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Abstract

The capacity of NAND flash memory has been continuously increased by aggressive

technology scaling and multi-level cell (MLC) data coding. However, it becomes

more challenging to maintain the current growth rate of the memory density mainly

because of degraded signal quality of sub-20 nm NAND flash memory. This disserta-

tion develops signal processing techniques to improve the signal reliability of MLC

NAND flash memory.

In the first part of this dissertation, we develop two threshold voltage distribution

estimation algorithms to compensate the effect of program-erase (PE) cycling and

charge loss in MLC NAND flash memory. The sensing directed estimation (SDE)

utilizes the output of multi-level memory sensing to estimate the means and the vari-

ances of the threshold voltage distribution that is modeled as a Gaussian mixture.

In order to reduce memory sensing overheads for the SDE algorithm, we develop

a decision directed estimation (DDE) that uses error corrected bit patterns for more

frequent updates of the model parameters. We also present a combined estimation

scheme that employs both the SDE and the DDE approaches to minimize the number

of memory sensing operations while maintaining the estimation accuracy. The effec-

tiveness of the SDE and the DDE algorithms is evaluated by using both simulated

and real NAND flash memory, and it is demonstrated that the proposed algorithms

can estimate the statistical information of threshold voltage distribution accurately.

The cell-to-cell interference (CCI) is one of the major sources of bit errors in
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sub-20 nm NAND flash memory and becomes more severe as the size of memory

cell decreases. In the second part of this dissertation, we develop a CCI cancellation

algorithm that is similar to interference cancellers employed in conventional commu-

nication systems. We first provide the experimental characterization of the CCI by

measuring the coupling coefficients from actual NAND flash memory with a 26 nm

process technology. Then, we present a CCI cancellation algorithm that consists of

the coupling coefficient estimation and the CCI removal steps. To reduce the number

of memory sensing operations, the optimal quantization schemes for the proposed

CCI canceller are also studied.

This dissertation also develops soft-information computation schemes in order to

apply soft-decision error correction to NAND flash memory. The probability density

function (PDF) of the CCI removed signal is quite different from that of the original

threshold voltage, which can be modeled as a Gaussian mixture. Thus, computing

soft-information, such as LLR (log likelihood ratio), with the CCI removed signal

is not straightforward. We propose two soft-information computation schemes that

combine CCI cancellation and soft-decision error correction. In the first approach,

we derive a mathematical formulation for the PDF of the CCI removed signal and

directly compute the LLR values by using it. In the second approach, CCI cancella-

tion and soft-information computation are jointly conducted. Based on the intensive

simulations, it is demonstrated that the reliability of NAND flash memory is signif-

icantly improved by applying the proposed signal processing algorithms as well as

soft-decision error correction.

Keywords : NAND flash memory, signal processing, threshold voltage distribution

estimation, cell-to-cell interference, soft-decision error correction

Student Number : 2009-20856
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Chapter 1

Introduction

High-density NAND flash memory devices are critical components for many applica-

tions from mobile devices to solid state drives (SSDs). The advances in the semicon-

ductor process technology have propelled the continued density growth of NAND

flash memory, which is well known as Moore’s law. Figure 1.1 shows the scaling

trend of two-bit MLC (multi-level cell) NAND flash memory [1]. In this figure, we

can find that the size of memory cell has been reduced by half approximately every

2.5 years. Besides technology scaling, the MLC data coding scheme that stores more

than one bits per cell doubles or even triples the capacity of NAND flash memory. As

a result, the capacity of NAND flash memory has been increased nearly 1,000 times

during the last decade.

Although the growth rate of NAND flash memory density has been successfully

maintained until the feature size of 20 nm, further process technology scaling is con-

sidered to be quite challenging due to the reliability issue. The threshold voltage

disturbance becomes quite large for sub-20 nm NAND flash memory because the
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Figure 1.1: Scaling trend of two-bit MLC NAND flash memory [1].

number of charges at each floating gate is too small. Figure 1.2 shows the expected

number of electrons per voltage level at the floating gate according to the design rule

[1]. For two-bit MLC NAND flash memory with 20 nm process technologies, around

100 electrons (about 25 electrons per level) can be stored at the floating gate, but

this number is reduced almost half for the 10 nm one. The number of electrons that

discriminates each voltage level is even more reduced by employing MLC data cod-

ing, which requires additional voltage margins. As a result, loss of a single electron

due to the data retention process causes a substantial change in the threshold voltage

distribution.

The cell-to-cell interference (CCI), which is caused by the capacitance coupling,

becomes one of the major sources of bit errors for sub-20 nm NAND flash memory.

It is well known that the amount of CCI is proportional to threshold voltage shifts

of the neighboring cells as well as the coupling coefficients [2]. Since the program-

ming and the erase voltages, which are usually quite high, are not scaled well, the

amount of threshold voltage shift of the interfering cell remains almost the same.

