts (compensation was approximately

complete for small shifts (50 Hz) in auditory feedback and partial for all

shifts greater than 50 Hz).

4.1.3 Stammering research and objections to ‘feedback’ con-

trol

In the field of stammering research, studies on the effects of altered auditory

feedback (AAF) have grown in popularity in recent decades. The earliest research

can be traced back to Lee (1951) on delayed auditory feedback (DAF) and Howell,

El-Yaniv & Powell (1987) on frequency-shifted feedback (FSF). Researchers first

found speech effects that are similar to stammering could be observed in fluent

speakers when DAF was presented. Lee (1951) refers to this phenomenon as
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‘simulated’ stammer. Later, a number of studies showed influential findings that

stammering people were able to improve their speech control when DAF was

presented (e.g. Soderberg (1960), Chase, Sutton & Rapin (1961), Neelley (1961),

Ham & Steer (1967) and Curlee & Perkins (1969)). DAF-based stammering

treatment was initialised by Lee (1951), Cherry & Sayers (1956) and Goldiamond

(1965), and then evolved to a therapy programme by Ryan (1974). Howell et al.

(1987) managed to present FSF to stammering speakers for the first time and found

that it could lead to more fluent speech than DAF, which inspired many later studies

on this topic (e.g. Kalinowski, Armson, Stuart & Gracco (1993), Armson, Foote,

Witt, Kalinowski & Stuart (1997), Burnett, Senner & Larson (1997), Zimmerman,

Kalinowski, Stuart & Rastatter (1997) and Natke, Grosser & Kalveram (2001)).

From both scientific and clinical perspectives, tremendous contributions were made

by all these empirical studies and which promoted the emergence of stammering

treatment devices.

From a theoretical perspective, significant contributions were also made by

studies in stammering research. One worth detailed discussion here is the strong

objections to the view held by some production models that phonetic content of

speech segments is perceived and monitored as ‘feedback’ by the brain to determine

whether there are any errors between the actual speech and the intended so that

corrective actions can then be taken. This view is exactly the one strictly followed

by the DIVA model as introduced earlier in this section. At least three arguments

against this view were summarised by Howell & Sackin (2002) and Howell (2004).

First, Borden (1979) argued against the ‘feedback’ point of view on two aspects.

One is that it takes a great amount of time for the brain to recover and process

the information delivered by the feedback. The processing time was estimated

to be around 200 ms (more or less the length of a syllable). One question arises

here is that, when a segment is being produced, whether this time lag is too long

78



4.1 Background on Auditory Feedback

for its feedback to be actually used to control its own production (as discussed

earlier). The other is that adult speakers are still able to speak normally for a period

of time after hearing loss, which suggests the absence of online feedback control

mechanism.

Second, based on the study by von Békésy (1960) showing that bone-conducted

sound is at approximately the same level as airborne sound, Howell & Powell

(1984) argued that airborne sound would be masked by bone-conducted sound.

And the latter is dominated by the fundamental frequency of speech output since

formant details can be easily degraded by resonances of our body structures. As a

consequence, the feedback signal may have lost plenty of phonetic details so that

cannot provide sufficient information for feedback control.

Third, in the DAF experiment conducted by Howell & Archer (1984), they

replaced phonetic content in the feedback with noise and showed that such non-

speech noise could achieve equivalent performance as standard DAF. This finding

strongly suggests that the feedback speech does not actually go through the speech

comprehension system as a high level mechanism. The speech control process may

be a low level mechanism instead.

In response to these empirical findings against the previous view of ‘feedback’,

disruptive rhythm hypothesis (DRH) as a non-feedback account was then developed

by Howell, Powell & Khan (1983). DRH interprets DAF effect from a rhythmic

perspective by suggesting that synchronous activities are much easier to produce

than asynchronous ones, no matter whether such activities contain useful inform-

ation about speech. The disruptions observed in DAF can then be interpreted as

consequences of asynchrony caused by the delay. Moreover, it was found that

roughly a syllable-sized delay (200 ms) causes maximum disruption on speech

control (Black, 1951), which suggests that syllable could be the basic synchronous

unit used by speakers.
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Subsequently, a complete stammering theory EXPLAN was developed by

Howell (2002) and Howell & Au-Yeung (2002). Its basic idea is that cognitive-

linguistic planning (PLAN) precesses are independent of motor execution (EX). It

assumes that linguistic planning is processed utterance by utterance. It proposes

that the cause of stammering is speech rate and disfluencies arise when an utterance

needs to be produced but its plan is not ready. And this can be avoided by simply

changing motor execution rate with a timekeeper, repeating a plan, interrupting

speech to gain more time or direct advancing. AAF actually affects a timekeeping

process that controls motor execution rate so that fluent speech can be achieved.

Specially, a new term ‘alterations to recurrent auditory information’ (ARAI) started

to be used (instead of AAF) to cover both feedback and non-feedback interpretations

of the effects that occur when auditory environment is altered (Howell, 2004).

We need to admit that the underlying mechanism of speech control has not

yet been investigated sufficiently. And all these controversial voices are helpful

for us to gain a better understanding of speech production. While we continue

to follow the view of feedback that the DIVA model relies on, we have to admit

that this feedback concept is rather limited and possibly wrong. However, what

interested us the most and motivated our study here is that there is just one study so

far that computationally simulated the auditory feedback compensation behaviour.

In Cai et al. (2011) and Cai (2012), they first simulated spatiotemporal control of

articulation in response to formant-shifted auditory feedback of normal speakers

with a modified DIVA model and received comparable results to the behaviour data.

They then compared the modelling results between people who stutter (PWS) and

normal speakers and reported that PWS speakers generally responded smaller in

magnitude and slower in time to both spatial and temporal formant perturbations

than normal speakers. To our knowledge, however, there is a lack of similar research

on pitch control.
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4.2 Introduction

To simulate the online control of pitch production, behavioural data need to be ob-

tained first. Therefore, we developed a high performance speech signal processing

programme to provide precise pitch manipulation with very low latency in the

auditory feedback. With this programme, we conducted an empirical experiment to

apply real-time pitch shift to auditory feedback to human subjects while they are

producing meaningful bi-tonal (disyllable) Mandarin Chinese phrases. We analysed

the collected behavioural data and verified previously reported online feedback com-

pensation phenomenon. That is, short-delayed compensatory responses opposing

the directions of pitch shifts were found.

Unlike the work by Cai (2012) which involved both spatial and temporal ma-

nipulations of F2, we only considered spatial changes of pitch in this study. Then,

we simulated the behavioural data with an articulatory-based pitch controller. Our

basic assumption for the simulation is that online auditory feedback compensation

has to happen as part of the basic F0 production mechanism. For this mechanism,

we adopted the target approximation (TA) model as the pitch controller, which has

already been introduced in Chapter 3.

Through the simulation, we intend to achieve two goals. The first is to demon-

strate that human speech movement (at least pitch movement) can be considered as a

dynamic process of target approximation and the TA model is a valid F0 generation

model at the motor-to-acoustic stage that can closely replicate human productions.

Along this goal, the capability and flexibility of the TA model is shown. While

we always introduce the model with the syllable as the basic modelling unit in

the first place and have used it frequently in a syllable-synchronised way in other

studies (and also in the next chapter), it can also be used with arbitrarily smaller

units as long as they follow the asymptotic target approximation nature in speech

production. Namely, a complete target approximation process can be seen as an
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integration of multiple subprocesses of incomplete target approximation. And the

boundary states of these subprocesses can be dynamically transferred from one to

another resulting in a smooth final F0 trajectory. Therefore, online pitch control

is naturally feasible with the TA model by simply manipulating the underlying

pitch targets of such subprocesses. This is different from what Cai (2012) had to

tackle with the DIVA model in their simulation experiments. As introduced in

the background, the original DIVA model can only produce steady-state vowels,

because it was designed primarily to produce single speech unit (e.g. syllable /ba/).

In addition, some frequently used short words and utterances (e.g. ‘I owe you a

yo-yo’ and ‘good doggie’ as commonly used by DIVA ) can also be produced under

the condition that they are treated as complex single units. As pointed out by Cai

(2012, p. 96) ‘it is highly unlikely that the speech motor system stores pre-learned

motor trajectories for all possible utterances’. Indeed, in our daily life, many of

the utterances that we produce are ones that we have never produced before. Our

ability to produce complex utterances that are new to us implies that there must

be a process that only learns the basic production units but is able to apply them

dynamically in production.

As a consequence, in order to make more realistic multisyllabic articulation and

enable a valid online formant control, a sequencing mechanism was developed by

Cai (2012) to string the stored pre-learned syllables together to approximate the

dynamic production of multisyllabic utterances. In order to simulate online formant

compensation, those syllables were further divided into shorter independent ‘epochs’

(each consisting of a monotonic formant transition), which are then controlled

separately. Without a dynamic model for trajectory generation, that was probably

the best way to make the simulation possible. However, this epoch-by-epoch

independence nature may lead to severe artefacts at the joints of produced signals,
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which actually constrains the DIVA model to such motor control studies and does

not allow it to be used in practical synthesis systems.

The second goal of this study is similar to the one in Cai (2012), that is to

account for the spatiotemporal compensation patterns observed in the empirical

experiment of online auditory feedback compensation. By comparing the simu-

lated compensatory trajectories with the subject-produced ones, the sensorimotor

mechanisms underlying the online control of TA-based F0 production in response

to pitch-shifted auditory feedback can be revealed. That is, how do the TA targets

react to the pitch shifts?

It is worth mentioning that there was a previously published mathematical model

of pitch stabilisation using negative feedback and delays for sustained vowels (Hain

et al., 2000), which was also later used for normal speech (Xu et al., 2004). However,

that model lacked a critical F0 production model. It simply used control F0 signal

as input and filtered it afterwards in response to perturbations found in the feedback.

Hence, the underlying mechanism of F0 production and how it reacts to pitch-

shifted feedback remains unclear. We aim to simulate feedback compensation in

a way that is biomechanically plausible, so that it is also general enough to be

extendable to other areas of motor control.

Our hypothesis for the simulation is: the surface compensatory responses

observed in behavioural data is a result of temporary adjustments of underlying

articulatory pitch targets of the TA model during speech production in reaction to

the pitch-shifted auditory feedback. So there should be a momentary alternation

of the originally planned target during the ongoing target approximation process.

Following the behavioural data, the adjustment of pitch target should have a short

latency and a small amplitude. Based on previous studies of the TA model (Liu &

Xu, 2014; Prom-on et al., 2009), among the three TA target parameters, variation

of target height directly affects the spatial displacement of surface F0 contour. So
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in the current simulation, target height was chosen as the model parameter to be

adjusted.

Generating pitch contours for speech synthesis is a demanding task. Given its

previous influential achievements in synthesising designed lab speech of tonal (e.g.

Chinese and Thai) and non-tonal (e.g English and German) languages (Prom-on

et al., 2009; Xu & Prom-on, 2014), if the TA model can clearly reproduce the subtle

pitch changes in this study with systematic feedback control, we have the reason to

believe that the model has fulfilled its goal of replicating the physical process of F0

generation to a great extent. Therefore, it can be seen as qualified to be used in the

motor-to-acoustic stage of our proposed speech synthesis approach for large scale

spontaneous speech.

4.3 Behavioural Data

4.3.1 Subjects and stimuli

Eight paid subjects (four males and four females; age 22-27) speaking Beijing

dialect of Mandarin Chinese participated in the experiment. Three of them were

recruited at UCL and the rest five were recruited at the TechTemple startup camp3

in Beijing. All subjects passed a hearing test and none of them reported history

of neurological or speech disorders. In particular, none of them was aware of

the purpose and methodology of the study before the experiment. In fact, a lot

more subjects were recruited for the experiment, but due to technical reasons (e.g.

recording quality, pitch tracking errors, etc.) only eight data sets were selected as

qualified for further analysis and simulation.

3http://techtemple.cn/
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Table 4.1 The four bi-tonal Chinese phrases used as stimuli in the experiment.

Phrase Pronunciation Pattern

妈妈 /mā mā/ High-High
妈麻 /mā má/ High-Rising
妈马 /mā mǎ/ High-Low
妈骂 /mā mà/ High-Falling

The stimuli used in the experiment are listed in Table 4.1. They consist of

four meaningful disyllabic Chinese phrases. The first syllables are all in the High

tone, whereas the second syllables are in the High, Rising, Low and Falling tones,

respectively. The choice of these phrases was based on two reasons. First, a

consistent first syllable provides a stable speech production condition that allows

us to always apply pitch shifts to the same place of production and obtain clear

compensatory patterns. Second, a varying second syllable can help us capture the

most complex cross-syllable compensation effects. We limited the phrase length to

only two characters to make sure they are simple, yet long enough to expose both

effects and exceptional aftereffects of compensation. Short stimuli also meant that

they would not exhaust the subjects and degrade their performance.

