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Abstract. This paper is concerned with an optimal expansion of linear discrete time
systems on Meixner functions. Many orthogonal functions have been widely used to
reduce the model parameter number such as Laguerre functions, Kautz functions
and orthogonal basis functions. However, when the system has a slow initial onset
or delay, Meixner functions, which have a slow start, are more suitable in terms of
providing a more accurate approximation to the system. The optimal approximation
of Meixner model is ensured once the pole characterizing the Meixner functions is
set to its optimal value. In this paper, a new recursive representation of Meixner
model is proposed. Further we propose, from input/output measurements, an itera-
tive pole optimization algorithm of the Meixner pole functions. The method consists
in applying the Newton-Raphson’s technique in which their elements are expressed
analytically by using the derivative of the Meixner functions. Simulation results show
the effectiveness of the proposed optimal modeling method.

Keywords: parametric complexity reduction; Meixner functions; pole optimization; recur-

sive representation.
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1 Introduction

Over the last decades a significant interest is given in developing models for
estimation of Single Input Single Output (SISO) linear systems using the or-
thonormal basis functions. This interest is motivated essentially by the dras-
tic reduction of the model parameter number. Among these functions, we
note Laguerre functions [6, 11, 13, 14, 15, 16, 17, 19, 22, 23, 25, 27], Meixner func-
tions [2, 4, 8, 20], Kautz functions [10, 26, 28] and generalized orthogonal bases
functions [12]. Both Laguerre functions and Meixner functions are limited to
the favorite case when the functions have only one real pole. The Meixner func-
tions are an extension of Laguerre functions and are suitable when the system
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have a slow start and an exponential decay towards infinity [4, 8].

Some authors are interested for the use of the Meixner-like functions in
estimation of Volterra kernels for nonlinear systems [2]. The Meixner functions
depend on two parameters, the first is called the order of generalization that
determines how fast the functions start and the second is the Meixner pole that
appears in the error criterion in a nonlinear way and is usually hard to find.
We notice that the problem of optimum choice of the free parameter of some
orthogonal functions (Laguerre, Kautz) for the conventional system modeling
has already been reported by many researchers [6,7,11,15,18,24]. An optimum
choice of Meixner pole has been addressed in [4, 9, 20, 24] using the impulse
response.

In this paper, we propose a new method for obtaining models of discrete
time systems based on Meixner functions. Mathematical background is given
starting from the definition of the generalized Laguerre functions. Based on
these functions Kulikovskikh et al. [20] have developed an appropriate Meixner
functions which enable simpler and easier filter network realization. These
filters are applied in finding the best approximation of system behavior in the
sense of the Mean Square Error (MSE).

First, using Meixner filters, recursive representation is formed, capable to
imitate transfer functions of real systems. Designed method for system mod-
eling is based on setting optimal value for the Meixner functions in order to
reduce the parameter number of the approximate Meixner model.

The optimal identification of the Meixner pole is achieved using the system
input/output data and by exploiting the minimization of the MSE. For this
criterion, the Meixner pole is given via the Newton-Raphson method in which
we expressed the gradient and the Hessian analytically by using the derivative
of the Meixner functions. This optimization problem ensures a parametric
reduction which can be significant when the considered system is linear with a
dominant first-order dynamic.

The main contributions of this article are mainly twofold. (1) We propose a
new recursive representation for the input/output measurements of the linear
discrete-time systems with a reduced parameter complexity model using the
Meixner functions. (2) We propose an iterative algorithm via Newton-Raphson
technique to optimize the Meixner pole based on analytical expressions of the
gradient and the Hessian of the MSE criterion.

This article is organized as follows: in Section 2, we present the discrete time
Meixner model. We develop the filter network of the Meixner model as well
as its new recursive representation. In Section 3, we propose a method of the
Meixner pole optimization by using the Newton-Raphson method. The gradi-
ent and the Hessian of which are expressed analytically by using the derivative
of the Meixner functions. Section 4 evaluates, through simulation examples,
the performances of the proposed optimization algorithm as well as the Meixner
representation in term of approximation quality. Finally, some concluding re-
marks are made in Section 5.