As the distance between two adjacent cells decreases, however, the coupling coef-

2



Design rule (nm)

10 20 30 40

N
u

m
b

er
 o

f 
el

ec
tr

o
n

s 
p

er
 l

o
g
ic

 l
ev

el

100

101

102

SLC (2-levels)

MLC (4-levels)

TLC (8-levels)

QLC (16-levels) 

Figure 1.2: The expected numbers of electrons per voltage level at the floating gate
of NAND flash memory [1].

ficients become larger, thus the amount of CCI increases rapidly. According to [3],

it is expected that the amount of the CCI is over 50 % of the total noise in NAND

flash memory with 20 nm process technologies. Although some cell structures have

been devised to reduce the CCI, removing the CCI is still very critical for sub-20 nm

NAND flash memory devices [3].

In order to solve the reliability problems of NAND flash memory, hard-decision

error correction employing BCH (Bose-Chaudhuri-Hocquenghem) or RS (Reed-Solo

mon) code has been widely used. This is because these codes can fix a small number

of bit errors quite efficiently and are relatively simple to implement [4, 5, 6, 7, 8].

As the decoding capability increases, however, the area and the power consumption

of the error correcting circuitry grow rapidly. Thus, hard-decision error correction is

not efficient for sub-20 nm NAND flash memory devices where the signal quality is

too low [9, 10, 11]. As a result, signal processing techniques as well as soft-decision

3



error correction are very needed.

This dissertation proposes several signal processing techniques for reliability im-

provement of high-density NAND flash memory. This dissertation addresses the fol-

lowing techniques:

• Threshold voltage distribution estimation to compensate the effect of charge

loss due to data retention process.

• Cell-to-cell interference cancellation to mitigate the effect of capacitance cou-

pling.

• Reliability information computation to apply soft-decision error correction to

NAND flash memory.

To provide statistical information on reliability, such as SNR (signal-to-noise ra-

tio), to signal processing and/or error correcting units, we have developed threshold

voltage distribution estimation algorithms. In the proposed schemes, the threshold

voltage distribution of actual NAND flash memory is modeled as a Gaussian mix-

ture, and the means and the variances of the Gaussian model are found. The sensing

directed estimation (SDE) algorithm conducts multi-level memory sensing and uti-

lizes the high precision sensing output to find the statistical information. Since the

SDE method requires extra energy consumption and latency for the memory sensing

operations, we also have developed a decision directed estimation (DDE) that utilizes

error corrected bit patterns.

We also provide the experimental characterization of the CCI that are observed

from actual NAND flash memory with a 26 nm process technology and develop a CCI

cancellation algorithm that is similar to the interference canceller employed in con-

ventional communication systems. The proposed algorithm consists of the coupling

4



coefficient estimation and CCI removal steps. The optimal memory sensing schemes

for CCI cancellation were also studied. In order to apply soft-decision error correc-

tion to NAND flash memory, soft-information, such as LLR (log-likelihood ratio),

computation schemes are also studied in this dissertation.

This dissertation is organized as follows. Chapter 2 contains brief introduction

to NAND flash memory and modeling of threshold voltage distribution. In Chap-

ter 3, threshold voltage distribution estimation algorithms are proposed. Chapter 4

addresses the statistical characterization of the cell-to-cell interference and proposes a

CCI cancellation algorithm. The soft-information computation schemes with/without

CCI cancellation are explained in Chapter 5. Finally, Chapter 6 concludes this disser-

tation.

Some of materials in this dissertation were presented in [12, 11, 13, 14, 15, 16,

17].
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Chapter 2

NAND Flash Memory Basics

This chapter contains a brief review of NAND flash memory. In Section 2.1, the mem-

ory structures, the multi-page programming scheme, and various noises of NAND

flash memory are explained. The threshold voltage distribution of two-bit MLC (multi-

level cell) NAND flash memory and its modeling are shown in Section 2.2.

2.1 Basics of NAND Flash Memory

2.1.1 NAND Flash Memory Structure

A block in NAND flash memory is a two-dimensional cell array that consists of

multiple word- and bit-lines as shown in Fig. 2.1. According to the organization of

bit-lines, NAND flash memory can be categorized as either the even/odd bit-line or

the all bit-line structure. In the even/odd bit-line structure, the cells on the even bit-

lines form even pages, while those on the odd bit-lines become odd ones [18, 19]. On

the other hand, there is no such distinction in the all bit-line structure [20, 21]. The

6
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Figure 2.1: Two-bit MLC NAND flash memory structure (all bit-line) and the pro-
gramming order.

even/odd structure requires less hardware than the all bit-line one because the page

buffers and the peripheral circuits are shared by the even and the odd pages. How-

ever, the all bit-line structure induces smaller cell-to-cell interference (CCI), which

is one of the major sources of bit errors in sub-20 nm NAND flash memory, than the

even/odd one.

