45 research outputs found

    Increasing Flash Memory Lifetime by Dynamic Voltage Allocation for Constant Mutual Information

    Full text link
    The read channel in Flash memory systems degrades over time because the Fowler-Nordheim tunneling used to apply charge to the floating gate eventually compromises the integrity of the cell because of tunnel oxide degradation. While degradation is commonly measured in the number of program/erase cycles experienced by a cell, the degradation is proportional to the number of electrons forced into the floating gate and later released by the erasing process. By managing the amount of charge written to the floating gate to maintain a constant read-channel mutual information, Flash lifetime can be extended. This paper proposes an overall system approach based on information theory to extend the lifetime of a flash memory device. Using the instantaneous storage capacity of a noisy flash memory channel, our approach allocates the read voltage of flash cell dynamically as it wears out gradually over time. A practical estimation of the instantaneous capacity is also proposed based on soft information via multiple reads of the memory cells.Comment: 5 pages. 5 figure

    ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹ ๋ขฐ๋„ ํ–ฅ์ƒ์„ ์œ„ํ•œ ์‹ ํ˜ธ ์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์„ฑ์›์šฉ.The capacity of NAND flash memory has been continuously increased by aggressive technology scaling and multi-level cell (MLC) data coding. However, it becomes more challenging to maintain the current growth rate of the memory density mainly because of degraded signal quality of sub-20 nm NAND flash memory. This dissertation develops signal processing techniques to improve the signal reliability of MLC NAND flash memory. In the first part of this dissertation, we develop two threshold voltage distribution estimation algorithms to compensate the effect of program-erase (PE) cycling and charge loss in MLC NAND flash memory. The sensing directed estimation (SDE) utilizes the output of multi-level memory sensing to estimate the means and the variances of the threshold voltage distribution that is modeled as a Gaussian mixture. In order to reduce memory sensing overheads for the SDE algorithm, we develop a decision directed estimation (DDE) that uses error corrected bit patterns for more frequent updates of the model parameters. We also present a combined estimation scheme that employs both the SDE and the DDE approaches to minimize the number of memory sensing operations while maintaining the estimation accuracy. The effectiveness of the SDE and the DDE algorithms is evaluated by using both simulated and real NAND flash memory, and it is demonstrated that the proposed algorithms can estimate the statistical information of threshold voltage distribution accurately. The cell-to-cell interference (CCI) is one of the major sources of bit errors in sub-20 nm NAND flash memory and becomes more severe as the size of memory cell decreases. In the second part of this dissertation, we develop a CCI cancellation algorithm that is similar to interference cancellers employed in conventional communication systems. We first provide the experimental characterization of the CCI by measuring the coupling coefficients from actual NAND flash memory with