Before each trial of the experiment, a long random script was generated based

on the phrases. The four phrases were repeated 75 times in the script and the order

of the four phrases was shuffled in each repetition. Therefore, there were 300

phrases in total in each script. Also, the boundary phrases of each repetition were

deliberately set as different to those of its adjacent repetitions so that throughout a

script each phrase was guaranteed to be different from its neighbours. The purpose

of doing this was to ensure that the speaker did not have to produce the same phrase

twice successively, which may lead to lowered sensitivity in the second production.

Furthermore, the magnitudes of applied pitch shifts were set to −2.0, 0.0, 2.0
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semitones, which were also assigned randomly and evenly to the phrases in each

script.

4.3.2 Experimental procedure

Pitch 
Estimation

FxTuner

Pitch
Shifting

mā má
… 妈 麻 … 

headphone

Shifted speech
(auditory feedback)

Produced speech
mic

screen

Voice Recording

Parameter 
Tuning

Figure 4.1 A schematic diagram showing the experimental settings and the workflow
of behavioural data collection. The diagram is adapted and optimised from the ones
displayed in Cai (2012) and van Brenk, Terband & Cai (2014).

Before the experiment, the subjects were trained to maintain their speech rate

at 250 ms per character, i.e. 500 ms per phrase, as steadily as possible. This was

to make sure that, on the one hand, the applied auditory pitch shifts occur roughly

in the same time interval of the utterances, and on the other hand, the utterances

are long enough to collect complete compensatory effects. In addition, the subjects

were asked to practice reading their stimuli script aloud at about 70 dB SPL (sound

pressure level) in order to sense the speaking effort that they need to maintain in the
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experiment. Loudness was measured by a Brüel & Kjær 2203 sound level meter

and monitored by the subjects themselves.

Figure 4.1 displays a schematic diagram showing the experimental settings

and the workflow of this experiment. During the experiment, subjects were seated

comfortably in a recording booth (at UCL or TechTemple) and asked to read aloud

the phrase displayed on a screen in front of them. The phrases were displayed

one by one and the progress was totally controlled by the subjects themselves by

clicking the space key on a keyboard. The 300-phrase long script was loaded by our

programme and then divided into 5 short scripts assigned to 5 experiment sessions.

This was to make sure the speaker can have a rest after finishing each session and

guarantee a stable performance.

4.3.3 Pitch shifting method and apparatus

The speech signals were first captured by a Countryman ISOMAX headset mi-

crophone and transmitted to the real-time pitch shifting programme, FxTuner4,

which loads the stimuli script, applies pitch shifts and records subjects’ utterances

to sound files. The programme relies on the PortAudio C/C++ library5 and the

CoreAudio driver on Mac OS X for low-latency playback and applies modified

Short-time Fourier Transformation (STFT) for fast and accurate pitch shifting.

Processed speech signals were instantly delivered back to both ears of the subject

via a Beyerdynamic DT231 PRO headphone, with an added masking pink noise

at 40 dB (Figure 4.1). The same masking noise was also used in many previous

studies and has been shown to be effective in masking the bone-conducted feedback

of self-production.

4Available at http://www.homepages.ucl.ac.uk/~uclyyix/tools.html
5A powerful cross-platform, open-source audio I/O library. Available at http://www.portaudio.

com.
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Generally speaking, playback latency exists in every electronic audio device

nowadays. We can confidently say that no one can achieve zero latency as long as

there is an electronic audio device used in their experiments. Nevertheless, for an

experiment focusing on pitch-shift of auditory feedback, minimising such unwanted

latency is the top priority. FxTuner achieved an overall latency of around 12 ms for

the whole process of voice ‘capture-manipulation-playback’6 with original voice

quality maintained to the maximum. A ring buffer was adopted to facilitate this

process (Figure 4.2).

Playback

Capture

Playback

Capture

Manipulation

A. Normal Buffer

B. Ring Buffer

Input Output

Input

Output

Cache

Figure 4.2 The type of ring buffer that we used in FxTuner. A: Normal buffer for
comparison. B: Ring buffer with an extra ‘manipulation’ cache.

As comparison, Figure 4.2A shows a normal buffering structure that every

electronic device has to use in order to accumulate certain amount of data for fluent

playback. In this structure, an input buffer has to be filled first (Analog-to-Digital

Conversion (ADC)) and then instantly copied to an output buffer for playback

(Digital-to-Analog Conversion(DAC)). As long as an input buffer can be fully
6Cai (2012) reported 11 ms latency with a similar algorithm in their experiment. Howell et al.

(1987) reported 5 ms latency with a speed-changing method. Note that those experiments were for
formant or overall frequency change, whereas this experiment is for pitch change only and requires
original formants largely retained.
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filled before the last output buffer is used up, no glitch would be perceived by user.

However, latency is unavoidable. In our case, with 44.1 kHz sampling rate and

256-sample buffer size, the latency would be 256/44100 = 0.005805s (5.81 ms)7.

When pitch shift is required, an intermediate buffer has to be added as a cache

to accommodate this process. This leads to a ring buffer structure (Figure 4.2B).

In this situation, when an output buffer starts to play, two buffers of data have

been accumulated so that the latency is doubled to 11.62 ms. Note that FxTuner is

optimised to be able to finish processing a cache buffer before it needs to be played,

otherwise severe glitches would appear. In practice, extra delays caused by the

ADC and DAC procedures are unavoidable. For our system, the sum of such delays

was reported as 1.27 (±0.14) ms by the internal timer of PortAudio.

We also considered time-domain pitch manipulation techniques such as TD-

PSOLA (Moulines & Charpentier, 1990) and WSOLA (Verhelst & Roelands, 1993),

which normally introduce minimal formant change as long as the pitch change is

within a small scale. However, these time-domain methods generally require at

least two pitch periods (e.g. 20 ms for male voice) for signal processing, which is

too slow for our low-latency purpose.

After the experiment, all subjects reported no awareness of distortion in the

feedback other than the slightly higher loudness and the special masking noise

in the auditory feedback. While we humbly request readers to consider that the

latency achieved by FxTuner generally satisfied the requirement of ‘imperceptible’

temporal distortion and caused little distraction to speakers, we admit that this

latency might impose extra effect on the feedback in addition to the designed pitch

shift. However, since it is currently not possible to find a study that achieved

genuine zero latency and applied similar pitch shift to the auditory feedback, we

cannot make a comparison and assume how this extra latency may affect the

7The standard buffer size is normally 1024-sample or even larger, which would result in much
higher latency.
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results. Nevertheless, as we strictly followed the experiment protocol established

by previous studies (Howell et al., 1987; Larson, 1998; Xu et al., 2004; Chen

et al., 2007; Cai, 2012) and achieved one of the lowest latencies, we can say that

this experiment is legitimate to the purpose of exposing real human behaviour in

response to the pitch-shifted auditory feedback.

A

B

Figure 4.3 Example spectrograms and pitch tracking results (blue contour) of a
production-feedback pair. A: the recorded /mā má/ production of a speaker. B: the
recorded auditory feedback based on the production in A, in which an upward pitch
shift was applied for 200 ms.

While we also admit that the use of typical STFT algorithm for pitch shifting also

affects formants to some extent, with the help of engineers from Dolby Laboratories8

we optimised the algorithm by trying to maintain the original envelope of power

spectrum as much as possible in order to minimise formant deterioration (an

example pitch shift is displayed in Figure 4.3).
8http://www.dolby.com
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During the experiment, feedback fundamental frequencies were shifted upward

or downward by 2 semitones (200 cents) for 200 ms, or left unchanged. The

start of the pitch shift was 100 ms after the detection of vocalization onset. For

this detection, we developed another algorithm basically based on a silence score

accumulated within a window of captured sound samples. If the silence score

exceeded a threshold for a certain number of times, the first time that it reached the

threshold was treated as the vocalisation onset. Then, the timing (onset/offset) of

applying pitch shift was calculated accordingly.

4.3.4 Behavioural results

The produced pitch contours were estimated by the autocorrelation algorithm

(Rabiner, 1977) provided by Praat (Boersma, 2002) and sampled at 100 Hz. The

contours were then transformed from Hertz to cent (cent = 100 × (39.86 ×

lg(f0/195.997)) where f0 equals F0 in Hertz (Xu et al., 2004; Liu & Larson, 2007).

Similar to the findings in previous studies, under the condition of pitch shift, not all

productions were compensatory, as there were a small number of non-responses

and following responses (i.e., the reactive pitch change followed the direction of

the feedback pitch shift). The distinction between compensation, following and

non-response was determined statistically by point-by-point serial two-tailed t-

tests. Only if p-values within the pitch-shift window of a trial were continuously

lower than the significance level of 0.05, the trial could be considered as a genuine

compensatory or following response. In this study, only compensatory trials were

selected for modelling and the following trials were considered as merely symmetric

situations of the compensatory. In terms of non-response trials, we believe they

imply that there was no underlying motor change triggered in reaction to pitch shift

(i.e. normal production as there was no pitch shift at all). The selection was done by

a preprocessing procedure manually by the author with an interactive programme.
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During the data preprocessing, mispronounced and disfluent production trials were

discarded first. Then, the remaining trials were screened and compared one by

one to remove the following and non-responsive ones. Approximately, 57 % of

the response trials9 (with pitch-shifted feedback) and 92 % control trials (with

normal feedback) survived this preprocessing, which were then used for analysis

and simulation. Also, we would like to make it clear that all the three response

types (compensatory, following and non-response) were found in every subject,

which means that no subject stuck to one or two particular responses.

After data preprocessing as the first-pass, the pitch contours were then time-

aligned, filtered to remove significant sample outliers, and smoothed with a five-

point Hamming window. The purpose of this process was mainly to reduce the

dispersion of temporal variations in the pitch contours so as to avoid confounding the

pitch changes due to temporal misalignment and spatial compensatory adjustments.

Similar process can also be found in previous studies (Xu et al., 2004; Liu & Larson,

2007; Patel, Niziolek, Reilly & Guenther, 2011; Cai, 2012).

Generally, the collected behavioural results showed similar patterns as those

reported in previous studies. We will start with a representative case by an individual

subject as illustration and then report grouped results of the experiment.

Individual results

A representative case by a male speaker (MS01, Figure 4.4 and Figure 4.5) is

shown in this section. Figure 4.4a displays the production data with pitch shifted

downward in the feedback, and which includes all the four bi-tonal phrases (H-H,

H-R, H-L and H-F). The stability of compensation is demonstrated by the means

(solid curves) and standard error of the means (SEM, dashed curves) plotted in

the graph. These compensatory patterns are what to be modelled in the simulation

9We can see that compensatory trials are the majority (non-response trials were 17 % and
following trials were 26 %).
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(a) The averaged F0 trajectories for the four bi-tonal phrases. The compensatory
trajectories are in red, and the control ones are in blue.
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(b) Error view between the compensatory and the control trajectories in (a). The errors
are plotted as red solid curves accompanied by red dashed curves indicating ± 1 SEM.

Figure 4.4 The productions by subject MS01 under the downward pitch-shifted
feedback. Grey dotted lines are syllable boundaries.
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(b) Error view between the compensatory and the control trajectories in (a). The errors
are plotted as red solid curves accompanied by red dashed curves indicating ± 1 SEM.

Figure 4.5 The productions by subject MS01 under the upward pitch-shifted
feedback. Grey dotted lines are syllable boundaries.
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to be discussed in the next section. Figure 4.4b provides an error view of such

productions showing the average discrepancies between the compensatory and the

control productions (solid red curves, accompanied by SEM as dashed red curves).

It is worth noting that, as shown in panel D of Figure 4.4b, negative aftereffects

were found in the productions. Namely, when pitch shifts were removed from

feedback, the subjects not only just returned towards the control level, but also

overshot that level and produced lower F0s. Similar cases can also be seen in

other productions (e.g. panel B in Figure 4.5b). This finding is consistent with

the summary made by Purcell & Munhall (2006a) that negative aftereffects exist

in F0 but are hardly observed in formants adaptations (Houde & Jordan, 2002).

Additionally, as they also mentioned, this kind of negative aftereffects can also

be found in other areas of motor control research such as arm control (Lackner &

DiZio, 2005) and somatosensory speech control (Tremblay, Shiller & Ostry, 2003).

As we only introduced spatial pitch change in the experiment, responsive

adjustments by subjects in the time domain will not be taken into consideration

here. We have to admit it is possible that syllable duration may also be affected by

pitch-shifted feedback, which might be a minor factor causing such overshooting

phenomenon (Patel et al., 2011). Nevertheless, due to the fact that the number of

productions in the experiment showing this overshooting pattern are limited (<25%),

we chose not to discuss much on the possibility of temporal adjustment. More

importantly, in terms of simulation, although temporal adjustment is not difficult

to simulate, it would introduce time as an extra degree of freedom and cause

interference with the spatial adjustment. Therefore, in this study we treat syllable

durations as preplanned and unchanged. A more comprehensive study can be found

in Cai (2012), as they also conducted an extra dedicated empirical experiment

for temporal formant perturbation only and found significant difference between
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PWS and normal speakers in response to such perturbations through DIVA-based

simulation.