2.1.2 Multi-Page Programming

In MLC NAND flash memory, the multi-page programming scheme is widely used

to reduce the variance of the threshold voltage signals while achieving a high write

throughput [19]. In this programming scheme, LSB (least significant bit) and MSB

(most significant bit) pages are programmed sequentially as shown in Fig. 2.2. During

the LSB page programming, a temporal state (‘0’ state in Fig. 2.2) is used instead of

‘00’ and ‘10’ states, and the result is similar to that of SLC (single-level cell) NAND

flash memory. At the MSB page programming step, the cells on the temporal state

are programmed to either the symbol 00 or 10, while those of the erased one (‘1’

state) are programmed to the symbol 01 or remain as the symbol 11. By adopting the

7
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Figure 2.2: Multi-page programming scheme.

multi-page programming method, the threshold voltage shift during the MSB pro-

gramming is reduced much when compared to the method that directly changes the

threshold voltage from the erased one to the symbol 01, 00, or 10. Since the amount

of CCI is proportional to the amount of threshold voltage shift for the interfering cell

during the MSB programming, the multi-page programming scheme is advantageous

in reducing the CCI.

When the cells are programmed, the incremental stair pulse programming (ISPP)

is widely used to achieve a tight threshold voltage bound [22]. In the ISPP, a verifica-

tion process is followed by the incremental programming to ensure that the threshold

voltage of the programmed cell is higher than the target voltage. In this program-

ming scheme, the threshold voltage of each target cell increases as much as ∆Vpp

and is compared to the target voltage at each iteration. If the programmed voltage is

higher than the target one, the programming operation stops. It is well known that the

ideal ISPP results in a uniform distribution as shown in Fig. 2.2. In this dissertation,

the target voltages are denoted as V01, V00, and V10 depending on the symbol of the

programmed cell.
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Figure 2.3: Cell-to-cell interference model in the even/odd bit-line structure.

2.1.3 Cell-to-Cell Interference

The cell-to-cell interference is caused by the parasitic capacitor coupling effect be-

tween the adjacent cells. Thus, when one cell is programmed, the threshold voltages

of both the target and the surrounding cells increase [2]. During the MSB program-

ming of the target cell, the ISPP neutralizes the CCI induced by the previously pro-

grammed neighboring cells. Thus, only the surrounding cells that are programmed

after the victim cell cause the CCI. The number of interfering cells depends on the bit-

line structure. In the even/odd bit-line structure where the even cells are programmed

earlier than the odd ones, the even victim cells are affected by not only the three cells

from the next word-line, which is the (m+ 1)-th word-line in Fig. 2.3, but also the

two cells on the same word-line. On the other hand, the odd victim cells receive the

interference only from the three cells on the next word-line [18]. In the all bit-line

structure, in which the even and the odd pages are unified, a victim cell receives the

CCI only from the three cells on the next word-line [20, 21].

The amounts of interference that the (m,n)-th (on the even bit-line) and (m,k)-th

(on the odd bit-line) victim cells receive, where m denotes the word-line index and n

9



and k represent the bit-line indices, can be represented as the linear combinations of

the threshold voltage shifts of neighboring cells. Thus, the CCI for the even and the

odd victim cells become

VCCI,even[m,n] =Cx · (∆V [m,n−1]+∆V [m,n+1])+Cy ·∆V [m+1,n] (2.1)

+Cxy · (∆V [m+1,n−1]+∆V [m+1,n+1])

and

VCCI,odd [m,k] =Cxy · (∆V [m+1,k−1]+∆V [m+1,k+1])+Cy ·∆V [m+1,k], (2.2)

respectively, where ∆V [m,n−1] is the threshold voltage shift of the left neighboring

cell for the (m,n)-th victim cell, and so on. The coefficients, Cx,Cy, and Cxy, are the

coupling ratio, and they are determined by the geometry and the dielectric constant

of the material for spacing.

2.1.4 Data Retention

The data retention problem is caused by charge loss at the floating gate of each mem-

ory cell. As the feature size of NAND flash memory decreases, the number of elec-

trons at each cell’s floating gate becomes smaller, and as a result, the data retention

induced distortion becomes more serious [23, 24]. As illustrated in Fig. 2.4, the data

retention process not only negatively shifts the threshold voltage but also increases

the variance of the distribution.

According to [24], the data retention induced noise can be modeled as a Gaussian

10
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Figure 2.4: Threshold voltage distribution shift due to data retention in MLC NAND
flash memory.

random variable. The mean and the standard deviation shifts are

mr =−αm(Npe,vi) · ln
(

1+
t
t0

)
(2.3)

and

σr = ασ (Npe,vi) · ln
(

1+
t
t0

)
, (2.4)

respectively, where αm and ασ are positively valued functions of the number of PE

(program-erase) cycles Npe and the initial threshold voltage vi. Note that t0 is the ini-

tial time and can be set to 1 hour. In this model, the mean and the standard deviation

shifts are expressed via power law functions of the initial threshold voltage and the

number of PE cycles. Also, more importantly, both the mean and the standard de-

viation shifts are proportional to the logarithms of the data retention time. Thus, we

have

σr = β (Npe,vi) ·mr. (2.5)

From (2.5), we can find that σr is linearly proportional to mr, and β (Npe,vi) is the
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coefficient of proportionality. For simplicity, we denote β (Npe,vi) as β in this disser-

tation.

