7 research outputs found

    Optimally Sound Sigma Protocols Under DCRA

    Get PDF
    Given a well-chosen additively homomorphic cryptosystem and a Σ\Sigma protocol with a linear answer, Damgård, Fazio, and Nicolosi proposed a non-interactive designated-verifier zero knowledge argument in the registered public key model that is sound under non-standard complexity-leveraging assumptions. In 2015, Chaidos and Groth showed how to achieve the weaker yet reasonable culpable soundness notion under standard assumptions but only if the plaintext space order is prime. It makes use of Σ\Sigma protocols that satisfy what we call the \emph{optimal culpable soundness}. Unfortunately, most of the known additively homomorphic cryptosystems (like the Paillier Elgamal cryptosystem that is secure under the standard Decisional Composite Residuosity Assumption) have composite-order plaintext space. We construct optimally culpable sound Σ\Sigma protocols and thus culpably sound non-interactive designated-verifier zero knowledge protocols for NP under standard assumptions given that the least prime divisor of the plaintext space order is large

    Efficient Designated-Verifier Non-Interactive Zero-Knowledge Proofs of Knowledge

    Get PDF
    We propose a framework for constructing efficient designated-verifier non-interactive zero-knowledge proofs (DVNIZK) for a wide class of algebraic languages over abelian groups, under standard assumptions. The proofs obtained via our framework are proofs of knowledge, enjoy statistical, and unbounded soundness (the soundness holds even when the prover receives arbitrary feedbacks on previous proofs). Previously, no efficient DVNIZK system satisfying any of those three properties was known. Our framework allows proving arbitrary relations between cryptographic primitives such as Pedersen commitments, ElGamal encryptions, or Paillier encryptions, in an efficient way. For the latter, we further exhibit the first non-interactive zero-knowledge proof system in the standard model that is more efficient than proofs obtained via the Fiat-Shamir transform, with still-meaningful security guarantees and under standard assumptions. Our framework has numerous applications, in particular for the design of efficient privacy-preserving non-interactive authentication

    Rational Modular Encoding in the DCR Setting: Non-Interactive Range Proofs and Paillier-Based Naor-Yung in the Standard Model

    Get PDF
    International audienceRange proofs allow a sender to convince a verifier that committed integers belong to an interval without revealing anything else. So far, all known non-interactive range proofs in the standard model rely on groups endowed with a bilinear map. Moreover, they either require the group order to be larger than the range of any proven statement or they suffer from a wasteful rate. Recently (Eurocrypt'21), Couteau et al. introduced a new approach to efficiently prove range membership by encoding integers as a modular ratio between small integers. We show that their technique can be transposed in the standard model under the Composite Residuosity (DCR) assumption. Interestingly, with this modification, the size of ranges is not a priori restricted by the common reference string. It also gives a constant ratio between the size of ranges and proofs. Moreover, we show that their technique of encoding messages as bounded rationals provides a secure standard model instantiation of the Naor-Yung CCA2 encryption paradigm under the DCR assumption

    One-Shot Fiat-Shamir-based NIZK Arguments of Composite Residuosity and Logarithmic-Size Ring Signatures in the Standard Model

    Get PDF
    The standard model security of the Fiat-Shamir transform has been an active research area for many years. In breakthrough results, Canetti et al. (STOC\u2719) and Peikert-Shiehian (Crypto\u2719) showed that, under the Learning-With-Errors (LWE) assumption, it provides soundness by applying correlation-intractable (CI) hash functions to so-called trapdoor Σ\Sigma-protocols. In order to be compatible with CI hash functions based on standard LWE assumptions with polynomial approximation factors, all known such protocols have been obtained via parallel repetitions of a basic protocol with binary challenges. In this paper, we consider languages related to Paillier\u27s composite residuosity assumption (DCR) for which we give the first trapdoor Σ\Sigma-protocols providing soundness in one shot, via exponentially large challenge spaces. This improvement is analogous to the one enabled by Schnorr over the original Fiat-Shamir protocol in the random oracle model. Using the correlation-intractable hash function paradigm, we then obtain simulation-sound NIZK arguments showing that an element of ZN2\mathbb{Z}_{N^2}^\ast is a composite residue, which opens the door to space-efficient applications in the standard model. As a concrete example, we build logarithmic-size ring signatures (assuming a common reference string) with the shortest signature length among schemes based on standard assumptions in the standard model. We prove security under the DCR and LWE assumptions, while keeping the signature size comparable with that of random-oracle-based schemes