Math. Model. Anal., 21(5):668–684, 2016.
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2 Discrete-time Meixner model

2.1 Preliminaries

For each fixed pole σ ∈ Σ, where Σ = [σ ∈ R : σ > 0] and a ∈ [a ∈ R : a > −1],
n ∈ N0 in the Hilbert space L2(R+), the generalized Laguerre functions

λ
(a)
n (τ, σ) is given by [5]:

λ(a)n (τ, σ) = e−στ/2

√
σ n!

Γ (n+ a+ 1)

n∑
m=0

(−1)m
(

n+ a
n−m

)
(στ)m+a/2

m!
(2.1)

are orthogonal with respect to the nonnegative weight function ω(τ, a) = τa

over the interval τ ∈ R+ and the norm
∥∥∥λ(a)n (τ, σ)

∥∥∥2 = Γ (n+ a+ 1)/(n! σa+1),

where Γ (·) is the Gamma function. After Laplace transform of (2.1), we obtain

Λ(a)
n (s, σ) = β(a)

(
1

s+ σ/2

)1+a/2 n∑
m=0

Ψ (a)
n,m

(
σ

s+ σ/2

)m
.

Here β(a) = σ(1+a)/2 and Ψ
(a)
n,m is given by

Ψ (a)
n,m =

 0, if n < m,

(−1)m
(

n
m

)
Γ (m+a/2+1)
Γ (m+a+1)

√
Γ (n+a+1)

n! , if n ≥ m.

Therefore, the Laplace transform Λ
(a)
n (s, σ) of λ

(a)
n (τ, σ) can be defined as [20]

Λ(a)
n (s, σ) =

(
σ

s+ σ/2

)a+1(
s− σ/2
s+ σ/2

)n
. (2.2)

It is obvious that (2.2) differs from the Laplace transform neatly discussed

in [3, 5, 8]. The filters Λ
(a)
n (s, ξ) can be mapped onto a rational Z-transform

M
(a)
n (z, ξ) with real pole |ξ| < 1 using the following modified bilinear transfor-

mation [20]:

Λ(a)
n (s, σ) 7−→ z

z + 1
Λ(a)
n

(
a
z − 1

z + 1
, σ

)
=

(−1)n2a

a+ σ/2
M (a)
n

(
z,
a− σ/2
a+ σ/2

)
,

M (a)
n (z, ξ) 7−→ 2a

a+ s
M (a)
n

(
a+ s

a− s
, ξ

)
=

(−1)n

1 + ξ
Λ(a)
n

(
s, 2a

1− ξ
1 + ξ

)
. (2.3)

Applying (2.3) to (2.2), we can introduce the Meixner filters M
(a)
n (z, ξ) as

M (a)
n (z, ξ) =

(
1− ξ2

)
z

z − ξ

(
(1− ξ) (z + 1)

z − ξ

)a(
1− ξz
z − ξ

)n
. (2.4)

It is interesting to note that, for each given parameter a ∈ {a ∈ R : a > −1} ,
(2.2) and, accordingly, (2.4) can be appertained to the class of almost orthog-
onal systems [1] that are acceptable for the analysis of inaccurate systems
consisting of parameters, values of which are not ideally precise.
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The Meixner functions given by (2.4) are governed by two parameters: the
Meixner pole ξ and the order of generalization a. In the special case where a = 0

with dividing M
(a)
n (z, ξ) by

√
1− ξ2, the Laguerre functions are obtained.

Due to the completeness of the Meixner sequences, any desired linear dis-
crete time system with specified transfer function G(z) can be represented as

G(z) =
Y (z)

U(z)
=

∞∑
n=0

gn(ξ)M (a)
n (z, ξ) (2.5)

with gn(ξ) are known as Fourier coefficients; U(z) and Y (z) are the Z transform
of the system input and the system output respectively.

The relation (2.5) implies that

Y (z) =

∞∑
n=0

gn(ξ)M (a)
n (z, ξ)U(z). (2.6)

Figure 1. Meixner network

2.2 Meixner network

In physical applications for filter design, the infinite series (2.6) is truncated
with limited number of Meixner stages, e.g. N + 1, with tolerating some trun-
cation error E(z).