Group results

The inter-subject variability of compensatory patterns in response to both downward

and upward pitch-shifted feedbacks can be seen in Figure 4.6 (male subjects) and

Figure 4.7 (female subjects). The figures are based on subjects’ productions of

the High-Rising bi-tonal phrase. It can be easily seen that, on the one hand,

the compensatory patterns generally existed in all subjects’ productions; on the

other hand, such patterns varied considerably across subjects. Namely, subjects

compensated for the same pitch shift pattern in substantially individualised ways.

For example, subject MS01 is the only one in Figure 4.6b showing the above-

mentioned overshooting behaviour in response to upward pitch-shifted feedback,

while no subject in Figure 4.6a shows such behaviour in response to downward

pitch-shifted feedback. In contrast, most female subjects in Figure 4.7 overshoot the

control contour after normal compensation except FS02 and FS04, in Figure 4.7a

when compensating for downward pitch-shifted feedback. This kind of variability

among subjects is quite normal in this research area and can be found in most

previous studies.

For quantitative analysis, point-by-point serial two-tailed t-tests were run

between the averaged compensatory and control F0 trajectories. Statistically, the

observed mean onset of compensation is 101 ms after the onset of pitch shift

across subjects, and the observed mean offset of compensation is 231 ms. The

compensation onsets and offsets were determined by the p-values obtained from

t-tests. Specifically, a window consisting of a consecutive series of p-values that are

lower than the significance level of 0.05 was considered as genuine compensatory

response. According to Xu et al. (2004), the compensation window has to be longer
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(a) Error view of the productions under the downward pitch-shifted feedback.
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Figure 4.6 The averaged errors between the compensatory and the control trajector-
ies of the High-Rising phrase produced by male subjects. The errors are plotted
as red solid curves accompanied by red dashed curves indicating ± 1 SEM. Grey
dotted lines are syllable boundaries.
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Figure 4.7 The averaged errors between the compensatory and the control trajector-
ies of the High-Rising phrase produced by female subjects. The errors are plotted
as red solid curves accompanied by red dashed curves indicating ± 1 SEM. Grey
dotted lines are syllable boundaries.
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Figure 4.8 By gender comparisons of the observed compensation ratio (left panel)
and onset (right panel).

than 50 ms in order to be qualified as a neuromuscular event. The first and last

sample of such window were recognised as the onset and offset of compensation.

The mean magnitude of peak compensation (defined as the largest displacement

from control trajectory within the compensation window) collected in this experi-

ment is 51.69 cents, i.e. 25.84 % if expressed as compensation ratio (divided by

200 cents, the magnitude of pitch shift). A comparison of gender difference in com-

pensation ratio is shown in the left panel of Figure 4.8, which supports the finding

reported in Chen et al. (2010) that male speakers produced larger compensatory

responses than female speakers (ANOVA: F1,8 = 5.64, p < 0.05). However, the

difference of compensation onset in gender (right panel, Figure 4.8) is not signific-

ant in our data (ANOVA: F1,8 = 0.35, p = 0.56). According to Chen et al. (2010),

male speakers were significantly slower than female speakers when reacting to the

pitch-shifted feedback. Xu & Sun (2002), in their study on maximum speed of pitch

change, attributed this kind of gender differences to the physiological differences

between men and women. A plausible explanation provided by them is that ‘female

speakers have less laryngeal mass and hence less laryngeal inertia, thus needing
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less time than male speakers to initiate and end a pitch shift’10 (Xu & Sun, 2002,

p. 1405). Other physiological differences, such as thickness and length of vocal

fold, may also responsible for such gender differences in reaction speed (Titze,

1989). The non-significance aspect of our data in terms of compensation onset

difference is probably due to the physiological differences between the selected

male and female subjects are not quite salient.

Based on the large number of empirical studies on this topic, we are confident

that the data used here are consistent with the findings shown in other studies, and

more importantly, faithful to the reality. Throughout the experiment, it can be

seen that productions of the High-Rising bi-tonal phrase exhibit the most complex

variations compared to others. Therefore, our simulation experiment will be based

on productions of this phrase.

4.4 Simulation

To model the behavioural data, the TA model was first trained with the normal

productions (the control trials), for which simple exhaustive search implemented by

PENTAtrainer1 (Xu & Prom-on, 2010–2012) was used, to find the optimal target

parameters of the averaged normal productions. These pre-learned TA targets were

then used as the control targets for the simulation of compensation.

As discussed earlier in this chapter, the TA model is superior to the DIVA model

in that it is a sequential model with an elaborate design to replicate the dynamic

process of F0 production. Therefore, according to the established control protocol in

Cai (2012), the TA model requires little modification for this simulation experiment.

Specifically, when a syllable is being produced, its underlying pitch target can

be freely changed at any time as needed, which merely shifts the current target
10Note that they only considered maximum speed of pitch change so that this cannot account

for magnitude difference directly. To the present, no study has accounted for the reported gender
difference in magnitude of pitch change.
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so that a new target is temporally approached. For each compensatory response,

the new target shifts against the direction of the pitch shift. For each following

response, the new target shifts along the direction of the pitch shift. It is as if

a multi-target syllable were produced. Importantly, the continuity of such multi-

target approximation is guaranteed to generate F0 contours that are still smooth

and natural, which may neatly fit the compensatory patterns produced by human

subjects.

In Appendix A, we first provide a canonical implementation of the TA model

in Python and then supply a ‘multi-TA’ function to demonstrate how to practically

implement a multi-TA process to produce such multi-target syllables. Basically, a

multi-TA process is composed of a series of subprocesses of target approximation.

It is worth particular mentioning that, for each subprocess, the underlying pitch

target is independent of those of other subprocesses. Especially, as we only consider

spatial manipulation in this experiment, the height of each target needs to be locally

calculated for its host unit. Moreover, once a new TA process is initiated, the time

used for F0 generation during the process is always converted to relative time to its

current onset.

In the following two subsections, simulation strategies regarding the cross-

syllable compensation and the exceptional post-compensation overshooting beha-

viour are described in detail.

4.4.1 Cross-syllable compensation

As the pitch shifts in the empirical experiment were applied at 100 ms after vo-

calisation onset and lasted for 200 ms, given that speech rate was maintained at

250 ms per syllable, the compensations occurred in the experiment were mostly

cross-syllable.
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Three variables controlling the TA-based compensation were explored in this

simulation: compensation onset, offset, and magnitude of target adjustment. These

variables were generally set free within empirically reasonable ranges covering all

the possible values of the variables when the best fits were searched for over the

behavioural data.

For example, based on previous studies (Burnett & Larson, 2002; Donath et al.,

2002; Natke et al., 2003; Tourville et al., 2008; Chen et al., 2010), the latency that

surface F0 reacts to such pitch shifts is normally between 60 to 200 ms. That is, the

earliest valid compensation onset can be at 60 ms after the first shifted F0 sample

and the latest can be at 200 ms, i.e. the compensation onset should be within the 160-

300 ms range after the vocalisation onset of an utterance. However, it is noteworthy

that all those findings were based on surface F0 observations and it is actually not

reasonable to consider that the change of articulatory movements can instantly give

rise to significant surface acoustic change. Properties of physical movement like

inertia should affect surface trajectory formation considerably and thus by no means

can be ignored. As a consequence, the actural articulatory adjustments should occur

earlier than corresponding acoustic changes in the observation. Cai (2012) was not

able to take this into consideration due to the limit of the DIVA model, in which

any changes on its motor commands lead to immediate changes on formants. With

the TA model, the lower bound of this delay can be relaxed so as to leave some

space for the target adjustments to take effect.

Figure 4.9 consists of two schematic diagrams showing how the pitch targets

can be manipulated online in response to pitch-shifted feedback in TA-based pitch

production. In Figure 4.9a, the F0 trajectory of syllable /mā/ first approaches the

control target. Then, with the abrupt upward target shift before the syllable ends,

the trajectory approaches the adjusted target and subsequently reaches a higher

production than the control. More importantly, due to the persistence of pitch shift
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mā má

(a) The case that pitch targets are temporarily adjusted upward.

mā má

(b) The case that pitch targets are temporarily adjusted downward.

Figure 4.9 Two schematic diagrams illustrating: 1. how underlying pitch target
defined by the TA model can be temporarily adjusted downward or upward on-the-
fly; 2. continuous target adjustment affecting two successive syllables results in
cross-syllable compensation. The black and grey curves indicate the compensatory
and the control F0 trajectories, respectively. And the black and grey dashed lines
indicate the corresponding pitch targets of the trajectories. The intervals that pitch
targets can be adjusted in are indicated as blue shadow.
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in the feedback, this target change does not stop together with the first syllable,

but also is extended to the beginning of the second syllable. Therefore, the second

control target is also shifted upward for a while in the beginning of syllable /má/

before going back to normal. As a consequence, the trajectory continues to approach

a higher pitch target in the second syllable at first and then goes down with the

following target return. Figure 4.9b shows a similar case with the targets shifted to

the opposite direction. Formally, the simulated cross-syllable compensation process

can be expressed as below. In syllable 1,

F 1
0 (t) =





A1
1(t), if 0 ≤ t < Ton

ρ · A1
2(t− Ton), if Ton ≤ t < D1

, (4.1)

and in syllable 2,

F 2
0 (t) =





ρ · A2
1(t−D1), if D1 ≤ t < Toff

A2
2(t− Toff), if Toff ≤ t ≤ D2

, (4.2)

in which all superscripts denote syllable index, F0(t) denotes the produced F0 at

time t, A(t) denotes TA-based production at t with pre-learned target parameters

of its host syllable, subscripts of A denote the index of TA process, ρ applies

height adjustment to the pitch target, whereas Ton, Toff and D denote compensation

onset, offset and syllable duration, respectively. An optimisation process was

then designed to find the corresponding underlying target movement when a pitch

shift occurred in the auditory feedback. It is worth noting that, instead of being

considered as parameterising the observed response contour, the optimisation

process should be treated as an exploration process to look for the most appropriate

target movement in reaction to the pitch-shifted auditory feedback and its best result

closely simulates the motor behaviour of compensation.
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The optimisation process was automated by a combination of both exhaustive

exploration (for compensation onset and offset search) and nonlinear least squares

optimisation (for target adjustment magnitude search). The latter was implemen-

ted by the LMFIT python package (Newville et al., 2014). Note that there are

other nonlinear optimisers available, such as the Ceres Solver by Google (Agarwal,

Mierle et al., 2010) and the fmincon function in the MATLAB Optimisation Tool-

box (MathWorks, 2015), which can also be used here. The reason for including

exhaustive exploration instead of entirely relying on nonlinear optimisation is that

the time step for the experiment was set to 10 ms, which is challenging for most

above-mentioned optimisers since they all work with floating numbers and assume

that solutions can be found by initially making very small changes on them. Such

discrete time series easily makes an optimiser to conclude that changing that time

variable has no effect on the fit. Although we could make the time step as small as

possible, it would cause some efficiency problem of the simulation process. The

range of compensation onset was set to [100, 300] ms, whereas the lower bound of

compensation offset was dependent on the onset with an additional 50 ms (valid

compensation should be longer than 50 ms) and the upper bound of which was set

to 500 ms (the compensation can possibly reach the end of production). For each

onset-offset timing pair, the best target adjustment magnitude can be found with the

nonlinear optimiser, and a root mean square error (RMSE) score calculated between

the simulated compensatory trajectory and its subject-produced counterpart can

be obtained. By comparing all the collected RMSE scores, the best compensation

onset Ton, offset Toff and target adjustment magnitude ρ can be found.

4.4.2 Post-compensation overshooting

As described in Section 4.3.4, consistent with other studies the overshooting phe-

nomenon was observed in our behavioural data. Apparently, the above-mentioned
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cross-syllable compensation strategy does not take this into consideration so that

after compensation the simulated trajectories failed to replicate the quick return

and overshooting observed in some subject-produced ones. Figure 4.10 is a real

example of such situation. While compensatory adjustment of pitch target height

alone does offer a better fit to the natural than the no-adjustment control, it fails

to simulate the overshooting in the post-compensation interval. Therefore, an

additional mechanism is needed to achieve fully satisfactory results.
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Figure 4.10 A real example showing that the compensation is effective within the
normal compensation interval. But the simulated trajectory fails to replicate the
subject-produced one in the post-compensation interval.

To address this issue, another target adjustment parameter ε is added in the

post-compensation interval as an extra variable to be explored. We assume that

this post-compensation target adjustment persists till the end of production.11 Fig-

ure 4.11 shows two schematic diagrams illustrating this new strategy. Specifically,

in Figure 4.11a, after the same compensation as in Figure 4.9a, the F0 trajectory
11This assumption relies on the fact that the post-compensation interval is short in this experiment.