a 26 nm process technology. Then, we present a CCI cancellation algorithm that consists of the coupling coefficient estimation and the CCI removal steps. To reduce the number of memory sensing operations, the optimal quantization schemes for the proposed CCI canceller are also studied. This dissertation also develops soft-information computation schemes in order to apply soft-decision error correction to NAND flash memory. The probability density function (PDF) of the CCI removed signal is quite different from that of the original threshold voltage, which can be modeled as a Gaussian mixture. Thus, computing soft-information, such as LLR (log likelihood ratio), with the CCI removed signal is not straightforward. We propose two soft-information computation schemes that combine CCI cancellation and soft-decision error correction. In the first approach, we derive a mathematical formulation for the PDF of the CCI removed signal and directly compute the LLR values by using it. In the second approach, CCI cancellation and soft-information computation are jointly conducted. Based on the intensive simulations, it is demonstrated that the reliability of NAND flash memory is significantly improved by applying the proposed signal processing algorithms as well as soft-decision error correction.1 Introduction 14 2 NAND Flash Memory Basics 19 2.1 Basics of NAND Flash Memory 19 2.1.1 NAND Flash Memory Structure 19 2.1.2 Multi-Page Programming 20 2.1.3 Cell-to-Cell Interference 22 2.1.4 Data Retention 23 2.2 Threshold Voltage Distribution of NAND Flash Memory and Signal Modeling 25 2.2.1 Threshold Voltage Distribution and Gaussian Approximation 25 2.2.2 Modeling of Threshold Voltage Signal 27 3 Threshold Voltage Distribution Estimation 31 3.1 Introduction 31 3.2 Sensing Directed Estimation of Threshold Voltage Distribution 33 3.2.1 Cost Function 34 3.2.2 Gradient Descent Method based Parameter Search 36 3.2.3 Levenberg-Marquardt Method based Parameter Search 38 3.2.4 Experimental Results 41 3.3 Decision Directed Estimation of Threshold Voltage Distribution 50 3.3.1 Basic Idea 51 3.3.2 Applying to Two-Bit MLC NAND Flash Memory 54 3.3.3 Combined Threshold Voltage Distribution Estimation 57 3.3.4 Error Analysis 58 3.3.5 Experimental Results 64 3.4 Concluding Remarks 70 4 Cell-to-Cell Interference Cancellation 71 4.1 Introduction 71 4.2 Direct Measurement of Coupling Coefficients 73 4.2.1 Measurement Procedure 74 4.2.2 Experimental Results 77 4.3 Least Squares Method based Coupling Coefficient Estimation 83 4.4 Multi-Level Memory Sensing Schemes for CCI Cancellation 87 4.5 Experimental Results 91 4.5.1 CCI Cancellation with Simulated NAND Flash Memory 91 4.5.2 CCI Cancellation with Real NAND Flash Memory 96 4.6 Concluding Remarks 97 5 Soft-Decision Error Correction in NAND Flash Memory 99 5.1 Introduction 99 5.2 Soft-Decision Error Correction without CCI Cancellation 101 5.3 Soft-Decision Error Correction with CCI Cancellation 104 5.3.1 Soft-Information Computation using PDF of CCI Removed Signal 104 5.3.2 Joint CCI Cancellation and Soft-Information Computation 110 5.3.3 Experimental Results 115 5.4 Concluding Remarks 118 6 Conclusion 120Docto