Y (z) =

N∑
n=0

gn(ξ)M (a)
n (z, ξ)U(z) + E(z) =

N∑
n=0

gn(ξ)X(a)
n (z, ξ) + E(z) (2.7)

with X
(a)
n (z, ξ) = M

(a)
n (z, ξ)U(z).

The inverse Z-transform of the relation (2.7) is given by:

y(k) =

N∑
n=0

gnx
(a)
n (k) + e(k),

Math. Model. Anal., 21(5):668–684, 2016.
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where x
(a)
n (k) and e(k) are the Z-inverse transform of X

(a)
n (z, ξ) and E(z) re-

spectively.
The filtering scheme given by Figure 1 using Meixner functions can be easily

deduced from relation (2.7) in which a unit delay was incorporated in order to
represent a strictly causal system.

2.3 Recursive representation of Meixner model

From Figure 1 and by considering xi(k) ( i = 0, . . . , a+N) as state variables,
we obtain the following recursive equations:

x0(k + 1) = ξ x0(k) + V u(k),

x1(k + 1) = ξ x1(k) + V x0(k) + (1− ξ)V u(k),

x2(k + 1) = ξ x2(k) + V x1(k) + (1− ξ)V x0(k) + (1− ξ)2V u(k),

x3(k + 1) = ξ x3(k) + V x2(k) + (1− ξ)V x1(k) + (1− ξ)2 V x0(k)

+(1− ξ)3V u(k),

. . .

xa(k + 1) = ξxa(k) +
[
V

a∑
j=1

(1−ξ)j−1 xa−j(k)
]
+(1−ξ)aV u(k),

xa+1(k + 1) = ξxa+1(k) + V xa(k)−
[
ξV

a∑
j=1

(1− ξ)j−1xa−j(k)
]

−ξ (1− ξ)a V u(k),

. . .

xa+N (k + 1) = ξxa+N (k) +

[
V
N−1∑
i=0

(−ξ)N−i−1 xa+i(k)

]
+
[
(−ξ)NV

a∑
j=1

(1− ξ)j−1xa−j(k)
]
+(−ξ)N (1− ξ)a V u(k)

(2.8)

with V = 1− ξ2. The system (2.8) can be written with the recursive represen-
tation form as follow: {

X(k + 1) = ΦX(k) +B u(k),

y(k) = CT X(a)
N (k) + e(k),

(2.9)

with

X(k) =
[
x0(k), . . . , xa−1(k)︸ ︷︷ ︸

XT
d (k)

, xa(k), xa+1(k), . . . , xa+N (k)︸ ︷︷ ︸
[X(a)

N (k)]T

]T
,

Xd(k) = [x0(k), . . . , xa−1(k)]
T

; X(a)
N (k) = [xa(k), . . . , xa+N (k)]

T
. (2.10)

The vector X(a)
N (k) of relation (2.10) will be noted as:

X(a)
N (k) =

[
x
(a)
0 (k), . . . , x

(a)
N (k)

]T
, C = [g0, · · · , gN ]

T
, (2.11)

Φ =

 ϕ0,0 · · · ϕ0,a+N

...
. . .

...
ϕa+N,0 · · · ϕa+N,a+N

 ,
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ϕi,j =


0, i < j,
ξ, i = j,

(1− ξ)i−j−1 V , for j < i ≤ a,
(−ξ)i−a (1−ξ)a−j−1V , j < a < i,

(−ξ)i−j−1 V , a ≤ j < i,

i, j=0, . . . , N+a,

B = V [b0, · · · , ba, ba+1, · · · , ba+N ]
T
,

bi =

 (1− ξ)iV , i ≤ a,
for

(−ξ)i−a (1− ξ)aV , i > a,

i = 0, . . . , N + a.

The model given by (2.9) is linear with respect to the Fourier coefficients gn
and therefore the classical linear identification methods can be applied. But
this model is nonlinear with respect to the Meixner pole ξ which requires the
application of complicated estimation approaches.

3 Optimization of Meixner pole

3.1 Problem statement

From (2.7), the truncation error E(z, ξ) can be written as:

E(z, ξ) = Y (z)−
N∑
n=0

gn(ξ)X(a)
n (z, ξ).