We admit that if the production is long enough (i.e. there are more syllables to be produced), such
post-compensation target adjustment may stop at some point.
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mā má

(a) The case that pitch targets are temporarily adjusted upward first and
then downward in the post-compensation interval.

mā má

(b) The case that pitch targets are temporarily adjusted downward first
and then upward in the post-compensation interval.

Figure 4.11 Additional post-compensation overshooting is added to Figure 4.9.
Pitch target in the post-compensation interval becomes adjustable (pink shadow).
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does not return to approach the control target of syllable /má/, instead it starts to

be driven by a new target shifted downward to a lower level than the control. As

a consequence, the simulated compensatory trajectory eventually overshoots the

control. Similarly, Figure 4.11b shows the opposite case when the simulated pro-

duction compensates downward during normal production and overshoots upward

in the post-compensation interval. Formally, the production process in syllable 2 is

modified as following,

F 2
0 (t) =





ρ · A2
1(t−D1), if D1 ≤ t < Toff

ε · A2
2(t− Toff), if Toff ≤ t ≤ D2

, (4.3)

in which the variable ε applies height adjustment to the control target in the post-

compensation interval.
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Figure 4.12 An improved example based on Figure 4.10 with extra overshooting
simulation in the post-compensation interval.
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In contrast to Figure 4.10, a representative output of this improved simulation

strategy is shown in Figure 4.12. While the compensation settings remain approx-

imately the same as those in the original cross-syllable compensation (Figure 4.10),

adding post-compensation target adjustment further improves the fitting of this

interval. In general, the optimisation method remains unchanged in this simulation

except that now two variables (ρ and ε) need to be considered simultaneously during

the process, which is trivial for most nonlinear optimisers.

4.5 Results

The simulation results for the High-Rising bi-tonal phrase are grouped and displayed

as error views in Figure 4.13 (male) and Figure 4.14 (female). Note that the post-

compensation overshooting strategy was applied to all the cases while producing

these results. If an overshooting existed, the best ε controlling post-compensation

pitch target adjustment could be found to guarantee a good fit, otherwise the

variable would simply stay at a very small value. Compared to previously displayed

group results (Figure 4.6 and Figure 4.7), the dotted red curves denoting SEMs are

removed here for clarity, instead the yellow dotted curves indicating errors between

the simulated compensatory trajectories and their non-compensatory counterparts

are added in order to show their resemblance to those previously reported error

patterns (red solid curves) observed in subject productions. From the displayed

results, it can be clearly seen that the simulation was effective and it generated

very similar compensatory trajectories to those produced by the individual subjects.

The performance gains for each individual simulation are also indicated in the

figures, which were obtained by comparing the RMSE scores between subject-

produced compensatory trajectories and the TA-generated ones before and after

the simulation. Statistically, the error reductions introduced by the simulation are
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(a) Error view of the productions under the downward pitch-shifted feedback.
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Figure 4.13 Error view comparisons showing the resemblance between the sim-
ulated and the observed compensatory patterns produced by male subjects. The
observed errors are plotted as red solid curves, whereas the errors obtained by
the simulation are plotted as yellow dotted curves. Grey dotted lines are syllable
boundaries. 110
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Figure 4.14 Error view comparisons showing the resemblance between the simu-
lated and the observed compensatory patterns produced by female subjects. The
observed errors are plotted as red solid curves, whereas the errors obtained by
the simulation are plotted as yellow dotted curves. Grey dotted lines are syllable
boundaries. 111
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significant in all the displayed cases, as indicated by the p-values of paired t-tests

shown in the figures.

Collectively, Figure 4.15 shows the fitting errors between the subject-produced

trajectories and the TA-generated ones before and after the simulation. In this

figure, the diagonal dashed line indicate equal fitting errors before and after the

simulation, and the data points above the diagonal line indicates that the TA-based

production achieved lower error in the simulation. On average, the performance

gain of the TA-based simulation is 35.56%.
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Figure 4.15 Performance of the TA-based simulation. The grey diagonal line indic-
ates equal fitting errors before and after the simulation, and each circle corresponds
to an individual subject.

In terms of target adjustment, Figure 4.16 shows that in all the simulated cases

the target adjustments were made in the right direction (opposing the direction

of pitch shift). However, the magnitude of target adjustment changes drastically

from case to case, which can be as small as 0.37 semitones (37 cents) or as big as

4.1 semitones (410 cents), which is not actually proportional to the magnitude of

pitch shift. Additionally, compared to the observed acoustic compensations, the

gender difference of underlying motor control becomes statistically non-significant
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Figure 4.16 By gender comparison of target adjustment magnitude. Blue bars
indicate adjustments in response to downward pitch shift, and the red bar indicate
those in response to upward pitch shift.

(ANOVA: F1,8 = 0.21, p = 0.65). Multiple accounts are possible for this instability.

For example, a local minimum reached in the nonlinear optimisation may lead to

errors in target parameters; target parameters are subject-dependent and the rest

two target parameters (target slope and rate of target approximation) may affect

target height adjustment in different ways from case to case. Similarly, the target

adjustment magnitudes in the post-compensation interval are also unstable.

Moreover, Figure 4.17 shows a box plot comparing the observed compensation

onsets and offsets with the underlying target reaction onsets and offsets obtained

through the simulation. Statistical analysis suggests that the underlying target

compensation onset (mean: 53 ms) is significantly earlier than the observed com-

pensation onset (mean: 101 ms) (paired t-test: p = 6.19 × 10−7). Meanwhile,

the difference between underlying target compensation offset (mean: 169 ms) and

the acoustic compensation onset (mean: 231 ms) is also statistically significant

(p = 0.023), though the statistics is less confident about this. The intertwining

between on-compensation and post-compensation target adjustments can be a pos-
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Figure 4.17 A box plot showing the difference of compensation timing between
underlying articulatory pitch target and acoustic observation.

sible account for this, in which the target compensation offset is balanced due to

the error-driven nature of the nonlinear optimiser. Nevertheless, the early target

compensation onset of TA-based production found in the simulation suggests that

in reality the underlying articulatory reaction to the pitch-shifted feedback may

be earlier than the observed acoustic onset, and the mismatch between the two is

possibly due to the time delay for articulatory movements to give rise to surface

acoustic change.

The significant compensation results gained by the TA-based computational

simulation support our hypothesis that human speech movement can be considered

as a dynamic process of target approximation, and the online compensatory pitch

production behaviour can be accounted for as a result of temporary adjustment of

underlying articulatory pitch target.
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4.6 Summary

Online compensation of pitch-shifted auditory feedback plays an important role in

both normal speech production and childhood speech acquisition (Perkell, 2012).

Computational simulation could help to achieve an understanding of how such

online compensation works. In this chapter we adopted the TA model of dynamic

pitch control in speech production and simulated feedback compensation by finding

optimal adjustments to the original TA-based pitch targets learned from normal

production data. We found that the best simulation results were obtained when

the model applied both on-compensation target adjustment and post-compensation

target overshooting. These findings have demonstrated the effectiveness of this

compositional approach in simulating detailed dynamic pitch control, which could

be linked to neural control mechanisms in the brain in future research (Perkell,

2012). This study provides further support for conceiving the basic human speech

movement as a dynamic process of target approximation (Xu & Wang, 2001;

Prom-on et al., 2009).
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Chapter 5

Linguistic-to-Motor: Predicting TA

Parameters with Deep and

Recurrent Neural Networks

In this chapter, we complete the two-stage F0 modelling pipeline by providing the

‘linguistic-to-motor’ model, which sets up a mapping from linguistic features to

TA motor parameters. While various machine learning techniques are available

to build the model (e.g. stochastic learning, Bayesian methods, etc.), the state-

of-the-art deep learning approach is used. We will start with a more detailed

review of existing F0 modelling approaches and then dive into the details of our

experimental neural network architectures. Besides that, in order to demonstrate

the effectiveness of our TA-based ‘linguistic-motor-acoustic’ F0 modelling systems,

we will compare them with the HMM and DNN baseline systems through both

objective and subjective evaluations. The efficiency of the TA-based F0 modelling

approach is also discussed.
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5.1 Background on F0 Modelling Approaches in

SPSS

5.1.1 HMM-based approach

HMM-based speech synthesis is one of the most renowned approaches in the

field of TTS and it opened the research direction of SPSS (Figure 1.1). In its

conventional formulation, spectral features, F0 and duration are modelled with

a unified HMM framework. These features are first extracted frame-by-frame

from each speech waveform and result in a corresponding feature vector sequence

o =
[
o⊤
1 ,o

⊤
2 , ...,o

⊤
T

]⊤, in which an observed feature vector ot consists of the

static, delta and delta-delta components of spectral and F0 features of the tth frame.

Contextual linguistic features are extracted through text analysis provided by a front

end and aligned to acoustic features as sequence w.

At the training stage, an HMM-based acoustical model is trained based on

the maximum likelihood (ML) criterion with the expectation-maximisation (EM)

algorithm (Dempster et al., 1977) to model the conditional distributions of an

acoustic feature sequence given a linguistic feature sequence as

Λ̂ = argmax
Λ

p(o | w,Λ), (5.1)

where Λ denotes the HMM-based acoustic model. Especially, a multi-space prob-

ability distribution (MSD) modelling method was developed for F0 modelling to

accommodate its voiced/unvoiced nature (Tokuda, Masuko, Miyazaki & Kobayashi,

1999).

A decision tree is then constructed based on a designed question set, which

specifically depends on the extracted linguistic features. The decision tree clusters
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contextually similar state models and enable them to share distribution parameters

in order to avoid data-sparsity.

At the synthesis stage, given a contextual linguistic feature sequence w and

trained HMM model Λ̂, an acoustic feature sequence can be predicted as

ô = argmax
o

p(o | w, Λ̂). (5.2)

yes noyes no

...

yes no

yes no yes no

Acoustic space

Fig. 4. Top-down decision tree-based clustering of HMM states.

lems are effectively addressed. As the approach has been success-
fully used in speech recognition, HMM-based statistical parametric
speech synthesis naturally employs a similar approach to model very
rich contexts.

2.2. Synthesis

The synthesis stage aims to find the most probable acoustic feature
sequence ô given a linguistic feature sequence l and a set of trained
context-dependent HMMs Λ̂. Equation 2 can be approximated as

ô = arg max
o

p(o | l, Λ̂) (6)

= arg max
o

∑

∀q
p(o, q | l, Λ̂) (7)

≈ arg max
o,q

p(o, q | l, Λ̂) (8)

= arg max
o,q

p(o | q, l, Λ̂)P (q | l, Λ̂) (9)

≈ arg max
o

p(o | q̂, Λ̂) (10)

where q̂ = arg maxq P (q | l, Λ̂).2 If each HMM has the left-
to-right topology and single Gaussian state-output distributions, the
solution of Eq. (10) becomes as follows

ô = arg max
o

T∏

t=1

p(ot | q̂t, Λ̂) (11)

= arg max
o

T∏

t=1

N (ot;µq̂t ,Σq̂t) (12)

= arg max
o
N (o;µq̂,Σq̂) (13)

= µq̂ (14)

where µq̂t and Σq̂t are the mean vector and covariance ma-
trix associated with q̂t, and µq̂ = [µ>q̂1 , . . . ,µ

>
q̂T

]> and Σq̂ =
diag[Σq̂1 , . . . ,Σq̂T ] are the mean vector and the covariance matrix
over the entire utterance given q. Figure 5 illustrates statistics of
a series of left-to-right HMMs with single Gaussian state-output
distributions given a state sequence. It can be seen from the figure
that µq̂ becomes a step-wise sequence due to the use of discrete
states and conditional independence assumptions. It is known that
speech reconstructed from µq̂ has audible discontinuity at state
boundaries [55].

2 q̂ is typically determined by a set of state duration models.

Variance Mean

Fig. 5. Illustration of statistics of a series of left-to-right HMMs with
single Gaussian state-output distribution given a state sequence.
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Fig. 6. Illustration of statistics of static and dynamic features of a
series of left-to-right HMMs with single Gaussian state-output dis-
tribution given a state sequence.

To address this problem, Tokuda et al. introduced dynamic fea-
tures [56,57] as constraints and proposed the speech parameter gen-
eration algorithm [58]. Typically an observation vector ot consists
of static acoustic features ct (e.g., cepstrum) and dynamic acoustic
features ∆ct (e.g., delta cepstrum). The dynamic acoustic features
are often computed as a linear combination of its neighbouring static
acoustic features as

ot = [c>t ,∆c
>
t ]>, (15)

∆ct =

L∑

τ=−L
wτct, (16)

where L is a window length and wτ is a window coefficient. In
this case, the relationship between observation vector sequence
o = [o>1 , . . . ,o

>
T ]> and static acoustic feature vector sequence

c = [c>1 , . . . , c
>
T ]> can be expressed in a matrix form as

o = Wc, (17)

where W is a sparse window coefficient matrix that appends dy-
namic acoustic features to c. The speech parameter generation algo-
rithm introduces Eq. (17) as a constraint of Eq. (10) as

ô = arg max
o
N (o;µq̂,Σq̂) s.t. o = Wc. (18)

This is equivalent to maximize w.r.t. c rather than o as

ĉ = arg max
c
N (Wc;µq̂,Σq̂) (19)

= arg max
o

logN (Wc;µq̂,Σq̂). (20)

The partial derivative of the log output probability part in Eq.(20)
w.r.t. c yields

∂ logN (Wc;µq̂,Σq̂)

∂c
∝ ∂

∂c
(Wc− µq̂)>Σ−1

q̂ (Wc− µq̂)

= W>Σ−1
q̂ Wc−W>Σ−1

q̂ µq̂ (21)

Figure 5.1 The piecewise static features output by a series of left-to-right discrete
HMM states (Zen, 2015).