2.2 Threshold Voltage Distribution of NAND Flash Mem-

ory and Signal Modeling

This section illustrates the threshold voltage distributions obtained from actual two-

bit MLC NAND flash memory devices with 20 nm process technologies, and also

describes the signal modeling.

2.2.1 Threshold Voltage Distribution and Gaussian Approximation

The threshold voltage distributions of NAND flash memory cells with various PE

cycling and data retention conditions are shown in Fig. 2.5. The threshold voltages

are measured with the precision of 0.1 V by using a manufacturer defined function

that can alter the memory sensing reference voltages (MSRVs). The initial threshold

voltage distribution is obtained from the fresh memory cells. The threshold voltage

distributions of non-initial states were obtained after 1.0 K, 1.5 K, or 3.0 K times

of PE cycling and 10 hours of baking process at 125 ◦C, which is equivalent to one

year data retention. Since the memory device cannot measure the voltages below -1

V, this voltage region is not drawn in this figure. As the number of PE cycles grows,

the distribution becomes wider, which significantly increases the raw bit error rate

(RBER) of the memory devices. Also, the baking process or the data retention causes

negative shifts of the threshold voltage distributions.

The threshold voltage distribution of NAND flash memory cells can be approxi-

mated to a mixture of Gaussian distributions. When the threshold voltage distribution

12



Threshold voltage (V)

0 1 2 3 4 5

N
u
m

b
e
r 

o
f 

c
e
ll

101

102

103

104

0K no-bake 

1K bake 

1.5K bake 

3K bake 

Figure 2.5: Threshold voltage distribution of real NAND flash memory according to
the number of PE cycles.
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Figure 2.6: Q-Q plot for the threshold voltage distribution versus its Gaussian mixture
model.

of each symbol is modeled as a Gaussian function, the likelihood function for a given

input symbol j can be written as

f (y|x = j) =
1√

2πσ2
j

e
−

(y−m j)
2

2σ2
j , (2.6)

for j = 0,1,2, and 3. Note that x is the input symbol and y represents the threshold
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voltage, while m j and σ j are the mean and standard deviation of the Gaussian distri-

bution, respectively. In order to compare the true threshold voltage distribution with

its Gaussian mixture model, the Q-Q plot is illustrated in Fig. 2.6. In this figure, the

x quantiles are sampled from the modeled distribution, while the y values are the ob-

served threshold voltages. Since the points in the Q-Q plot almost lie on the line of

y = x, we consider that the two distributions are quite close [25]. Since a Gaussian

distribution is completely characterized by only two parameters, the approximation

using the Gaussian mixture simplifies the modeling process very much.

2.2.2 Modeling of Threshold Voltage Signal

The output signal obtained from two-bit MLC NAND flash memory can be modeled

as shown in Fig. 2.7. Before programming the memory cells, an erase operation is

needed to remove charges stored in each cell’s floating-gate. The threshold voltage

distribution of the erased cells tends to be the Gaussian due to the variability in the

erase process [26]. When programming the memory cells, the multi-page program-

ming explained in Section 2.1 is used. In this programming scheme, the LSB pages

are programmed before the MSB ones. The programming operations in NAND flash

memory induce the CCI. We denote the output signal after the LSB programming as

VL. The mean of VL is either VL0 or VL1 depending on the cell’s LSB as shown in Fig.

2.2. When the MSB page programming is conducted, the threshold voltage becomes

VM. The target cell is also affected by the CCI that is induced during the MSB page

programming of neighboring cells. Note that we denote the amount of interference as

VCCI . The data retention problem results in negative shift of the threshold voltage, VR.

Usually, the CCI increases the threshold voltages, and its magnitude becomes larger

as the feature size of memory cells decreases. On the other hand, VR has a negative
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Figure 2.8: 8-level voltage sensing in two-bit MLC NAND flash memory.

value, and its magnitude increases with the number of PE cycles and the retention

time. After experiencing charge loss, the threshold voltage of one cell becomes

VT H =VM +VCCI +VR. (2.7)

The memory read operation induces the quantization effect on the threshold volt-

age signal, and as a result, VQ is observed after memory sensing operations. Note

that VQ depends on the number of memory sensing operations. Figure 2.8 illustrates

8-level memory sensing in two-bit MLC NAND flash memory. While changing the

reference voltage from q0 to q6, the memory sensing results, which determine the
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Figure 2.9: Threshold voltage distributions of simulated two-bit MLC NAND flash
memory.

voltage regions of the cells, are obtained. For example, the memory sensing output of

‘1001’ indicates that the cell has a threshold voltage in the range of (q1,q2], and so

on. Each voltage region has one of eight representative values r0∼ r7, which becomes

the quantized threshold voltage VQ.