To ensure the reduction of the parameter number in the Meixner model,
the pole characterizing the Meixner functions has to be optimized. To do so,
the following cost function J(ξ) is considered

J(ξ) =
1

2
‖E(z, ξ)‖2 =

1

2
< E(z, ξ), E(z, ξ) > . (3.1)

Since the criterion J(ξ) is non-linear with respect to the Meixner pole, its
solution can be transformed into an optimization problem as follow:

min
ξ
{J(ξ)} .

From relation (3.1), the gradient of J(ξ) with respect to ξ is:

∂J(ξ)

∂ξ
=<

∂E(z, ξ)

∂ξ
,E(z, ξ) >= 0. (3.2)

As mentioned in [4,22], the optimal Fourier coefficients gn (n = 0, ..., N) follow
from the well-known normal equations given by:

< X(a)
n (z, ξ), E(z, ξ) >= 0. (3.3)

The relation (3.3) will be particularly useful in order to simplify (3.2). As
mentioned below, the optimization procedure of the Meixner pole is based on

Math. Model. Anal., 21(5):668–684, 2016.
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input/output measurement. Thus for H input/output data, the criterion is
given by:

J (ξ) =
1

2

H∑
k=1

(
y (k)−

(
N∑
n=0

gn x
(a)
n (k, ξ)

))2

. (3.4)

In matrix notation the criterion J(ξ) can be written as:

J (ξ) =
1

2

(
Y−ℵ(a)N C

)T (
Y−ℵ(a)N C

)
=

1

2
ETE (3.5)

with ℵ(a)N a matrix that includes the state vector X(a)
N (k) given by relation (2.11)

for k = 1, . . . ,H;

ℵ(a)N =
[
X(a)
N (1), . . . ,X(a)

N (H)
]T

=


x
(a)
0 (1) · · · x

(a)
N (1)

...
. . .

...

x
(a)
0 (H) · · · x

(a)
N (H)

 (3.6)

and Y, E include the output and the truncation error respectively, for k =
1, . . . ,H;

Y =
[
y(1) · · · y(H)

]T
; E =

[
e(1) · · · e(H)

]T
.

The optimal vector C of the Fourier coefficients is identified by the Least
Squares (LS) method as follow:

C =

({
ℵ(a)N

}T
ℵ(a)N

)−1{
ℵ(a)N

}T
Y. (3.7)

3.2 Proposed optimization technique

In this section, a new technique is applied in order to optimize the Meixner
pole by minimizing the criterion J(ξ) in (3.4). Many recursive optimization
algorithms to minimize J(ξ) are found in literature [15, 18, 21]. In this paper
we opted for an iterative method based on the Newton-Raphson technique.
This latter is based on the Taylor series development at the second order of
the criterion J(ξ). Thus the Meixner pole ξ at the (m+ 1)th iteration noticed
ξm+1 can be given by the following expression:

ξm+1 = ξm − µ
∣∣∣∣∂2J (ξ)

∂ξ2

∣∣∣∣−1
ξm

(
∂J (ξ)

∂ξ

)
ξm

, (3.8)

where µ is a step-size. Large step-size provides the adaptive filter with the
ability to learn fast during the initial learning phase or track fast in a non-
stationary environment. However, in a stationary environment large step-size
implies large asymptotical fluctuations of the adaptive parameter around its
real solution. In other words, the choice of the step-size involves a trade-off
between learning speed and accuracy.
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The gradient of J(ξ) with respect to ξ is obtained by differentiating (3.5)

∂J (ξ)

∂ξ
= −ET ∂ℵ

(a)
N

∂ξ
C − ETℵ(a)N

∂C

∂ξ
. (3.9)

Using the discrete time form of the normal equations (3.3) given by [3,15], the
relation (3.9) can be simplified as:

∂J (ξ)

∂ξ
= −ET

∂ℵ(a)N
∂ξ

C (3.10)

and then the Hessian of J(ξ) is obtain after differentiating (3.10)

∂2J (ξ)