    Exploring Constructions of Compact NIZKs from Various Assumptions

    Get PDF
    A non-interactive zero-knowledge (NIZK) protocol allows a prover to non-interactively convince a verifier of the truth of the statement without leaking any other information. In this study, we explore shorter NIZK proofs for all NP languages. Our primary interest is NIZK proofs from falsifiable pairing/pairing-free group-based assumptions. Thus far, NIZKs in the common reference string model (CRS-NIZKs) for NP based on falsifiable pairing-based assumptions all require a proof size at least as large as O(Ck)O(|C| k), where CC is a circuit computing the NP relation and kk is the security parameter. This holds true even for the weaker designated-verifier NIZKs (DV-NIZKs). Notably, constructing a (CRS, DV)-NIZK with proof size achieving an additive-overhead O(C)+poly(k)O(|C|) + poly(k), rather than a multiplicative-overhead Cpoly(k)|C| \cdot poly(k), based on any falsifiable pairing-based assumptions is an open problem. In this work, we present various techniques for constructing NIZKs with compact proofs, i.e., proofs smaller than O(C)+poly(k)O(|C|) + poly(k), and make progress regarding the above situation. Our result is summarized below. - We construct CRS-NIZK for all NP with proof size C+poly(k)|C| + poly(k) from a (non-static) falsifiable Diffie-Hellman (DH) type assumption over pairing groups. This is the first CRS-NIZK to achieve a compact proof without relying on either lattice-based assumptions or non-falsifiable assumptions. Moreover, a variant of our CRS-NIZK satisfies universal composability (UC) in the erasure-free adaptive setting. Although it is limited to NP relations in NC1, the proof size is wpoly(k)|w| \cdot poly(k) where ww is the witness, and in particular, it matches the state-of-the-art UC-NIZK proposed by Cohen, shelat, and Wichs (EPRINT\u2718) based on lattices. - We construct (multi-theorem) DV-NIZKs for NP with proof size C+poly(k)|C|+poly(k) from the computational DH assumption over pairing-free groups. This is the first DV-NIZK that achieves a compact proof from a standard DH type assumption. Moreover, if we further assume the NP relation to be computable in NC1 and assume hardness of a (non-static) falsifiable DH type assumption over pairing-free groups, the proof size can be made as small as w+poly(k)|w| + poly(k). Another related but independent issue is that all (CRS, DV)-NIZKs require the running time of the prover to be at least Cpoly(k)|C|\cdot poly(k). Considering that there exists NIZKs with efficient verifiers whose running time is strictly smaller than C|C|, it is an interesting problem whether we can construct prover-efficient NIZKs. To this end, we construct prover-efficient CRS-NIZKs for NP with compact proof through a generic construction using laconic functional evaluation schemes (Quach, Wee, and Wichs (FOCS\u2718)). This is the first NIZK in any model where the running time of the prover is strictly smaller than the time it takes to compute the circuit CC computing the NP relation. Finally, perhaps of an independent interest, we formalize the notion of homomorphic equivocal commitments, which we use as building blocks to obtain the first result, and show how to construct them from pairing-based assumptions

    Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

    Get PDF
    In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu (CRYPTO\u2718) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group) require the proof size to have a multiplicative-overhead Cpoly(κ)|C| \cdot \mathsf{poly}(\kappa), where C|C| is the size of the circuit that computes the NP\mathbf{NP} relation. In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions. Our results are summarized as follows: 1. DV-NIZKs for NP\mathbf{NP} from the CDH assumption over pairing-free groups. This is the first construction of such NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO\u2718). 2. DP-NIZKs for NP\mathbf{NP} with short proof size from a DH-type assumption over pairing groups. Here, the proof size has an additive-overhead C+poly(κ)|C|+\mathsf{poly}(\kappa) rather then an multiplicative-overhead Cpoly(κ)|C| \cdot \mathsf{poly}(\kappa). This is the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption, fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. 3. PP-NIZK for NP\mathbf{NP} with short proof size from the DDH assumption over pairing-free groups. This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to the above DP-NIZK, the proof size is C+poly(κ)|C|+\mathsf{poly}(\kappa). This too serves as a solution to the open problem posed by Kim and Wu (CRYPTO\u2718). Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent interest

    Mejora de la seguridad y la privacidad de los sistemas biométricos

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Tecnología Electrónica y de las Comunicaciones. Fecha de lectura: 02-06-2016This Thesis was printed with the financial support from EPS-UAM and the Biometric Recognition Group-ATVS
    corecore