In order to visualize the above modeling process, an example of simulated thresh-

old voltage distribution is shown in Fig. 2.9. One block of hypothetical NAND flash

memory has 64 K bit-lines and 64 word-lines. The erase operation yields the symbol
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11 whose PDF is a Gaussian distribution with the mean and the standard deviation of

-2.0 V and 0.40 V, respectively. The symbols 01, 00, and 10 are programmed with the

target voltages of 0.4 V, 1.9 V, and 3.5 V, respectively. We assume that the coupling

coefficients for the x, y, and xy directions are the Gaussian random variables whose

means are 0.0810, 0.1231, and 0.023, respectively. The standard deviation values of

the coupling coefficients are set to 20 % of their means. Note that the mean and stan-

dard deviation values of the coupling coefficients are obtained from actual NAND

flash memory chips with a 26 nm process technology, which will be explained in

Section 4.2. The data retention induced noise is approximated as a Gaussian random

variable according to [27].
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Chapter 3

Threshold Voltage Distribution
Estimation

3.1 Introduction

The reliability of data in NAND flash memory employing sub-20 nm process tech-

nology is seriously challenged by the data retention problem. As the memory cell

size decreases, not many electrons are stored at the floating-gate of each cell, and as a

result, even a small number of leakage charges can cause significant distortion in the

threshold voltage distribution [3]. Especially, this problem becomes more serious as

MLC (multi-level cell) and TLC (triple-level cell) data coding schemes are employed

for density increase. Since the data retention process not only widens but also shifts

the threshold voltage distribution, it is difficult to control the amount of distortion by

employing the ISPP (incremental step pulse programming) [22] that is widely used

for minimizing the PE (program-erase) cycling induced noises.

Several works have been conducted to solve the data retention problem. In the
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flash correct-and-refresh (FCR) scheme, every programmed page is periodically read

and remapped before it accumulates data retention induced bit errors [28]. This scheme

also reprograms or refreshes the erroneous memory cells to conduct remapping less

frequently. However, reprogramming itself induces cell-to-cell interference (CCI),

which is one of the major sources of bit errors in sub-20 nm NAND flash memory.

Thus, the FCR method yields diminishing returns as the amount of CCI becomes

larger in high-density NAND flash memory. Most of all, the FCR scheme can only

be applied to systems that are always powered on. In [29], a moving read technique

that adjusts the memory sensing reference voltages (MSRVs) was proposed. This

technique observes the changes in the number of cells that are sensed as the sym-

bol 10, which corresponds to the highest threshold voltage level in MLC NAND

flash memory. Even though this method shows improved BER (bit error rate) per-

formance when applied to hard-decision error correction, it does not provide SNR

(signal-to-noise ratio) information that is essential for soft-decision error correction

[30]. Note that conventional hard-decision error correcting algorithms, such as BCH

(Bose-Chaudhuri-Hocquenghem) and RS (Reed-Solomon) codes, are no more effi-

cient for high-density NAND flash memory devices [5, 8].

In this chapter, we have developed parameter estimation algorithms to find the

statistical information of the threshold voltage distribution. The sensing directed es-

timation (SDE) algorithm approximates the threshold voltage distribution as a Gaus-

sian mixture and finds the best-fit mean and standard deviation values by comparing

the actual distribution and its model. The SDE scheme does not utilize any pilots or

known bit patterns but employs extra memory sensing operations. Since the SDE al-

gorithm requires extra delay and energy consumption for memory sensing operations,

we also develop a decision directed estimation (DDE) algorithm that does not demand

19



any sensing overheads. The DDE algorithm also adopts the Gaussian mixture model

and compares the input and the output data of the error correction circuit to find the

best-fit parameters of the model. Since the DDE method assumes successful error

correction, we need to use the SDE algorithm when the error correction fails. To this

end, we also propose a combined threshold voltage distribution estimation scheme

that utilizes both the SDE and DDE methods. The proposed algorithms are evalu-

ated by using the data samples obtained from both simulated and actual NAND flash

memory, and the accuracy of estimated means and standard deviations is assessed.

This chapter is organized as follows. In Section 3.2, we propose a sensing directed

estimation algorithm and show experimental results. A decision directed estimation

algorithm is proposed in Section 3.3. The experimental results for the DDE algorithm

are also shown in this section. Finally, concluding remarks are made in Section 3.4.

3.2 Sensing Directed Estimation of Threshold Voltage Dis-

tribution

One simple approach for estimating the threshold voltage distribution is to build a

relative frequency histogram by conducting memory sensing operations many times

while changing the reference voltage. For example, if the MSRV is altered by 0.1 V at

each sensing operation, we can obtain a quite accurate threshold voltage distribution,

but this straightforward approach demands more than 50 times of memory sensing

operations. Apparently, it is desired to reduce the number of memory sensing opera-

tions for the sake of minimizing the access time and energy consumption. According

to [31], one voltage sensing operation takes approximately 15 µs and consumes the

energy of 0.81 µJ per page for a 20 nm-class NAND flash memory device whose
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page size is 8 KBytes.