∂ξ2
=

(
CT

∂
{
ℵ(a)N

}T
∂ξ

+
∂CT

∂ξ

{
ℵ(a)N

}T)∂ℵ(a)N
∂ξ

C

− ET

(
∂2ℵ(a)N
∂ξ2

C +
∂ℵ(a)N
∂ξ

∂C

∂ξ

)
, (3.11)

where the gradient of C with respect to ξ is determined from relation (3.7) as:

∂C

∂ξ
=

({
ℵ(a)N

}T
ℵ(a)N

)−1 ∂{ℵ(a)N }T
∂ξ

Y

−
({
ℵ(a)N

}T
ℵ(a)N

)−1(∂{ℵ(a)N }T
∂ξ

ℵ(a)N +
{
ℵ(a)N

}T ∂ℵ(a)N
∂ξ

)
C. (3.12)

Remark: The calculation of the second derivative requires voluminous cal-
culations which encourage to abandon the Newton-Raphson method in favor
of the Gauss-Newton method [21] where the approximated Hessian is calcu-
lated by eliminating the second term of the second member in relation (3.11).
The calculation of the approximated Hessian occurs, therefore, only from the
knowledge of the first order sensitivity functions as:

∂2J (ξ)

∂ξ2
∼=
(
CT

∂
{
ℵ(a)N

}T
∂ξ

+
∂CT

∂ξ

{
ℵ(a)N

}T)∂ℵ(a)N
∂ξ

C. (3.13)

The Meixner pole ξm+1 at iteration m+ 1 given by (3.8) can be computed by
using the gradient and the Hessian of the criterion J(ξ), given by (3.10) and

(3.13). These quantities depend on the first and the second derivatives of ℵ(a)N
with respect to ξ.

Lemma 1. The first and the second derivatives of the matrix ℵ(a)N containing
the Meixner state vector XaN (k) with respect to ξ can be formulated by the
following relations:

• The first derivative of ℵ(a)N with respect to ξ is:

∂ℵ(a)N
∂ξ

= ℵ(a)N+1

{
A(a)
N+1

}T
. (3.14)

Math. Model. Anal., 21(5):668–684, 2016.
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• The second derivative of ℵ(a)N with respect to ξ is:

∂2ℵ(a)N
∂ξ2

=

[
ℵ(a)N+1

{
∂A(a)

N+1

∂ξ

}T
+ ℵ(a)N+2

{
A(a)
N+2

}T{
A(a)
N+1

}T]
, (3.15)

where A(a)
N+1 is a tridiagonal matrix of dimension (N+1)×(N+2) with elements

of jth row given by:

1

1− ξ2
[
− j, −(a+ ξ), a+ 1

]
, j = 0, 1, . . . , N, (3.16)

A(a)
N+2 is a tridiagonal matrix of dimension (N + 2) × (N + 3) with elements

of jth row given by:

1

1− ξ2
[
− j, −(a+ ξ), a+ 1

]
, j = 0, 1, . . . , N + 1, (3.17)

∂A(a)
N+1

∂ξ
is a matrix of dimension (N + 1)× (N + 2) with elements of jth row

given by:

1

(1− ξ2)2
[
− 2jξ, −1− 2aξ − ξ2), 2ξ(a+ 1)

]
, j = 0, 1, . . . , N, (3.18)

Proof. From relation (3.6), the gradient of ℵ(a)N with respect to ξ is given by:

∂ℵ(a)N
∂ξ

=

[
∂X(a)

N (1)

∂ξ
. . .

∂X(a)
N (H)

∂ξ

]T
,

where from (2.11) we have:

∂X(a)
N (k)

∂ξ
=

[
∂x

(a)
0 (k)

∂ξ
. . .