However, this will output piecewise constant parameter trajectories which

change values abruptly at state transitions due to the conditionally independent state

modelling nature of HMM (Figure 5.1). To address this issue, Tokuda et al. (2000)

improved the parameter generation process with dynamic features considered so

that Eq. (5.2) can be approximated as

c∗ = argmax
c

p(Wc | q̂, Λ̂), (5.3)

in which

q̂ = argmax
q

P (q | w, Λ̂), (5.4)

where Wc is equivalent to o with c denoting static acoustic features and W

denoting the transformation matrix that applies dynamic features to c; q denotes the

state sequence and c∗ denotes the output features. With this maximum likelihood
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parameter generation (MLPG) algorithm, the original piecewise trajectories can be

smoothed by considering the learned dynamics (Figure 5.2).
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Fig. 4. Top-down decision tree-based clustering of HMM states.

lems are effectively addressed. As the approach has been success-
fully used in speech recognition, HMM-based statistical parametric
speech synthesis naturally employs a similar approach to model very
rich contexts.

2.2. Synthesis

The synthesis stage aims to find the most probable acoustic feature
sequence ô given a linguistic feature sequence l and a set of trained
context-dependent HMMs Λ̂. Equation 2 can be approximated as

ô = arg max
o

p(o | l, Λ̂) (6)

= arg max
o

∑

∀q
p(o, q | l, Λ̂) (7)

≈ arg max
o,q

p(o, q | l, Λ̂) (8)

= arg max
o,q

p(o | q, l, Λ̂)P (q | l, Λ̂) (9)

≈ arg max
o

p(o | q̂, Λ̂) (10)

where q̂ = arg maxq P (q | l, Λ̂).2 If each HMM has the left-
to-right topology and single Gaussian state-output distributions, the
solution of Eq. (10) becomes as follows

ô = arg max
o

T∏

t=1

p(ot | q̂t, Λ̂) (11)

= arg max
o

T∏

t=1

N (ot;µq̂t ,Σq̂t) (12)

= arg max
o
N (o;µq̂,Σq̂) (13)

= µq̂ (14)

where µq̂t and Σq̂t are the mean vector and covariance ma-
trix associated with q̂t, and µq̂ = [µ>q̂1 , . . . ,µ

>
q̂T

]> and Σq̂ =
diag[Σq̂1 , . . . ,Σq̂T ] are the mean vector and the covariance matrix
over the entire utterance given q. Figure 5 illustrates statistics of
a series of left-to-right HMMs with single Gaussian state-output
distributions given a state sequence. It can be seen from the figure
that µq̂ becomes a step-wise sequence due to the use of discrete
states and conditional independence assumptions. It is known that
speech reconstructed from µq̂ has audible discontinuity at state
boundaries [55].

2 q̂ is typically determined by a set of state duration models.
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Fig. 6. Illustration of statistics of static and dynamic features of a
series of left-to-right HMMs with single Gaussian state-output dis-
tribution given a state sequence.

To address this problem, Tokuda et al. introduced dynamic fea-
tures [56,57] as constraints and proposed the speech parameter gen-
eration algorithm [58]. Typically an observation vector ot consists
of static acoustic features ct (e.g., cepstrum) and dynamic acoustic
features ∆ct (e.g., delta cepstrum). The dynamic acoustic features
are often computed as a linear combination of its neighbouring static
acoustic features as

ot = [c>t ,∆c
>
t ]>, (15)

∆ct =

L∑

τ=−L
wτct, (16)

where L is a window length and wτ is a window coefficient. In
this case, the relationship between observation vector sequence
o = [o>1 , . . . ,o

>
T ]> and static acoustic feature vector sequence

c = [c>1 , . . . , c
>
T ]> can be expressed in a matrix form as

o = Wc, (17)

where W is a sparse window coefficient matrix that appends dy-
namic acoustic features to c. The speech parameter generation algo-
rithm introduces Eq. (17) as a constraint of Eq. (10) as

ô = arg max
o
N (o;µq̂,Σq̂) s.t. o = Wc. (18)

This is equivalent to maximize w.r.t. c rather than o as

ĉ = arg max
c
N (Wc;µq̂,Σq̂) (19)

= arg max
o

logN (Wc;µq̂,Σq̂). (20)

The partial derivative of the log output probability part in Eq.(20)
w.r.t. c yields

∂ logN (Wc;µq̂,Σq̂)

∂c
∝ ∂

∂c
(Wc− µq̂)>Σ−1

q̂ (Wc− µq̂)

= W>Σ−1
q̂ Wc−W>Σ−1

q̂ µq̂ (21)

Figure 5.2 A smoothed trajectory by considering both static and dynamic features
output by a series of left-to-right discrete HMM states (Zen, 2015).

The smoothed acoustic parameters are then sent to a vocoder (e.g. STRAIGHT

by Kawahara et al. (1999), as widely used by researchers1) to reconstruct speech

waveforms.

5.1.2 DNN-based approach

The DNN-based approach has attracted much attention in recent years with gener-

ally improved performance compared to the conventional HMM-based approach

(Ling et al., 2013a; Zen et al., 2013; Zen & Senior, 2014; Qian et al., 2014). As

investigated by Watts, Henter, Merritt, Wu & King (2016), replacing decision trees

and moving from state-level prediction to frame-level prediction are the two major

sources of improvements by DNN.

Generally, the DNN-based approach followed the same workflow as the HMM-

based approach. For DNN-based F0 modelling, acoustic features are first extracted

frame-by-frame from speech resulting in feature vectors, yt = [y1t , y
2
t , y

3
t , y

4
t ]

⊤,

in which each component denotes F0 level, velocity, acceleration and binary
1However, STRAIGHT is slow so that it is actually rarely used as a vocoder in commercial

applications.
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Figure 5.3 DNN-baseline system with frame-level linguistic to acoustic mapping.

voiced/unvoiced flag, respectively. As recently proposed by Yu & Young (2011)

and widely used in other studies, the unvoiced parts of F0 contour are filled with

interpolated values in order to preserve F0 continuity and assure ease of training.

Figure 5.3 shows a diagram of this approach, in which a DNN replaces decision

tree and sets up a frame-level mapping connecting acoustic feature vector yt to

its corresponding contextual linguistic feature vector xt with dimension I . Note

that there are extra linguistic features here compared to the HMM-based approach

(e.g. frame position and amount in phone). Some of the linguistic features are

categorical (e.g. phone identity, word POS, sentence type, etc.) which need to be

120



5.1 Background on F0 Modelling Approaches in SPSS

vectorised with one-hot encoding. Others are numeric which need to be normalised.

The DNN is then trained with the backpropagation algorithm (Rumelhart, Hinton &

Williams, 1986).

At the synthesis stage, the acoustic features are predicted by a trained DNN

frame-by-frame according to given linguistic features which are then set as means of

Gaussian distributions in the HMM scenario. Then the same parameter generation

algorithm used in HMM-based approach is applied with the predicted dynamic

features. The smoothed output acoustic features are then used for waveform

synthesis.

While systems using DNN have reported significantly improved performance,

there are two major drawbacks of the DNN-based approach as summarised by Zen

(2015):

• Slow synthesis. Frame-by-frame matrix multiplication operation is way more

computationally expensive than state-by-state traversing a decision tree to

find acoustic feature statistics during synthesis.

• High parameter generation latency. The DNN-based approach still needs to

use the same MLPG algorithm as in the HMM-based approach which needs

to be performed over the whole utterance (O(T )) in a post-filtering way after

acoustic features are predicted by the DNN.

5.1.3 RNN-based approach

RNN-based approach is the frontier of SPSS at the time of writing this thesis, and it

is still being actively explored. Basically, in this approach a recurrent neural network

(RNN) is used to model the correlations between consecutive frames (which are

ignored in a feedforward neural network). The use of RNN for speech synthesis is

actually not a new invention, as the earliest application can be traced back to Tuerk
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5.1 Background on F0 Modelling Approaches in SPSS

& Robinson (1993) and Karaali, Corrigan, Gerson & Massey (1997). However, due

to the limits in computational power and algorithm at the time, the performance

offered by the RNN was not very prominent. Owing to the development of deep

leaning (LeCun, Bengio & Hinton, 2015) and especially to the emergence of long

short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) based RNN, the

latest applications of LSTM-RNN in speech synthesis are able to offer state-of-the-

art performance.
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h11
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Fig. 12. Dependency graph of a 3-layer DNN.

weights of the DNN are trained using pairs of input and target fea-
tures at each frame by back propagation. A dependency graph5 of
3-layer DNN is shown in Fig. 12. It can be seen from the figure that
there is no dependency between adjacent frames. Lack of the depen-
dency results in discontinuity between adjacent frames. To address
this problem, Zen et al. added dynamic acoustic features to outputs
then used the speech parameter generation algorithm to generate the
final smoothly varying static acoustic features [21]. Like the acoustic
models in the previous section, the DNN has the following charac-
teristics;

• Inconsistent; dynamic features are not used at the training
stage but used at the synthesis stages.6

• No clustering; Mapping from a linguistic feature vector to an
acoustic feature vector is embedded to network weights rather
than a tree.

• Efficient training; can be trained by back propagation and
stochastic gradient descent (SGD). Like the LDM and trajec-
tory HMM, phoneme- or state-level boundaries are provided
by a set of HMMs. These alignments are fixed while training
the DNN.

• High latency; latency isO(T ) as it uses the speech parameter
generation algorithm like HMM-based approach.

• Slow synthesis; synthesizing entire utterance is computation-
ally much more expensive than the HMM. With the HMM,
finding statistics of acoustic features is done by traversing
decision trees, whereas the DNN requires forward propaga-
tion, which includes matrix multiplication operations. Fur-
thermore, this process needs to run at every frame, while it is
required at every state with the HMM.

• Better naturalness; subjective score was better than the nor-
mal HMM [21].

• Weights in a DNN are harder to interpret than decision trees.
However, visualizing the data and weights will be helpful.

The feed-forward DNN-based acoustic model was further ex-
tended to predict full conditional multimodal distribution of acoustic
features rather than predicting only conditional single expected val-
ues using a mixture density output layer [29].
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Fig. 13. Overview of a memory block in a LSTM-RNN.

5.2. RNN

One limitation of the feed-forward DNN-based acoustic modeling is
that the sequential nature of speech is ignored. Although certainly
there are correlations between consecutive frames in speech data,
the DNN-based approach assumes that each frame is independent.
It is desirable to incorporate the sequential nature of speech data to
the acoustic model itself. Recurrent neural networks [42] provide
an elegant way to model speech-like sequential data that embodies
correlations between neighboring frames. It can use all the available
input features to predict output features at each frame [85]. Tuerk
and Robinson [45] and Karaani et al. [46] applied simple RNNs
to speech synthesis, whereas LSTM-RNN [43], which can capture
long-term dependencies, were recently applied to acoustic modeling
for SPSS [38, 44, 86].

The LSTM-RNN architecture is designed to model temporal se-
quences and their long-term dependencies [43]. It has special units
called memory blocks. Figure 13 illustrates a memory block in a
LSTM-RNN. A memory block contains a memory cell with self-
connections storing the temporal state of the network in addition to
3 special multiplicative units called gates to control the flow of infor-
mation. These gates act as a differentiable random access memory
(RAM); accessing memory cell is guarded by “input”, “output”, and
“forget” gates. This architecture allows LSTM-RNNs to keep infor-
mation in their memory cells much longer than the simple RNNs.

Typically, feedback loops at hidden layers of an RNN are unidi-
rectional; the input is processed from left to right, i.e., the flow of the
information is only forward direction. To use both past and future in-
puts for prediction, Schuster proposed the bidirectional RNN archi-
tecture [85]. It has forward and backward feedback loops that flow
the information in both directions. This architecture enables the net-
work to predict outputs using inputs of entire sequence. The bidirec-
tional LSTM-RNNs (BLSTM-RNN) were also proposed [87]. Fan
et al. and Fernandez et al. applied deep bidirectional LSTM-RNNs,
which can access input features at both past and future frames, to
acoustic modeling for SPSS and reported improved naturalness [44,
86]. Zen et al. applied the unidirectional LSTM-RNN (ULSTM-
RNN), which can access input features up to the current frame, to
achieve low-latency speech synthesis [38].