In this section, we propose the sensing directed estimation algorithm to estimate

the mean and standard deviation values that are needed to model the threshold voltage

distribution. The measured data are obtained by conducting a fairly small number of

voltage sensing operations for a page with different MSRVs and used to determine the

parameters of the Gaussian mixture model. We use the gradient descent (GD) and the

Levenberg-Marquardt (LM) methods for the parameter search. The proposed SDE

algorithms are invoked only when the currently stored means and standard deviations

are no longer valid due to PE cycling and/or the data retention induced distortion,

which causes error correction failures or too many iterations for iterative decoding

[11]. If the proposed algorithms find accurate signal statistics, more reliable hard-

decision data or soft-information can be fed to a hard- or soft-decision decoder, thus

error correction is more likely to be successful.

3.2.1 Cost Function

The cost function is needed to guide the search algorithms by assessing the closeness

between the data and the model. In this work, the cost function is defined by using the

squared Euclidean distance between the true distribution and the modeled one. Con-

sider two-bit NAND flash memory whose threshold voltage distribution is shown in

Fig. 3.1. By conducting seven voltage sensing operations with the reference voltages

of q1, q2, · · · , and q7, we can divide the voltage region into eight levels. Note that q0

and q8 correspond to −∞ and ∞, respectively. Let us define Nri (for i = 0,1,2, · · · ,

and 7) as the number of cells in a page whose threshold voltages are in the range of

(qi,qi+1], then it can be determined by counting the number of cells at each voltage

level. This process is equivalent to building a relative frequency histogram for the
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Figure 3.1: Pictorial representation of the cost function.

threshold voltage. Similarly, let N̂ri be the estimator of Nri, and it provides the rela-

tive frequency histogram obtained from the Gaussian mixture model. If the modeled

distribution is close enough to the measured one, the difference between Nri and N̂ri

will be minimized.

In the Gaussian mixture model, N̂ri can be computed as

N̂ri = Nw0 ·
{

Q(
qi−m0

σ0
)−Q(

qi+1−m0

σ0
)

}
+Nw1 ·

{
Q(

qi−m1

σ1
)−Q(

qi+1−m1

σ1
)

}
(3.1)

+Nw2 ·
{

Q(
qi−m2

σ2
)−Q(

qi+1−m2

σ2
)

}
+Nw3 ·

{
Q(

qi−m3

σ3
)−Q(

qi+1−m3

σ3
)

}
,

where

Q(x) =
1√
2π

∫
∞

x
exp(−u2

2
)du, (3.2)

In Eq. (3.1), m j and σ j are the mean and standard deviation values of the threshold

voltage for the input symbol j, respectively. Nw j is the number of cells that were

written as the symbol j during the programming operation. In this work, we assume
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that Nw j is counted before the programming operation and written at the spare region

of the page. By letting zi, j =
qi−m j

σ j
, we can simplify Eq. (3.1) as

N̂ri =
3

∑
j=0

Nw j ·
{

Q(zi, j)−Q(zi+1, j)
}
. (3.3)

When we apply memory sensing operations with the MSRVs of q1 to qNs−1, the

voltage region is divided into Ns distinct ones. In the determination of qi, the cur-

rently stored mean and variance values that were obtained during the latest parameter

estimation process can be used, thus choosing qi is inherently an adaptive process. In

this work, the hard-decision boundaries as well as the points that evenly divide these

boundaries are used as qi. Using the above equations, we can define a cost function

as

CNs =
1
2

Ns−1

∑
i=0

(
Nri− N̂ri

N

)2

, (3.4)

where N is the total number of cells in each page. The cost function corresponds to

the squared Euclidean distance between the two histograms [32]. Note that the cost

function also depends on the number of voltage levels Ns. For example, C8 and C12

are two different cost functions. By minimizing the cost function, we can find the

best-fit parameters of the Gaussian mixture model.

(m∗0∼3,σ
∗
0∼3) = argminCNs(m0∼3,σ0∼3) (3.5)

3.2.2 Gradient Descent Method based Parameter Search

Since the exhaustive search to find the global minimum of the cost function is imprac-

tical, we employ the gradient descent method, which is one of the simplest optimiza-
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tion techniques. First, let x = [m0, · · · , m3, σ0, · · · , σ3]
T be the parameter

vector in Eq. (3.5), then the cost function can be rewritten as

CNs(x) =
1
2

GNs(x)T ·GNs(x), where GNs(x) =
1
N



Nr0− N̂r0(x)

Nr1− N̂r1(x)
...