∂x
(a)
N (k)

∂ξ

]T
. (3.19)

It remains to find the analytical expression of the first and second derivative

of x
(a)
n (k) with respect to ξ for n = 0, . . . , N . From subsection 2.2 we have:

x(a)n (k) = Z−1
{
X(a)
n (z, ξ)

}
; X(a)

n (z, ξ) = M (a)
n (z, ξ) . U(z). (3.20)

From relation (3.20), we obtain:

∂X
(a)
n (z, ξ)

∂ξ
=
∂M

(a)
n (z, ξ)

∂ξ
U (z) . (3.21)

From Appendix A the derivative of Meixner functions with respect to ξ is
written as:

∂M
(a)
0 (z, ξ)

∂ξ
=

1

1− ξ2
[(a+ 1)Ma

1 (z, ξ)− (a+ ξ)Ma
0 (z, ξ)] (3.22)
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and ∀ n = 1, . . . , N

∂M
(a)
n (z, ξ)

∂ξ
=

1

1−ξ2
[
(a+n+1)Ma

n+1(z, ξ)−(a+ξ)Ma
n(z, ξ)−nMa

n−1(z, ξ)
]
.

(3.23)
In matrix notation the criterion (3.22) and (3.23) can be written as:

∂M
(a)
0 (z,ξ)
∂ξ
...

∂M
(a)
N (z,ξ)

∂ξ

 = A(a)
N+1


M

(a)
0 (z, ξ)

...

M
(a)
N (z, ξ)

M
(a)
N+1 (z, ξ)


with A(a)

N+1 is given by (3.16).
The substitution of (3.22) and (3.23) in (3.21) and the Z-transform inverse

allow to write:

∂x
(a)
0 (k)

∂ξ
=

1

1− ξ2
[(a+ 1)xa1(k)− (a+ ξ)xa0(k)] (3.24)

and ∀ n = 1, . . . , N

∂x
(a)
n (k)

∂ξ
=

1

1− ξ2
[
(a+ n+ 1)xan+1(k)− (a+ ξ)xan(k)− nxan−1(k)

]
. (3.25)

Using relations (3.24), (3.25) and notation introduced previously in (3.19), we

can deduce the expressions of the first derivative of X(a)
N (k) with respect to ξ:

∂X(a)
N (k)

∂ξ
= A(a)

N+1X
(a)
N+1(k), (3.26)

with X(a)
N+1(k)=

[
x
(a)
0 (k), . . . , x

(a)
N (k), x

(a)
N+1(k)

]T
=

[{
X(a)
N (k)

}T
, x

(a)
N+1(k)

]T
and the second derivative of X(a)

N (k) with respect to ξ is given by:

∂2X(a)
N (k)

∂ξ2
=
∂A(a)

N+1

∂ξ
X(a)
N+1(k) + A(a)

N+1

∂X(a)
N+1(k)

∂ξ

=
∂A(a)

N+1

∂ξ
X(a)
N+1(k) + A(a)

N+1A
(a)
N+2X

(a)
N+2,

X(a)
N+2(k) =

[
x
(a)
0 (k), . . . , x

(a)
N+1(k), x

(a)
N+2(k)

]T
=
[{

X(a)
N+1(k)

}T
, x

(a)
N+1(k)

]T
and A(a)

N+1, A(a)
N+2 and

∂A(a)
N+1

∂ξ
are given by (3.16), (3.17) and (3.18) respectively.

From relation (3.26), we can deduce the first derivative of ℵ(a)N with respect
to ξ as:

∂ℵ(a)N
∂ξ

= ℵ(a)N+1

{
A(a)
N+1

}T
. (3.27)
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The second derivatives of ℵ(a)N with respect to ξ can be formulated from differ-
entiating (3.27)

∂2ℵ(a)N
∂ξ2

=

[
ℵ(a)N+1

{
∂A(a)

N+1

∂ξ

}T
+ ℵ(a)N+2

{
A(a)
N+2

}T{
A(a)
N+1

}T]
.

ut

Algorithm 1. Meixner pole optimization

1. Choose the initial pole ξ0 (m = 0), the truncating order N and the order
of generalization a.

2. Fix µ and a threshold ε.

3. To compute the optimal pole, we apply the following steps:

(a) Form the matrix ℵ(a)N given by relation (3.6).

(b) Compute the first and the second derivatives of ℵ(a)N with respect
to ξ respectively given by relations (3.14) and (3.15).

(c) Estimate the optimal vector C of the Fourier coefficients from re-
lation (3.7).

(d) Calculate the gradient of the vector C with respect to ξ from relation
(3.12).

(e) Determine the gradient and the Hessian of J(ξ) from relations (3.10)
and (3.13) respectively.