A dependency graph of 3-layer ULSTM-RNN with a recurrent
output layer is shown in Fig. 14. It can be seen from the figure that it

5 Noted that although this representation is similar to graphical models,
a graphical model represents the conditional dependencies while the neural
network representation shows the computational structure [84].

6 Incorporating dynamic feature constraints into the training stage of
DNN makes these stages consistent [35].

Figure 5.4 The memory block in a LSTM-RNN (Zen, 2015).

In LSTM-RNN, the neurons on the hidden layers of DNN are replaced with

memory blocks. A typical memory block (Figure 5.4) is composed of one memory

cell to store the temporal state of the network and three gates (‘input’, ‘output’

and ‘forget’) to control the information flow. The information flow is typically

unidirectional (left to right), but can also be modified to be bidirectional so that

both past and future features can be accessed by each memory block for prediction

(Schuster, 1999; Liwicki, Graves, Bunke & Schmidhuber, 2007). Figure 5.5

displays a schematic comparison of dependency structures between a typical DNN

and a unidirectional RNN. It can be seen clearly that the neurons on each layer of

the RNN are unidirectionally connected.
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DNN RNN

Figure 5.5 Different dependency structures of DNN and RNN (Zen, 2015).

Applications in SPSS show that the quality of synthetic speech (including

F0 contours) can be significantly improved by using either bidirectional LSTM-

RNNs (Fan et al., 2014; Fernandez et al., 2014) or unidirectional LSTM-RNN

(Zen & Sak, 2015). Moreover, some latest studies found that the structure of

memory block can be simplified by disabling some gates, which can significantly

reduce the complexity of neural network without degrading performance of some

signal processing (Chung, Gülçehre, Cho & Bengio, 2014) and speech synthesis

(Wu & King, 2016b) tasks. So far, variations of the RNN-based approach are

still springing up and no implementation can actually be considered as a widely-

recognised standard. In this chapter, we will also experiment with an RNN but with

a simplified architecture according the latest development.

5.2 Introduction

Given the TA model as a valid ‘motor-to-acoustic’ model, in order to produce

meaningful F0 contours, the TA model needs to be driven by a ‘linguistic-to-motor’

mapping. The mapping can be learned by associating the TA motor parameters

to syllable-level contextual linguistic features via various learning methods (e.g.

decision tree, DNN or RNN).
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Figure 5.6 Comparative overview between SPSS and our TA-based approach.

Figure 5.6 is a comparative diagram showing the differences between the de-

cision tree or DNN based SPSS approach and the proposed TA-based approach.

Basically, state-level acoustic modelling with the HMM model and MLPG algorithm

are replaced by syllable-level acoustic modelling with the TA model (TA-based F0

parameter generation). The proposed approach addresses limitations in the SPSS

approach by bringing in four major improvements:

• Syllable-level modelling. As discussed above, the simulation of the dynam-

ical process of articulation provided by the TA model helps to uniformly

model independent F0 samples at the syllable level and thus resolves the
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5.2 Introduction

problem of temporal dependency which is currently coped with by the HMM

model with MLPG algorithm or tuning computationally expensive RNNs.

• Economic representation. In contrast to other SPSS approaches, the TA-based

approach does not rely on static and Gaussian distributed features for acoustic

representation in training and synthesis. Instead, it uses only three articulatory

control parameters as representation of F0 contours at the syllable level. This

reduces hundreds or even thousands of F0 features per utterance to only tens

of parameters.

• Small footprint. Small number of syllable-level linguistic features with

economic acoustic representation lowers model complexity, which in turn

leads to efficient training and synthesis.

• Fast synthesis. As summarised by Zen (2015), the typical DNN-based ap-

proach is slow because matrix multiplication operations need to apply for

every frame to predict acoustic features. With TA as the link to a DNN,

prediction is needed only for each syllable instead of each frame. Thus a

faster synthesis process can be achieved. However, it is not easy to directly

compare TA with the HMM-based approach in terms of computational cost,

which involves a different operation (tree traversing) that needs to be done

for every state. Even so, the TA-based approach wins in terms of number of

predictions.

In short, current SPSS approaches jumps over the physical process of human

speech production and sets up a frame-level direct ‘linguistic-to-acoustic’ map-

ping, whereas the TA-based approach models a relatively complete human speech

production pipeline with a two-staged ‘linguistic-motor-acoustic’ mapping.
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5.3 DNN-based F0 Modelling with TA

5.3 DNN-based F0 Modelling with TA

DNN-based F0 modelling with the TA model can be done by following the workflow

shown in Figure 5.6. As a two-stage ‘linguistic-motor-acoustic’ production process

(Figure 1.6), each stage needs to be optimised separately to achieve an optimal

end-to-end mapping.
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Figure 5.7 DNN-TA system associates linguistic features with TA parameters for
each syllable.

As described above, the TA process is implemented by a dynamical system,

so the Levenberg-Marquardt nonlinear least-squares method (Moré, 1978) can

be applied to find locally optimal TA parameters of each syllable. Therefore,
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5.3 DNN-based F0 Modelling with TA

segmentation needs to apply first to obtain syllabic F0 contours. For each syl-

lable, its optimal TA parameters together with the onset F0 state form a vector

vn = [mn, bn, λn, fn,∆fn,∆∆fn]
⊤. Although it is increasingly popular to do

interpolation on unvoiced parts of F0 in order to obtain overall continuous contours

for universal modelling, and it is also reasonable to do so with the hypothesis that

articulatory movements are continuous even during unvoiced sessions (Xu & Prom-

on, 2014), here in our local optimum searching task unstable TA parameters may be

found due to the undesirable errors introduced by the pitch tracking and interpola-

tion. Therefore, simple heuristics need to be developed to skip initial unvoiced parts

in syllables with voiceless consonants, and optimal TA parameters were obtained

based only on the voiced parts. The resulting TA parameter vector can then be

associated to corresponding syllable-level contextual linguistic feature vector sn

(e.g. syllable identity, syllable position, etc.) to train a DNN (Figure 5.7). Note that

the dimension D of this vector is greatly smaller than I (the input dimension in the

typical DNN-based approach), because all the phone-level and frame-level features

are removed here.

At the synthesis stage, the trained DNN can be used for syllable-wise TA

parameter prediction. If a syllable is voiced and it is not the first one of the

utterance, the offset F0 state of its preceding syllable will be transferred as the onset

state of the current syllable for TA-based F0 generation, so that the predicted onset

state parameters will not be used. Otherwise, all the six predicted parameters will

be used for F0 generation. MLPG-like smoothing process is not necessary, since

the TA model directly generates vocoder-ready F0 parameters with in-syllable and

cross-syllable dynamics.
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5.4 RNN-based F0 Modelling with TA

Fundamentally, both conventional HMM-based and the typical feedforward DNN-

based approaches are state/frame independent. Although there is some positional

information in the contextual linguistic features, their contribution to acoustic

variations at the frame level is small. When not applying the MLPG algorithm,

correlations between adjacent frames are hardly considered. Thus the sequentially

changing nature of acoustic features is largely ignored.

With this in mind, RNN as a sequence-to-sequence mapping method which

is capable of capturing the long-term temporal dependency of sequential data are

considered by some reserachers (Fan et al., 2014; Fernandez et al., 2014; Zen &

Sak, 2015). Systems based on RNN with bidirectional or unidirectional LSTM can

directly output vocoder-ready acoustic parameters for synthesis and the subjective

scores are significantly improved. Particularly, an investigation by Wu & King

(2016b) shows that the complexity of LSTM can be significantly reduced with only

‘forget gate’ left in use without degrading perceptual quality in synthesis. And this

simplified architecture is similar to the gated recurrent unit (GRU) based RNN

(Cho, van Merriënboer, Gülçehre, Bahdanau, Bougares, Schwenk & Bengio, 2014).

While the in-syllable and cross-syllable dynamics of F0 production has been

simulated by the TA model, there remains a question as to whether longer-term

suprasegmental variations (e.g. phrase or utterance level) still need to be handled.

The DNN-TA approach can deal with this to a certain extent since some positional

information has been included in the linguistic features and considered during

training. However, how much the TA-model can benefit from sequence-to-sequence

mapping provided by an RNN is unknown. To this end, we propose a GRU based

RNN architecture to assist the TA model to accommodate the dynamics outside the

temporal scope of TA.
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Figure 5.8 RNN-TA system associates syllable-wise linguistic features with corres-
ponding TA parameters for each utterance.

Figure 5.8 shows a diagram of the proposed RNN-TA approach. As we can see,

the mapping is organised at the utterance level. Namely, the originally separated

syllables of an utterance are now grouped together and embedded in a vector

sequence, i.e. ug =
[
s⊤1 , s

⊤
2 , ..., s

⊤
N

]⊤ for input linguistic features and zg =
[
v⊤
1 ,v

⊤
2 , ...,v

⊤
N

]⊤ for output TA parameters.

At the training stage, the GRU-RNN will first unfold itself to align with each syl-

lable and then be trained with the backpropagation through time (BPTT) algorithm

(Williams & Peng, 1990). At the synthesis stage, when the syllable sequence of an

utterance is given, the trained GRU-RNN will read the entire sequence of linguistic
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feature vectors and predict a sequence of TA parameter vectors. Note that here the

GRU-RNN still needs to do syllable-by-syllable predictions internally, by accepting

the whole sentence as an input and processing the syllables inside it sequentially.

Modifications can be done to some deep learning frameworks to make it do stateful

predictions (i.e. one syllable at a time), with time dependencies still considered.

Therefore, RNN-TA will not be faster than DNN-TA in terms of number of pre-

dictions. Nevertheless, the computational cost of RNN-TA may still be lower than

DNN-TA since the network size of an RNN can be smaller than a DNN but still

achieve similar performance (Zen, 2015). Following the same parameter generation

process as in the DNN-TA approach, an F0 contour of the whole utterance can be

obtained.

5.5 Experiments

5.5.1 Dataset

A Mandarin Chinese spontaneous speech dataset was used in this experiment,

which consisted of 6233 phonetically and prosodically balanced utterances (around

5 hours) as the training set and 60 extra utterances as the test set. Of the 6233

utterances, 701 were questions and the rest were statements. The test set was evenly

divided into statements and questions. The dataset was recorded from a female

speaker at 22.5kHz/16bit. Spectral analysis was performed with a 25-ms Hamming

window shifted every 5 ms. Extracted acoustic features include logarithmic F0 (by

the RAPT algorithm (Talkin, 1995)), 31-order Mel-generalised cepstrum (MGC)

coefficients as well as their delta and delta-delta. Phone durations were obtained

through forced alignment, and the contextual linguistic features include triphone,

phone position in word and in phrase, syllable and its position in word and in

130



5.5 Experiments

phrase, word/phrase length, sentence length, sentence type, phone/syllable stress,

prominence, part-of-speech (POS), etc.

5.5.2 System configurations

To test the proposed TA-based approaches, we built five systems for comparison.

They were trained with different levels of linguistic features as shown in Table 5.1.

The HMM-baseline system is typical as used in other studies with five-state

left-to-right-with-no-skip HMM contextual phone models, and each HMM state

is modelled by a single Gaussian output distribution with diagonal covariance. In

particular, the log F0s with voiced/unvoiced observations were modelled by multi-

space probability distributions (MSD) (Tokuda et al., 1999). The HMM-based

system used all the contextual linguistic features. A total number of 5268 questions

were developed based on these linguistic features for decision tree-based state

clustering. The minimum description length (MDL) criterion factor α was set to 1

(Shinoda & Watanabe, 1997).

The DNN-baseline system is a typical feed-forward neural network with 3

hidden layers and 1500 nodes on each layer. Two extra frame level linguistic

features were added to indicate the frame index in the phone and the total number

of frames of the phone. These linguistic features were encoded as 485-dimensional

input vectors with 57 binary features one-hot encoded and 25 numeric features

normalised to zero-mean unit-variance. The output vectors are 4-dimensional with

F0 level, velocity, acceleration and voicing flag embedded, which are normalised

to [0.01, 0.99] based on their minimum and maximum values extracted from the

dataset. The missing F0 values of unvoiced frames were linearly interpolated and

they were all used for training. The activation functions used in the network were

hyperbolic tangent for the hidden layers and linear for the output layer. The network

was trained with the backpropagation algorithm using mini-batch stochastic gradient
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Table 5.1 F0 modelling systems with their levels and amount of linguistic feature used as well as input and output dimension of each
neural network.

System Linguistic Feature Level Linguistic Feature Amount Input Dimension Output Dimension

HMM-baseline all 80 — —
DNN-baseline all + frame 82 485 4
DNN-TA above syllable 58 287 6
RNN-TA (full) above syllable 58 287 6
RNN-TA (lite) above syllable − positional ones 42 190 6
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descent (SGD) as the optimiser.2 Following Zen et al. (2013), the MLPG algorithm

were used with dynamic features considered to generate smooth acoustic feature

sequences.