NrNs−1− N̂rNs−1(x)


. (3.6)

The gradient descent method produces a sequence x(k) that minimizes CNs(x) by

using the following equation:

x(k+1) = x(k)−µ∇CNs(x(k)). (3.7)

Note that µ represents the constant step size. The gradient of CNs(x) or ∇CNs(x) is

equal to JGNs(x)T ·GNs(x), where JGNs(x) denotes the Jacobian matrix of GNs(x). By

reformulating the equations, we can obtain

JGNs(x)
T =

1
N



α(z0,0) α(z1,0) · · · α(zNs−1,0)

...
...

...
...

α(z0,3) α(z1,3) · · · α(zNs−1,3)

β (z0,0) β (z1,0) · · · β (zNs−1,0)

...
...

...
...

β (z0,3) β (z1,3) · · · β (zNs−1,3)


, (3.8)

where

α(zi, j) =−
Nw j√
2πσ j

(e−
zi, j

2

2 − e−
zi+1, j

2

2 ) (3.9)
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and

β (zi, j) =−
Nw j√
2πσ j

(zi, je−
zi, j

2

2 − zi+1, je−
zi+1, j

2

2 ). (3.10)

If Ns is equal to 4, JGNs(x)T is an 8 by 4 matrix whose rank is at most 4. Thus,

∇CNs(x) (= JGNs(x)T ·GNs(x)) can be a zero vector even if GNs(x) is not a zero

vector, which means that the proposed algorithm can converge to non-optimal points.

To make JGNs(x) be a full rank matrix, Ns needs to be larger than or equal to 8.

The entire algorithm is shown in Algorithm 1. Note that ‖∇CNs(x)‖2 is used as

the stopping criterion, thus the iteration stops when this value is smaller than η . The

initial trial parameter is denoted as x(0), and the currently stored mean and standard

deviation values can be used for it. For example, if the proposed estimation methods

are invoked for the first time, the means and standard deviations of initial threshold

voltage distribution are used for x(0). Since the GD based method uses only the first

order derivatives, it usually converges slowly.

Algorithm 1 Gradient descent method based parameter search.

Initialization: µ = 1.0 and x = x(0)
k← 0
while ‖∇CNs(x)‖2 ≥ η and k < Max iter do

compute ∇CNs(x) using Eq. (3.8)
x← x−µ∇CNs(x)
k← k+1

end while

3.2.3 Levenberg-Marquardt Method based Parameter Search

The Levenberg-Marquardt method is a hybrid of the gradient descent and the Newton

algorithms, and it is widely used in many applications for solving non-linear least
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squares problems [33]. Usually, the LM method shows faster convergence speed than

the GD one.

The LM optimization method operates as follows [33, 34]:

x(k+1) = x(k)− (HGNs(x)+λ I)−1 ·∇CNs(x(k)). (3.11)

Note that HGNs(x) and I represent the Hessian of GNs(x) and an 8 by 8 identity ma-

trix, respectively, and λ is a positively valued step size. In order to compute HGNs(x)

exactly, the second order derivatives are required, which demands a high computa-

tional overhead. However, HGNs(x) can be approximated to JGNs(x)T · JGNs(x), thus

Eq. (3.11) can be rewritten as

x(k+1) = x(k)− (JGNs(x)
T · JGNs(x)+λ I)−1 ·∇CNs(x(k)). (3.12)

During each iteration, the step size λ is updated, and we adopt a simple step size

updating algorithm presented in [35]. The LM method based parameter estimation

is described in Algorithm 2. If the estimation error value of the current parameter

vector, CNs(xlm), is smaller than that of the previous one, errp, we accept the update

and decrease λ by a factor of ν . Otherwise, we retract the update and increase λ by

the same factor. In this work, ν is set to 10 by referring [35].

Table 3.1 shows the number of arithmetic operations for each iteration of the GD

and the LM based parameter estimation algorithms. Note that except for the matrix

inversion, small constant terms are ignored. We assume that the exponential and the

Q-functions are implemented by using the look-up tables (denoted as ‘LUT’ in Table

3.1). The total number of arithmetic operations for the GD based algorithm is the
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Algorithm 2 Levenberg-Marquardt method based parameter search.

Initialization: λ = 0.1, ν = 10 and x = x(0)
updateFlag← 1
errp←CNs(x)
k← 0
while ‖∇CNs(x)‖2 ≥ η and k < Max iter do

if updateFlag == 1 then
compute JGNs(x), GNs(x) and ∇CNs(x)

end if

solve (JGNs(x)
T · JGNs(x)+λ I) ·4x =−∇CNs(x)

xlm← x+4x
err←CNs(xlm)

if err < errp then
x← xlm, λ ← λ

ν
, errp← err

updateFlag← 1
else

λ ← νλ

updateFlag← 0
end if
k← k+1

end while

Table 3.1: The number of arithmetic operations for each iteration of the GD and the
LM based parameter estimation algorithms

ADD MUL DIV LUT

zi, j, Q(zi, j), exp(
z2

i, j
2 ) 4Ns 0 4Ns 8Ns

α(zi, j), β (zi, j) 8Ns 12Ns 0 0

GNs(x) 8Ns 4Ns 0 0

∇CNs(x), ‖∇CNs(x)‖2 9Ns 9Ns 0 0

GD total 29Ns 25Ns 4Ns 8Ns

LM total 93Ns + d83

3 e 89Ns + d83

3 e 4Ns + d83

3 e 8Ns
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sum of data in the first four rows. In the LM based method, the number of arithmetic

operations for the matrix-matrix multiplication (64Ns) and the matrix inversion (d83

3 e)

is added to that of the GD based one. We assume that the matrix inversion employs

the Gaussian-Jordan elimination.