(f) Evaluate ξm+1 from relation (3.8).

(g) If (|ξm+1| > 1),

• adjust µ and go to (3),

else,

• if (|ξm+1 − ξm| > ε ) increment m and go to (a),

• else ξopt = ξm+1 (end of the algorithm).

4 Simulation results

In this section, we present the performance of the Meixner model via the de-
veloped recursive representation and the proposed optimization algorithm of
the pole. This study is illustrated through a numerical simulation and the per-
formance of the Meixner model is evaluated by the Normalized MSE (NMSE)
criterion given by:

NMSE(dB) = 10× log10

{
H∑
k=1

[e(k)]
2
/

H∑
k=1

[y(k)]
2

}
.
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We specify that in this paper our objective is the optimization of the
Meixner pole ξ and both the truncating order (N) and the order of gener-
alization (a) can be fixed after several experiments and when a very low value
of the MSE between the system output and the model output is obtained.

We consider the following transfer function having a slow start presented
in [4]:

G(z−1) =

(
z

z − (0.9 + 0.1j)

)4

+

(
z

z − (0.9− 0.1j)

)4

. (4.1)

The equation (4.1) can be written as:

G(z−1) =
(
1.215z−4 − 5.616z−3 + 9.6z−2 − 7.2z−1 + 2

)
/
(
0.4521z−8 − 3.97z−7

+ 15.28z−6 − 33.65z−5 + 46.41z−4 − 41.04z−3 + 22.72z−2 − 7.2z−1 + 1
)
.

The optimization procedure of the Meixner pole needs only the response of the
system to a persistently exciting input signal. Thus we consider a multilevel
pseudo-random sequence for the input system as illustrated in Figure 2(a) and
the corresponding system output is given by Figure 2(b). The optimization
algorithm needs the step-size which is chosen as µ = 0.5, the convergence
thresholds which is chosen equal to ε = 10−3 and initial value of the Meixner
pole. After several experiments, we have adopted a truncating order N = 5
and a generalization order a = 4 for the Meixner model.
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Figure 2. System input/output

It is obviously an inherent feature of the iterative search routines that only
convergence to a local solution can be guaranteed. This can be illustrated
by Figure 3(a) where the proposed algorithm converges to a local solution for
different Meixner pole values initialization. Figure 3(b) shows the concordance
between the minimums of the NMSE criterion and the obtained Meixner poles.

To find the global solution, there is usually no other way than to start the
iterative minimization algorithm at different feasible initial values ξ0 and to
compare the results. The optimal value of Meixner pole obtained is equal to
0.835 which is similar to that given in [8]. It can be mentioned that thanks to
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Figure 3. Identification of Meixner pole

the Newton Raphson’s algorithm, optimal poles converge towards its optimal
values in relatively few iterations.

To confirm the deficiency of the Laguerre model for the approximation of
the transfer function (4.1), we estimate the Laguerre pole as illustrated in
Figure 4(a) with the proposed optimization algorithm for a = 0 and by taking

V =
√

1− ξ2 in the recursive representation. With the same way given for the
Meixner pole, it can be shown that the algorithm converge to local solutions
of the NMSE criterion given by Figure 4(b).

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L
a
g
u
e
rr

e
 p

o
le

 ξ
 f
o
r 

d
if
fe

re
n
t 
in

it
ia

l 
v
a
lu

e
s

Number of iterations

(a) Estimation of Laguerre pole for differ-
ent initial values

0 0.2 0.4 0.6 0.8 1
−18

−16

−14

−12

−10

−8

−6

−4

−2

0
NMSE(dB)

Laguerre pole

(b) Evolution of the NMSE Criterion

Figure 4. Identification of Laguerre pole

From Figure 5, we deduce that the Meixner model has a close approxima-
tion compared to the Laguerre model. That is provided by a NMSE= -24.81
dB for the Meixner model and a NMSE= -17.89 dB for the Laguerre model.
Thus, the model based on Meixner functions have a good ability to identify the
behavior of discrete-time system with slow initial onset. Note that the estima-
tion of Meixner pole requires nonlinear optimization, whereas the identification



