165 research outputs found

    Application of Laguerre based adaptive predictive control to Shape Memory Alloy (SMA) actuators

    Get PDF
    This paper discusses the use of an existing adaptive predictive controller to control some Shape Memory Alloy (SMA) linear actuators. The model consists in a truncated linear combination of Laguerre filters identified online. The controller stability is studied in details. It is proven that the tracking error is asymptotically stable under some conditions on the modelling error. Moreover, the tracking error converge toward zero for step references, even if the identified model is inaccurate. Experimentalcresults obtained on two different kind of actuator validate the proposed control. They also show that it is robust with regard to input constraints.ANR MAFESM

    Optimality conditions for truncated Kautz series

    Full text link

    Parametric Complexity Reduction of Discrete-Time Linear Systems Having a Slow Initial Onset or Delay

    Get PDF
    This paper is concerned with an optimal expansion of linear discrete time systems on Meixner functions. Many orthogonal functions have been widely used to reduce the model parameter number such as Laguerre functions, Kautz functions and orthogonal basis functions. However, when the system has a slow initial onset or delay, Meixner functions, which have a slow start, are more suitable in terms of providing a more accurate approximation to the system. The optimal approximation of Meixner model is ensured once the pole characterizing the Meixner functions is set to its optimal value. In this paper, a new recursive representation of Meixner model is proposed. Further we propose, from input/output measurements, an iterative pole optimization algorithm of the Meixner pole functions. The method consists in applying the Newton-Raphson’s technique in which their elements are expressed analytically by using the derivative of the Meixner functions. Simulation results show the effectiveness of the proposed optimal modeling method

    A finite dimensional approximation for pricing moving average options

    Get PDF
    We propose a method for pricing American options whose pay-off depends on the moving average of the underlying asset price. The method uses a finite dimensional approximation of the infinite-dimensional dynamics of the moving average process based on a truncated Laguerre series expansion. The resulting problem is a finite-dimensional optimal stopping problem, which we propose to solve with a least squares Monte Carlo approach. We analyze the theoretical convergence rate of our method and present numerical results in the Black-Scholes framework

    Control-Relevant System Identification using Nonlinear Volterra and Volterra-Laguerre Models

    Get PDF
    One of the key impediments to the wide-spread use of nonlinear control in industry is the availability of suitable nonlinear models. Empirical models, which are obtained from only the process input-output data, present a convenient alternative to the more involved fundamental models. An important advantage of the empirical models is that their structure can be chosen so as to facilitate the controller design problem. Many of the widely used empirical model structures are linear, and in some cases this basic model formulation may not be able to adequately capture the nonlinear process dynamics. One of the commonly used nonlinear dynamic empirical model structures is the Volterra model, and this work develops a systematic approach to the identification of third-order Volterra and Volterra-Laguerre models from process input-output data.First, plant-friendly input sequences are designed that exploit the Volterra model structure and use the prediction error variance (PEV) expression as a metric of model fidelity. Second, explicit estimator equations are derived for the linear, nonlinear diagonal, and higher-order sub-diagonal kernels using the tailored input sequences. Improvements in the sequence design are also presented which lead to a significant reduction in the amount of data required for identification. Finally, the third-order off-diagonal kernels are estimated using a cross-correlation approach. As an application of this technique, an isothermal polymerization reactor case study is considered.In order to overcome the noise sensitivity and highly parameterized nature of Volterra models, they are projected onto an orthonormal Laguerre basis. Two important variables that need to be selected for the projection are the Laguerre pole and the number of Laguerre filters. The Akaike Information Criterion (AIC) is used as a criterion to determine projected model quality. AIC includes contributions from both model size and model quality, with the latter characterized by the sum-squared error between the Volterra and the Volterra-Laguerre model outputs. Reduced Volterra-Laguerre models were also identified, and the control-relevance of identified Volterra-Laguerre models was evaluated in closed-loop using the model predictive control framework. Thus, this work presents a complete treatment of the problem of identifying nonlinear control-relevant Volterra and Volterra-Laguerre models from input-output data
    • 

    corecore