    ๋‚ธ๋“œํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์˜ค๋ฅ˜์ •์ •์„ ์œ„ํ•œ ๊ณ ์„ฑ๋Šฅ LDPC ๋ณตํ˜ธ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2013. 8. ์„ฑ์›์šฉ.๋ฐ˜๋„์ฒด ๊ณต์ •์˜ ๋ฏธ์„ธํ™”์— ๋”ฐ๋ผ ๋น„ํŠธ ์—๋Ÿฌ์œจ์ด ์ฆ๊ฐ€ํ•˜๋Š” ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๊ณ ์„ฑ๋Šฅ ์—๋Ÿฌ ์ •์ • ๋ฐฉ๋ฒ•์€ ํ•„์ˆ˜์ ์ด๋‹ค. Low-density parity-check (LDPC) ๋ถ€ํ˜ธ์™€ ๊ฐ™์€ ์—ฐํŒ์ • ์—๋Ÿฌ ์ •์ • ๋ถ€ํ˜ธ๋Š” ๋›ฐ์–ด๋‚œ ์—๋Ÿฌ ์ •์ • ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ๋†’์€ ๊ตฌํ˜„ ๋ณต์žก๋„๋กœ ์ธํ•ด ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์— ์ ์šฉ๋˜๊ธฐ ํž˜๋“  ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LDPC ๋ถ€ํ˜ธ์˜ ํšจ์œจ์ ์ธ ๋ณตํ˜ธ๋ฅผ ์œ„ํ•ด ๊ณ ์„ฑ๋Šฅ ๋ฉ”์‹œ์ง€ ์ „ํŒŒ ์Šค์ผ€์ค„๋ง ๋ฐฉ๋ฒ•๊ณผ ์ € ๋ณต์žก๋„ ๋ณตํ˜ธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ finite geometry (FG) LDPC ๋ถ€ํ˜ธ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๋””์ฝ”๋” ์•„ํ‚คํ…์ณ๋ฅผ ์ œ์•ˆํ•˜๋ฉฐ, ๊ตฌํ˜„๋œ ๋””์ฝ”๋”๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์— ๋Œ€ํ•ด ์—ฐํŒ์ • ๋ณตํ˜ธ์‹œ์˜ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋Ÿ‰์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์˜ ์ฒซ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” ๋™์  ์Šค์ผ€์ค„๋ง (informed dynamic scheduling, IDS) ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅํ–ฅ์ƒ ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์—ฐ๊ตฌํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์šฐ์„  ๊ธฐ์กด์˜ ๊ฐ€์žฅ ๋น ๋ฅธ ์ˆ˜๋ ด ์†๋„๋ฅผ ๋ณด์ด๋Š” IDS ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ ๋ ˆ์ง€๋“€์–ผ ์‹ ๋ขฐ ์ „ํŒŒ (residual belief propagation, RBP) ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋™์ž‘ ํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํŠน์ • ๋…ธ๋“œ์— ๋ฉ”์‹œ์ง€ ๊ฐฑ์‹ ์ด ์ง‘์ค‘๋˜๋Š” ๊ฒƒ์„ ๋ฐฉ์ง€ํ•˜์—ฌ RBP ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ˆ˜๋ ด์†๋„๋ฅผ ์ฆ๊ฐ€์‹œํ‚จ improved RBP (iRBP) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ iRBP์˜ ๋›ฐ์–ด๋‚œ ์ˆ˜๋ ด์†๋„์™€ ๊ธฐ์กด์˜ NS ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์šฐ์ˆ˜ํ•œ ์—๋Ÿฌ ์ •์ • ๋Šฅ๋ ฅ์„ ๋ชจ๋‘ ๊ฐ–์ถ˜ ์‹ ๋“œ๋กฌ ๊ธฐ๋ฐ˜์˜ ํ˜ผํ•ฉ ์Šค์ผ€์ค„๋ง (mixed scheduling) ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋์œผ๋กœ ๋‹ค์–‘ํ•œ ๋ถ€ํ˜ธ์œจ์˜ LDPC ๋ถ€ํ˜ธ์— ๋Œ€ํ•œ ๋ชจ์˜์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹ ๋“œ๋กฌ ๊ธฐ๋ฐ˜์˜ ํ˜ผํ•ฉ ์Šค์ผ€์ค„๋ง ๋ฐฉ๋ฒ•์ด ๋ณธ ๋…ผ๋ฌธ์—์„œ ์‹œํ—˜๋œ ๋‹ค๋ฅธ ๋ชจ๋“  ์Šค์ผ€์ค„๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์„ ๋Šฅ๊ฐ€ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ๋ถ€๋ถ„์—์„œ๋Š” ๋ณตํ˜ธ ์‹คํŒจ์‹œ ๋งŽ์€ ๋น„ํŠธ ์—๋Ÿฌ๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋Š” a posteriori probability (APP) ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ์„  ๋ฐฉ์•ˆ์— ๋ฐฉ์•ˆ์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ๋น ๋ฅธ ์ˆ˜๋ ด์†๋„์™€ ์šฐ์ˆ˜ํ•œ ์—๋Ÿฌ ๋งˆ๋ฃจ (error-floor) ์„ฑ๋Šฅ์œผ๋กœ ๋ฐ์ดํ„ฐ ์ €์žฅ์žฅ์น˜์— ์ ํ•ฉํ•œ FG-LDPC ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ ์šฉ๋œ ํ•˜๋“œ์›จ์–ด ์•„ํ‚คํ…์ฒ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ฒ˜๋Š” ๋†’์€ ๋…ธ๋“œ ๊ฐ€์ค‘์น˜๋ฅผ ๊ฐ€์ง€๋Š” FG-LDPC ๋ถ€ํ˜ธ์— ์ ํ•ฉํ•˜๋„๋ก ์‰ฌํ”„ํŠธ ๋ ˆ์ง€์Šคํ„ฐ (shift registers)์™€ SRAM ๊ธฐ๋ฐ˜์˜ ํ˜ผํ•ฉ ๊ตฌ์กฐ๋ฅผ ์ฑ„์šฉํ•˜๋ฉฐ, ๋†’์€ ์ฒ˜๋ฆฌ๋Ÿ‰์„ ์–ป๊ธฐ ์œ„ํ•ด ํŒŒ์ดํ”„๋ผ์ธ๋œ ๋ณ‘๋ ฌ ์•„ํ‚คํ…์ฒ˜๋ฅผ ์‚ฌ์šฉํ•œ๋‹ค. ๋˜ํ•œ ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์„ธ ๊ฐ€์ง€์˜ ๋ฉ”๋ชจ๋ฆฌ ์šฉ๋Ÿ‰ ๊ฐ์†Œ ๊ธฐ๋ฒ•์„ ์ ์šฉํ•˜๋ฉฐ, ์ „๋ ฅ ์†Œ๋น„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€์˜ ์ €์ „๋ ฅ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์ œ์•ˆ๋œ ์•„ํ‚คํ…์ฒ˜๋Š” ๋ถ€ํ˜ธ์œจ 0.96์˜ (68254, 65536) Euclidean geometry LDPC ๋ถ€ํ˜ธ์— ๋Œ€ํ•ด 0.13-um CMOS ๊ณต์ •์—์„œ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์—ฐํŒ์ • ๋ณตํ˜ธ๊ฐ€ ์ ์šฉ๋œ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ๋‚ฎ์ถ”๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ์ œ์•ˆํ•œ๋‹ค. ์—ฐํŒ์ • ๊ธฐ๋ฐ˜์˜ ์—๋Ÿฌ ์ •์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋†’์€ ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€๋งŒ, ์ด๋Š” ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ์˜ ์„ผ์‹ฑ ์ˆ˜์™€ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์ฆ๊ฐ€ ์‹œํ‚ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์•ž์„œ ๊ตฌํ˜„๋œ LDPC ๋””์ฝ”๋”๊ฐ€ ์ฑ„์šฉ๋œ ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ๋ถ„์„ํ•˜๊ณ , LDPC ๋””์ฝ”๋”์™€ BCH ๋””์ฝ”๋” ๊ฐ„์˜ ์นฉ ์‚ฌ์ด์ฆˆ์™€ ์—๋„ˆ์ง€ ์†Œ๋ชจ๋Ÿ‰์„ ๋น„๊ตํ•˜์˜€๋‹ค. ์ด์™€ ๋”๋ถˆ์–ด ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” LDPC ๋””์ฝ”๋”๋ฅผ ์ด์šฉํ•œ ์„ผ์‹ฑ ์ •๋ฐ€๋„ ๊ฒฐ์ • ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ณตํ˜ธ ๋ฐ ์Šค์ผ€์ค„๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜, VLSI ์•„ํ‚คํ…์ณ, ๊ทธ๋ฆฌ๊ณ  ์ฝ๊ธฐ ์ •๋ฐ€๋„ ๊ฒฐ์ • ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋‚ธ๋“œ ํ”Œ๋ž˜์‹œ ๋ฉ”๋ชจ๋ฆฌ ์‹œ์Šคํ…œ์˜ ์—๋Ÿฌ ์ •์ • ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™” ํ•˜๊ณ  ์—๋„ˆ์ง€ ์†Œ๋ชจ๋ฅผ ์ตœ์†Œํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค.High-performance error correction for NAND flash memory is greatly needed because the raw bit error rate increases as the semiconductor geometry shrinks for high density. Soft-decision error correction, such as low-density parity-check (LDPC) codes, offers high performance but their implementation complexity hinders wide adoption to consumer products. This dissertation proposes two high-performance message-passing schedules and a low-complexity decoding algorithm for LDPC codes. In particular, an efficient decoder architecture for finite geometry (FG) LDPC codes is proposed, and the energy consumption of soft-decision decoding for NAND flash memory is analyzed. The first part of this dissertation is devoted to improving the informed dynamic scheduling (IDS) algorithms. We analyze the behavior of the residual belief propagation (RBP), which is the fastest IDS algorithm, and develop an improved RBP (iRBP) by avoiding the concentration of message updates at a particular node. We also study the syndrome-based mixed scheduling of the iRBP and the node-wise scheduling (NS). The proposed mixed scheduling outperforms all other scheduling methods tested in this work. The next part of this dissertation is to develop a conditional variable node update scheme for the a posteriori probability (APP) algorithm. The developed algorithm is robust to decoding failures and can reduce the dynamic power consumption by lowering switching activities in the LDPC decoder. To implement the developed algorithm, we propose a memory-efficient pipelined parallel architecture for LDPC decoding. The architecture employs FG-LDPC codes that not only show fast convergence speed and good error-floor performance but also perform well with iterative decoding algorithms, which is especially suitable for data storage devices. We also developed a rate-0.96 (68254, 65536) Euclidean geometry