Parametric Complexity Reduction of Discrete-Time Linear Systems 681

of expansion coefficients is a convex optimization problem. The accuracy of the
model is directly linked to the truncating order and converges monotonically
toward the best approximation. Moreover, the truncating order of the Meixner
filters can be optimized by an adequate choice of the pole which can be obtained
by the proposed algorithm. We notice that both the truncating order N and
the order of generalization a should be selected during an off-line identification
experiment. However, we can use the proposed recursive representation for an
adaptive filtering by optimizing adaptively the Fourier coefficients using algo-
rithms such as Least Mean Squares (LMS) or Recursive Least Squares (RLS)
algorithms and adjusting the Meixner pole with our approach.
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Figure 5. Validation of the Meixner and Laguerre models

Conclusions

In this paper, a new recursive representation of linear discrete-time system has
been proposed. It has been provided by filtering the input system with orthog-
onal Meixner functions. To identify the coefficients of the Meixner model and
the pole, we propose an approach based on the minimization of the MSE crite-
rion that is formulated as an optimization problem in which the Meixner pole
can be optimized using an iterative algorithm based on the Newton-Raphson
method. This identification approach requires the use of a set of input/output
observations collected on the system. We have proved theoretically by exploit-
ing the derivative of the Meixner functions that the gradient and the Hessian
of the considered criterion are expressed analytically. The theoretical study is
validated in numerical simulation which confirms the efficiency of the proposed
recursive representation as well as the optimization approach of the Meixner
pole.
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Appendix A: Derivative of Meixner functions

The derivative of the Z-transform of the Meixner function with respect to ξ is
given by: for n = 0

∂Ma
0 (ξ, z)

∂ξ
=

z

(z − ξ)2

(
(1− ξ) (z + 1)

z − ξ

)a (
a+ aξ − az − 2ξz + ξ2 − aξz + 1

)
=

z

(z − ξ)2

(
(1− ξ) (z + 1)

z − ξ

)a
(a(1− ξz) + a(ξ − z) + (1− ξz) + ξ(ξ − z))

=
z

(z − ξ)2

(
(1− ξ) (z + 1)

z − ξ

)a
((a+ 1)(1− ξz) + (a+ ξ)(ξ − z))

=
(1− ξ2)z

(z − ξ)

(
(1− ξ) (z + 1)

z − ξ

)a(
(a+ 1)(1− ξz) + (a+ ξ)(ξ − z)

(1− ξ2) (z − ξ)

)
=

1

1− ξ2
[(a+ 1)Ma

1 − (a+ ξ)Ma
0 ]

and ∀ n = 1, . . . , N

∂Ma
n(ξ, z)

∂ξ
=

z

(1− ξz) (z − ξ)2

(
(1− ξ) (z + 1)

z − ξ

)a(
1− ξz
z − ξ

)n
F,

where F = α+ β + δ,

α = a+ aξ − az + aξz2 − aξ2z + aξ2z2 − 2aξz,

β = 2ξ2z2 − 3ξz − ξ3z + ξ2 + 1, δ = n− nξ2 − nz2 + nξ2z2.

The expression of F is simplified as:

F = (1− ξz)2 (a+ n+ 1) + (ξ − z)(1− ξz)(a+ ξ)− n(z − ξ)2.

Thus
∂Ma

n(ξ, z)

∂ξ
becomes

∂Ma
n(ξ, z)

∂ξ
=
z((1− ξ) (z + 1)/(z − ξ))a

(1− ξz) (z − ξ)2

(
1− ξz
z − ξ

)n
×
(

(1− ξz)2 (a+ n+ 1) + (ξ − z)(1− ξz)(a+ ξ)− n(z − ξ)2
)

=
(1− ξ2)z

(z − ξ)

(
(1− ξ) (z + 1)

z − ξ

)a(
1− ξz
z − ξ

)n
×
(

(1− ξz)2 (a+ n+ 1) + (ξ − z)(1− ξz)(a+ ξ)− n(z − ξ)2

(1− ξ2) (1− ξz) (z − ξ)

)
=

1

1− ξ2
[
(a+ n+ 1)Ma

n+1 − (a+ ξ)Ma
n − nMa

n−1
]
.
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