Similar to the DNN-baseline, the DNN-TA system is also a three-hidden-layer

feed-forward neural network. The difference is that, by using the TA model with

fewer linguistic features (only those above the syllable level, see Table 5.1), the

burden of the network was significantly alleviated. As a result, the nodes on each

layer were reduced to 1024 in the experiment (further reduction of nodes is also

possible).

The number of input dimensions of the DNN-TA were 287 formed by 35

binary features with one-hot encoding and 23 numeric features with zero-mean

unit-variance normalisation. The outputs were 6-dimensional, including the three

TA motor parameters as well as dynamic onset state of the syllable (onset F0 level,

velocity and acceleration), which were normalised to [0.01, 0.99]. With the help

of the LMFIT Python package (Newville et al., 2014), optimal TA parameters

could be found for each syllable and used in the outputs. Unvoiced parts are

not considered in the experiment except for those missed by the pitch tracker

which were recognised by some heuristics and then linearly interpolated. Based on

previous studies (Prom-on et al., 2009; Xu & Prom-on, 2014), certain ranges were

applied to limit the search range of TA parameters: m ∈ [−100, 100], b ∈ [−30, 30]

and λ ∈ [1, 80] 3. To ensure that global optima are found, hundreds of points

uniformly distributed in the above ranges were set as the initial conditions for the

least-squares algorithm. Figure 5.9 illustrates the performance of the TA model

when local optimal parameters were found (m and b are plotted as underlying

pitch targets defined in TA, λ is not presented). It needs to be mentioned that the

2The deep learning library Keras (Chollet, 2015) with Theano as the backend (Theano Develop-
ment Team, 2016) was used for building all the neural networks in this experiment.

3Some preliminary experiments also found that fixing λ won’t degrade natualness very much.

133



5.5 Experiments

syllabic F0 contours were never length-normalised while searching for the optimal

TA parameters. This is different from the work done by Gao et al. (2014). This

system followed the same training method as used in the DNN-baseline.

Two versions of RNN-TA system were built with respect to the levels of lin-

guistic features they used. One is the full version using the same input linguistic

features as in the DNN-TA system, and the other is the lite version which also used

linguistic features above the syllable level but with all the positional information

removed (Table 5.1). The inputs of the RNN-TA (lite) system are 190-dimensional

converting from 19 binary features and 23 numeric features. Except that, the two

versions of RNN-TA shared the same architecture. There was only 1 forward-

directed hidden layer with 256 GRU units in the RNN. A feedforward output layer

instead of a recurrent one was used in this RNN, which is different from the pioneer

study by Zen & Sak (2015). The motivation is that unlike those frame-level acoustic

features which need a recurrent output layer for further smoothing, the output

TA parameters in our experiment are mostly not static acoustic features and the

modelling is conducted at the syllable level so that the benefit from such extra

process will be minimal. Mini-batch RMSprop (Tieleman & Hinton, 2012) based

backpropagation through time (BPTT) algorithm was used to train both systems.

The basic heuristics that we used to determine these neural network architectures

was not complex. The latest standard as reported in recent pioneering studies (e.g.

Qian et al. (2014) and Zen & Sak (2015)) was followed in the beginning. The

number of neurons on each hidden layer was increased first to see if any performance

gain is possible. If not, the number of hidden layers was then increased. We found

that the three-hidden-layer DNN was already sufficient for the purpose of F0

modelling and any RNN architecture with more than one hidden layer turned out to

be redundant. Also, we would like to emphasise that choosing similar architectures

as used in other studies is more useful to testify the effectiveness of our F0 modelling
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Figure 5.9 Syllabified natural F0 contours and those generated by the TA model with optimal motor parameters (a training set statement
sentence).
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approach. In other words, if we can achieve better evaluation scores than others

with similar or even simpler DNN or RNN architectures, the proposed F0 modelling

approach can be seen as useful. Therefore, not a lot effort was put on exploring

more powerful neural network architectures in this study.

5.6 Evaluations

As mentioned earlier, the test set consisted of 30 statements and 30 questions.

The evaluations were therefore run separately for them to show differences in

performance. Both objective and subjective evaluations were conducted. During

synthesis, durations obtained through forced alignment on the test set were used for

all the systems. The TA-based systems generally followed the voicing decisions

predicted by the HMM-baseline system.

5.6.1 Objective evaluation

For the objective test, F0 discrepancies between natural and synthetic speech were

measured with root mean square errors (RMSE) in Hz as well as correlation scores

for each system in each task.

Table 5.2 Objective scores of each system on different sentence types. Lowest
RMSE scores are in bold.

System
Statement Question

RMSE Corr. RMSE Corr.

HMM-baseline 22.32 0.91 33.67 0.85
DNN-baseline 22.17 0.92 32.19 0.85
DNN-TA 21.10 0.91 33.20 0.86
RNN-TA (full) 23.58 0.90 29.95 0.87
RNN-TA (lite) 23.18 0.89 30.69 0.87
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As shown in Table 5.2, the systems generally performed better in the statement

task than in the question task (lower RMSE and higher correlation). This is reas-

onable due to the fact that the number of question sentences in the training data

is relatively limited, and more importantly F0 contours tend to be more stable in

statements than in questions. For this particular test set, the F0 contours of questions

were very different from those in the training set that the systems were trained on.

Looking closely, in the statement task, the DNN-TA system achieved the lowest

RMSE score followed by the two baseline systems, whereas the scores for the two

RNN-TA systems are relatively higher. However, the situation is reversed in the

question task, where the RNN-TA systems achieved significantly lower RMSE

scores than the rest systems. While the exact reason for this is still unclear, it

is noteworthy that the objective test scores are not highly indicative of system

performance in terms of perceptual quality. It has been found in other studies

(Zen et al., 2013; Yin et al., 2016) that, some systems using deep neural networks

outperformed baseline systems in the subjective test but achieved higher RMSE

scores in the objective test. Similar situations can also be found in the following

subjective tests.

5.6.2 Subjective evaluation

Subjective tests were focused on comparing naturalness of sentence prosody only.

Similar to the objective test, statements and questions were tested separately. Sub-

jects were asked to do A/B preference test based on the synthetic sentence pairs

that they heard. The outcome of the test is computed in terms of percentages

of preference expressed for each system (A, B or ‘no preference’). A one-tailed

binomial test with an expected 50% split was applied to check if one system is

significantly preferred than the other. Note that in order to enable the test, the ‘no

preference’ votes need to be split equally over the two systems to simulate a forced
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choice situation in which people who really have no preference can be expected

to vote for A as often as for B (Eskenazi, Levow, Meng, Parent & Suendermann,

2013). Fifteen sentence pairs for each sentence type were randomly selected from

the test set. Twenty native speakers participated in the evaluation.

Table 5.3 Subjective preference scores (%) of each system on statements. In
each paired test, the system achieved significantly better preference than the other
(p < 0.01) is in bold. N/P stands for ‘no preference’.

RNN-TA

HMM DNN DNN-TA full lite N/P p-value

18.4 30.0 — — — 51.6 2.98× 10−5

15.8 — 32.0 — — 52.2 1.22× 10−5

— 21.4 30.3 — — 48.3 1.71× 10−3

— — 12.1 23.6 — 64.3 4.03× 10−6

— — — 17.6 11.9 70.5 0.38

Table 5.4 Subjective preference scores (%) of each system on questions. In each
paired test, the system achieved significantly better preference than the other (p <
0.01) is in bold. N/P stands for ‘no preference’.

RNN-TA

HMM DNN DNN-TA full lite N/P p-value

22.0 35.2 — — — 42.8 4.5× 10−6

9.5 — 67.0 — — 23.5 6.74× 10−14

— 17.4 56.1 — — 26.5 1.42× 10−12

— — 21.8 32.9 — 45.3 4.32× 10−3

— — — 27.1 21.0 51.9 0.67

The preference scores are shown in Table 5.3 and Table 5.4 with p values

obtained from the binomial tests. It can be seen that the situations are quite similar

between the statement and question tasks. That is, while the DNN-baseline system is

perceptually better than the HMM-baseline, the DNN-TA system outperformed both

of them. In particular, the DNN-TA system almost doubled its preference scores
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in the question task from the statement task. More importantly, both tasks suggest

that the RNN-TA system with full set of syllable-level linguistic features performed

significantly better than the DNN-TA system. This indicates that the GRU-RNN

architecture did help the TA model to simulate some long-term suprasegmental

dynamics of F0 production. Another interesting finding is that the preference

scores of the RNN-TA (lite) system for the two tasks are not significantly different

from the RNN-TA (full) system. This indicates that the GRU-RNN is capable

of capturing long-term dependencies between syllables without relying on any

positional information in the linguistic features. Although this actually reflects

the sequence-to-sequence mapping nature of RNN, to our knowledge, so far full

linguistic features are still used in other RNN-based TTS studies. The reason might

be that those studies are still focusing on frame-level modelling and the coverage of

the RNN is therefore limited to phone level only (Zen & Sak, 2015), which does not

eliminate the need for positional information in the linguistic features. In contrast,

the combination of RNN and TA enables an easy utterance-level modelling.
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Figure 5.10 Syllabified natural F0 contours together with those generated by the five systems in the experiment (a test set question
sentence).
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As an illustration, a comparison between F0 contours generated by these systems

is shown in Figure 5.10. The sentence is a question selected from the test set. It

can be seen that the F0 contours generated by the TA-based systems generally

show much closer resemblance to the natural ones than those generated by the

baseline systems. Also the TA-based trajectories in each syllable are stable and

smooth, which are different from those generated by the baseline systems where

unreasonable perturbations are often seen due to their independent state/frame

modelling nature.

More importantly, Figure 5.10 also reveals an interesting issue. As we can

see that, near the end of the sentence, all the systems predicted much higher than

natural F0 values for the words ‘过’ and ‘盗’. Looking closely, we should notice

that they are preceded (though not immediately) by the question word ‘谁’. From

the functional perceptive, question words are usually ‘focused’ (Cooper, Eady &

Mueller, 1985; Xu, 1999; Pell, 2001). And there are studies showing that prosodic

focus is realised not only by increasing F0, duration, intensity and upper spectral

energy on the focused component itself, but also by compressing the pitch range

and intensity of the post-focus components (Cooper et al., 1985; Xu, 1999; Pell,

2001; Xu, 2005; Xu & Xu, 2005). This post-focus effect is called post-focus

compression (PFC) (Xu, 2011). In the example displayed here, the question word

‘谁’ (or possibly together with the following negative adverb ‘没’) may be focused.

Therefore, a possible account can be made here that during natural production

‘过’ and ‘盗’ were affected by PFC so that their pitch levels were lowered and

pitch ranges were compressed (as shown in the figure). However, the absence

of functional labelling of ‘focus’ in the dataset made no system predict correct

values for these post-focus components. This finding suggests that functional (or

pragmatic) labelling is really in need for better TTS.
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5.7 Discussion

The comparison of the five F0 generation systems has shown that the TA-based

systems achieved significantly better performance than the baseline systems. This

provides support for our hypothesis that data-driven computer speech synthesis can

be simulated as a two-stage ‘linguistic-motor-acoustic’ process. It also demonstrates

that F0 modelling can be done entirely at the syllable level. More notably, the

TA-based systems were found to be much more efficient than the baseline systems.

Given its significance, this enhanced efficiency deserves more in-depth discussion.

The efficiency enhancement of the TA model is twofold. The first is the substan-

tial reduction of training data size. In a typical DNN-based approach, linguistic and

acoustic features need to be collected for every frame, resulting in a massive training

data set. The TA-based approach, in contrast, requires only a subset of the linguistic

features, and only three TA parameters for each syllable. The training dataset used

in this experiment for the DNN-baseline system was 10.4 GB (3, 531, 502 entries),

but the one for the DNN-TA system was merely 221 MB (79, 691 entries). Smaller

training data naturally leads to a faster loop for each training epoch.

Table 5.5 Model complexities of the systems for F0 modelling. (M stands for
million.)

System Parameter Amount

HMM-baseline 0.34M
DNN-baseline 5.23M
DNN-TA 2.40M
RNN-TA (full) 0.42M
RNN-TA (lite) 0.35M

The second efficiency enhancement is the reduction of model complexity. As

can be seen in Table 5.5, within the neural network family the typical frame-based

DNN-baseline system is powered by a fairly large network and therefore is the most
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computationally expensive during both training and synthesis. The syllable-based

DNN-TA system, on the other hand, is capable of producing better results with only

half of the parameters. The two RNN-TA systems are the smallest in network size,

comparable even to the HMM-baseline. Note, however, because only F0 modelling

is considered here, the number of parameters of the HMM-baseline system is very

small, with only 9 F0-related parameters in each decision tree node (i.e. means,

variances and MSD weights).