LDPC code and implemented the proposed architecture in 0.13-um CMOS technology. This dissertation also covers low-energy error correction of NAND flash memory through soft-decision decoding. The soft-decision-based error correction algorithms show high performance, but they demand an increased number of flash memory sensing operations and consume more energy for memory access. We examine the energy consumption of a NAND flash memory system equipping an LDPC code-based soft-decision error correction circuit. The sum of energy consumed at NAND flash memory and the LDPC decoder is minimized. In addition, the chip size and energy consumption of the decoder were compared with those of two Bose-Chaudhuri-Hocquenghem (BCH) decoding circuits showing the comparable error performance and the throughput. We also propose an LDPC decoder-assisted precision selection method that needs virtually no overhead. This dissertation is intended to develop high-performance and low-power error correction circuits for NAND flash memory by studying improved decoding and scheduling algorithms, VLSI architecture, and a read precision selection method.1 Introduction 1 1.1 NAND Flash Memory 1 1.2 LDPC Codes 4 1.3 Outline of the Dissertation 6 2 LDPC Decoding and Scheduling Algorithms 8 2.1 Introduction 8 2.2 Decoding Algorithms for LDPC Codes 10 2.2.1 Belief Propagation Algorithm 10 2.2.2 Simplified Belief Propagation Algorithms 12 2.3 Message-Passing Schedules for Decoding of LDPC Codes 15 2.3.1 Static Schedules 15 2.3.2 Dynamic Schedules 17 3 Improved Dynamic Scheduling Algorithms for Decoding of LDPC Codes 22 3.1 Introduction 22 3.2 Improved Residual Belief Propagation Algorithm 23 3.3 Syndrome-Based Mixed Scheduling of iRBP and NS 26 3.4 Complexity Analysis and Simulation Results 28 3.4.1 Complexity Analysis 28 3.4.2 Simulation Results 29 3.5 Concluding Remarks 33 4 A Pipelined Parallel Architecture for Decoding of Finite-Geometry LDPC Codes 36 4.1 Introduction 36 4.2 Finite-Geometry LDPC Codes and Conditional Variable Node Update Algorithm 38 4.2.1 Finite-Geometry LDPC codes 38 4.2.2 Conditional Variable Node Update Algorithm for Fixed-Point Normalized APP-Based Algorithm 40 4.3 Decoder Architecture 46 4.3.1 Baseline Sequential Architecture 46 4.3.2 Pipelined-Parallel Architecture 54 4.3.3 Memory Capacity Reduction 57 4.4 Implementation Results 60 4.5 Concluding Remarks 64 5 Low-Energy Error Correction of NAND Flash Memory through Soft-Decision Decoding 66 5.1 Introduction 66 5.2 Energy Consumption of Read Operations in NAND Flash Memory 67 5.2.1 Voltage Sensing Scheme for Soft-Decision Data Output 67 5.2.2 LSB and MSB Concurrent Access Scheme for Low-Energy Soft-Decision Data Output 72 5.2.3 Energy Consumption of Read Operations in NAND Flash Memory 73 5.3 The Performance of Soft-Decision Error Correction over a NAND Flash Memory Channel 76 5.4 Hardware Performance of the (68254, 65536) LDPC Decoder 81 5.4.1 Energy Consumption of the LDPC Decoder 81 5.4.2 Performance Comparison of the LDPC Decoder and Two BCH Decoders 83 5.5 Low-Energy Error Correction Scheme for NAND Flash Memory 87 5.5.1 Optimum Precision for Low-Energy Decoding 87 5.5.2 Iteration Count-Based Precision Selection 90 5.6 Concluding Remarks 91 6 Conclusion 94 Bibliography 96 Abstract in Korean 110 ๊ฐ์‚ฌ์˜ ๊ธ€ 112Docto
    corecore