Lastly, as may be noticed from the evaluations, the further improvement intro-

duced by the RNN architecture relative to the DNN-TA system is not as sizeable

as in other studies (Fan et al., 2014; Zen & Sak, 2015). A possible reason is that

the RNN model is used in those studies to capture some in-syllable dynamics of F0

production, but that is already largely simulated by the TA model, as explained in

Chapter 3. What the RNN has captured in this study is only those contextual vari-

ations that are not due to articulatory dynamics. The nature of these inter-syllable

non-articulatory variations can be further examined in future research.

5.8 Summary

In this chapter, we attempted to tackle the issues in speech synthesis from an articu-

latory perspective and proposed a ‘linguistic-motor-acoustic’ two-stage synthesis

approach. The model is the target approximation (TA) model, which serves as the

link between linguistic features and surface acoustics. With TA, syllable is the

basic prosody modelling unit instead of frame, which greatly increases processing

efficiency and addresses the notorious frame-by-frame independence issue within

the current typical DNN-based synthesis frameworks. The TA model is first driven

by a DNN to test its efficacy. A GRU-RNN architecture is then experimentally

adopted in order to capture the dynamics of F0 production beyond the syllable
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level. The number of linguistic features can be significantly reduced with the

proposed approach. Thanks to the sequence-to-sequence mapping power of RNN,

the evaluation results were further improved.

144



Chapter 6

Conclusions

6.1 Summary

One of the major issues in current statistical parametric speech synthesis (SPSS)

approaches is that they typically aim at state/frame-level acoustic modelling so that

the dependencies between neighbouring acoustic frames, which are so important

in speech, are largely ignored. Although the MLPG algorithm is able to generate

smooth trajectories by considering dynamic features, these features themselves

could be inconsistently predicted. Besides that, the SPSS approaches generally set

up a direct mapping from linguistic to acoustic features and are purely statistical

data-driven without exploiting any mechanisms found in speech production research.

Therefore, they are not flawless in terms of biological plausibility.

To address these issues, this thesis proposed and tested a more human-like F0

modelling paradigm by integrating dynamic mechanisms of human speech produc-

tion as a core component of F0 generation. The proposed F0 modelling paradigm

operates on the syllable level with an articulatory model, target approximation

(TA), which largely simulates the dynamic process of F0 production. The proposed
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paradigm is two-staged: the linguistic-to-motor stage links linguistic features to TA

motor parameters, and the motor-to-acoustic stage is the TA model.

On the motor-to-acoustic stage, a simulation experiment was conducted, which

for the first time successfully replicated the pitch-level online auditory feedback

compensation behaviour of human with systematic TA-based pitch control. This

experiment supports the idea that human speech movement can be considered as a

dynamic process of target approximation and the TA model is a valid F0 generation

model that can be used for speech synthesis. Moreover, this study also opens the

possibility of further research on pitch-related neural control mechanisms in the

brain through TA-based computational modelling.

On the linguistic-to-motor stage, the extracted TA parameters from a spontan-

eous speech dataset were associated to syllable-level linguistic features by training

deep or recurrent neural networks (DNN/RNN), which completed the proposed

F0 modelling pipeline. We trained five systems on a Mandarin Chinese dataset

consisting of both statements and questions. The five systems are: HMM-based

baseline, DNN-based baseline, DNN-TA, RNN-TA and RNN-TA without positional

features. The TA-based systems generally outperformed the baseline systems in

both objective and subjective evaluations, and more importantly we showed that the

RNN-TA system was able to abandon all the positional features without degrading

synthesis quality. In general, the TA-based F0 modelling approach used fewer

linguistic features than existing SPSS approaches, which led to less training data

and lower model complexity and in turn led to shortened training time and a faster

synthesis process.

As discussed in the thesis, the TA model is quantitatively implemented as a

dynamical system which makes it capable of generating trajectories that are close

to the reality. Once the TA parameters are learned, the acoustic contexts are largely

preserved, which is the major benefit of using the TA model. Compared with other
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studies addressing the same frame-by-frame independence issue of SPSS, there are

at least two advantages of the TA-based approach. The first is that the procedure of

TA-based modelling is simple, which only requires an extra step of extracting TA

parameters from the dataset. In contrast, the studies relying on DCT transformation

to capture inter-frame dependencies not only need to extract multi-level DCT

parameters in advance, but also require training multiple models to hierarchically

predict the frame-level residuals and the high-level DCT parameters (Yin et al.,

2014, 2016). The second is that the TA-based modelling is computationally less

expensive since the model is trained at the syllable level with much less data than

at the frame level. In contrast, the studies that apply the minimum generation error

(MGE) training criterion (Fan et al., 2015; Wu & King, 2015, 2016a) are primarily

still based on frame-level modelling, the only difference is that they minimise

utterance-level vocoder parameter trajectory errors rather than frame-level acoustic

feature errors. However, the utterance-level trajectories are actually the output of

the MLPG algorithm, which means that the algorithm needs to be applied iteratively

during training.

Our use of the GRU-RNN is still experimental. However, the results are very

informative which suggest that with this architecture the positional information

included in the input linguistic features is somehow redundant. This finding implies

that long-term variations mostly come from functional contrasts, which are the truly

important properties that should be controlled by input features.

6.2 Limitations and Future Directions

Syllable segmentation. The accuracy of syllable segmentation affects synthesis

quality of the TA-based F0 modelling approach proposed in this thesis. While the

syllables were identified automatically with manual corrections in the experiments,
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the phone boundaries were determined simply by forced alignment. Those mis-

aligned boundaries directly lead to bad individual local fitting results during TA

parameter extraction, and may also be harmful to the final learning outcome if such

errors accumulate. Besides that, some very short syllables were inevitably wasted.

It can be easily imagined that when a very short syllable is encountered (e.g. fewer

than 5 samples given by the pitch tracker), finding reliable TA parameters for it

would be rather difficult. As a consequence, these short syllables were usually

dropped in the experiments. Although abandoning these short syllables is usually

not that harmful to the final learning outcome, frame-level modelling approach may

escape from this situation.

Chain effect. As introduced in Section 3.3, the TA model transfers the offset

state of the preceding syllable to the current one. As a consequence, if the preceding

syllable is badly predicted during synthesis, its improper offset will be transferred

to the current syllable and deviate the current syllable to some extent. Similarly,

for syllables starting with voiceless consonant, the predicted onset states play a

critical role in shaping their F0 contours during synthesis. A badly predicted onset

state will lead to a less satisfactory F0 contour of the syllable. And it is not easy to

recover from such errors.

Functional labelling. As we have discussed, functional labelling is critical to

speech synthesis. However, only a very limited number of functional labels were

used in this thesis. While those non-functional (e.g. contextual) labels consumed

a large proportion of computation power, their contribution can actually be taken

over by the TA model and RNN.

There are two possible directions of future work. The first is to extend the use

of TA to spectrum modelling. Given the success of the pilot study in synthesising

basic CV utterances (Prom-on et al., 2013), it is reasonable to anticipate the efficacy

of TA in directly reproducing some of the spectral trajectories. The second is to
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explore ways to improve current frontends with more focus on natural language

understanding in order to make them capable of providing more functional labels

for TTS. Along this goal, training data also need to be improved. Instead of

only including isolated statements and questions, more engaged and sophisticated

discourse utterances are needed.
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Appendix A

Python Implementation of the
Target Approximation Model

Requirements:
Python 2.7.x, 3.4.x or higher (http://www.python.org)
numpy 1.9.x or higher (http://www.numpy.org)
matplotlib 1.4.x or higher (http://matplotlib.org)

1 #==================================
2 # qta.py
3 # by Hao Liu <h.liu.12@ucl.ac.uk>
4 # University College London
5 #==================================
6

7

8 import math
9 import numpy as np

10

11

12 class QTA(object):
13 '''
14 The quantitative implementation of
15 the Target Approximation (qTA) model
16 for dynamic F0 generation
17 '''
18 def __init__(self, target, onset):
19 ''' Initialize a qTA instance '''
20 if not isinstance(target, tuple) or len(target) != 3:
21 raise TypeError('"target" should be a 3-item tuple')
22 if not isinstance(onset, tuple) or len(onset) != 3:
23 raise TypeError('"onset" should be a 3-item tuple')
24

25 self.m = target[0]
26 self.b = target[1]
27 self.r = target[2]
28

29 self.onset_f0 = onset[0]
30 self.onset_vel = onset[1]
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31 self.onset_acc = onset[2]
32

33 def generate(self, t):
34 '''
35 Generate f0 at time t or along the given time series
36 (t should be a relative time or time series
37 to the syllable onset)
38 '''
39 c1 = self.onset_f0 - self.b
40 c2 = self.onset_vel + c1*self.r - self.m
41 c3 = 0.5*(self.onset_acc + 2*c2*self.r - c1*self.r*self.r)
42

43 if isinstance(t, float):
44 f0 = self.m*t + self.b +
45 (c1 + c2*t + c3*t*t) * math.exp(-self.r*t)
46 elif isinstance(t, np.ndarray):
47 f0 = self.m*t + self.b +
48 (c1 + c2*t + c3*t*t) * np.exp(-self.r*t)
49 else:
50 raise TypeError('The argument t should be' \
51 'either a float or a numpy.ndarray.')
52 return f0

1 #==================================
2 # ta_process.py
3 # by Hao Liu <h.liu.12@ucl.ac.uk>
4 # University College London
5 #==================================
6

7

8 from qta import QTA
9 import numpy as np

10 from matplotlib.mlab import frange
11

12

13 class TAProcess(object):
14 '''
15 The process of target approximation, which may form a full
16 syllable of part of a syllable
17

18 a. produce an F0 trajectory with a properly initialized QTA model
19 b. handle other important attributes for the TA process
20 '''
21

22 def __init__(self, t_series, target, onset=(0., 0., 0.)):
23 ''' Initialize a qTA instance '''
24 if not isinstance(t_series, np.ndarray):
25 raise TypeError('"t_series" should be a 1D numpy array')
26 if not isinstance(target, tuple) or len(target) != 3:
27 raise TypeError('"target" should be a 3-item tuple')
28 if not isinstance(onset, tuple) or len(onset) != 3:
29 raise TypeError('"onset" should be a 3-item tuple')
30

170



31 self.t_series = t_series
32 self._duration = t_series[-1] - t_series[0]
33

34 # QTA actually uses onset b value,
35 # but the target defined for a TA process is the offset.
36 # So convert offset b to onset b!
37 self._model = QTA((target[0],
38 target[1]-self._duration*target[0],
39 target[2]), onset)
40

41 self.onset = onset
42 self.f0 = None
43 self.offset = None
44

45 def produce(self):
46 ''' Produce a F0 series of the defined TA process '''
47 self.f0 = self._model.generate(self.t_series)
48 return self.f0
49

50 def _get_offset_f0(self):
51 ''' Get offset f0 (semitone) '''
52 return self.f0[-1]
53

54 def _get_offset_vel(self):
55 ''' Get offset f0 velocity (semitone/sec) '''
56 return (self.f0[-1] - self.f0[-2]) /
57 (self.t_series[-1] - self.t_series[-2])
58

59 def _get_offset_acc(self):
60 ''' Get offset f0 acceleration (semitone/sec^2) '''
61 dur1 = self.t_series[-1] - self.t_series[-2]
62 dur2 = self.t_series[-2] - self.t_series[-3]
63 vel1 = (self.f0[-1] - self.f0[-2]) / dur1
64 vel2 = (self.f0[-2] - self.f0[-3]) / dur2
65 return (vel1 - vel2) / dur1
66

67 def get_offset(self):
68 ''' Get the offset state '''
69 if self.f0 is None:
70 raise ValueError('Empty F0.'\
71 'Run TAProcess.produce() first.')
72 elif len(self.f0) >= 3:
73 self.offset = (self._get_offset_f0(),
74 self._get_offset_vel(),
75 self._get_offset_acc())
76 else:
77 # Too short production! Use offset F0 level,
78 # onset vel & acc as an estimate of
79 # the offset state
80 self.offset = (self.f0[-1],
81 self.onset[1], self.onset[2])
82 return self.offset
83

84
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85 def multi_TAProcess(targets, durs, t_step,
86 initial_onset=(0., 0., 0.)):
87 ''' Dynamically stringing multiple TA processes '''
88 if len(targets) != len(durs):
89 raise ValueError('Dimension mismatch:'\
90 'len(targets) != len(durs)')
91

92 f0 = None
93 onset = None
94 for i in range(len(targets)):
95 if i == 0:
96 tap = TAProcess(frange(0., durs[i], t_step, closed=1),
97 targets[i], initial_onset)
98 f0 = tap.produce()
99 onset = tap.get_offset()

100 else:
101 tap = TAProcess(frange(t_step, durs[i], t_step,
102 closed=1), targets[i], onset)
103 f0 = np.concatenate((f0, tap.produce()))
104 onset = tap.get_offset()
105 return f0
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