3.2.4 Experimental Results

We conducted experiments in order to evaluate the performance of the SDE al-

gorithms. We used data samples that were obtained from the simulated NAND flash

memory model and the actual NAND flash memory devices. The simulated two-bit

MLC NAND flash memory is generated according to the model described in Chapter

2.2 [36, 27], while NAND flash memory with a 20 nm technology is used for the

real devices. In both cases, we assume the worst case scenario that the parameter es-

timation process is invoked for the first time, thus the means and variances of initial

threshold voltage distribution for NAND flash memory devices are used for x(0).

3.2.4.1 Parameter Estimation with Simulated NAND Flash Memory

To study the convergence capability and speed, the proposed estimation methods are

applied to simulated NAND flash memory whose PE cycle and retention time are set

to 5,000 times and 64 K hours (7.3 years), respectively. Note that most two-bit MLC

flash memory devices only allow 3,000 times of PE cycles [37]. In this condition, the

mean values of the symbol 1, 2, and 3 are shifted as much as -0.36 V, -0.48 V, and

-0.60 V, respectively, as shown in Fig. 3.2. The standard deviations are changed as

much as 0.027 V, 0.037 V, and 0.048 V, respectively. While changing Ns from 8 to

16, we assess the convergence characteristics of the proposed algorithms. The vertical

lines in Fig. 3.2 represent the sensing reference voltages. Among them, the solid lines
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Figure 3.2: The simulated and estimated threshold voltage distributions of NAND
flash memory with PE cycles of 5,000 times and the data retention time of 64K hours.

are the hard-decision boundaries of the initial distribution, while the other reference

voltages (the dotted lines) are determined by uniformly dividing two adjacent hard-

decision boundaries.

The distributions of simulated (blue solid curves), initial (dotted curves), and es-

timated (curves with markers) threshold voltages are shown in Fig. 3.2. When the

number of voltage levels is larger than or equal to 12, the estimated distributions fol-

low the simulated ones very closely, and we can find that both estimation algorithms

converge to the global optimum points. However, no algorithm can find the optimum

points when the number of voltage levels is 8.

In Fig. 3.2, it is shown that the threshold voltage distribution shifts to the left

and widens quite substantially after 64 K hours of data retention. When the distri-

bution is extremely left-shifted, the memory sensing operations with high reference

voltages yield no additional information about the true distribution. It is because the

number of cells between these voltage levels is almost zero. We can consider the
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voltage level with no information as the degenerate one. For example, when Ns is

16, almost no cells exist in the three right-most voltage levels, and they provide not

much additional information for the estimation. When the ith voltage level is the de-

generate one, the ith column of JGNs(x)T in Eq. (3.8) becomes a zero vector because

α(zi, j) and β (zi, j) are almost zeros as x approaches the optimal point. If the number

of degenerate voltage levels increases, the rank of JGNs(x) can be less than 8 and the

proposed algorithms cannot converge. However, even for the 8 voltage-level case, the

optimal parameters can be found if there exist no degenerate voltage levels.

Figure 3.3(a) shows the surface plot for C12(x), which measures the distribution

in 12 levels, when the number of PE cycles and retention time are 5,000 times and 64

K hours, respectively. We obtained this plot by changing m1 (x axis) and m3 (y axis)

while the other parameters were set to the optimal ones. Since the cost function is

not a convex function, the proposed algorithms can settle down to a local minimum if

the initial point x(0) (red dot in Fig. 3.3(a)) is far away from the optimal one. In most

cases, however, x(0) is located near the optimal point because the parameter estima-

tion algorithms can utilize the previously determined mean and standard deviation

values. When the parameter estimation fails, we may retry it after changing the sens-

ing reference voltages to eliminate degenerate voltage levels. One simple strategy for

adjusting the MSRVs in the retrial process is to shift them into the negative direc-

tion with a fixed amount. For example, the right most degenerate voltage level of the

8-level case can be removed if we move all the reference voltages by -0.2 V. Then,

the proposed algorithms can converge. Figure 3.3(b) shows the surface plot for C8(x)

with one degenerate voltage level. Since at least eight non-degenerate voltage levels

are needed to find the unique solution vector of eight parameters, the rank deficiency

due to the degenerate voltage level causes infinitely many solutions for the equation
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Figure 3.3: Error surface plot for (a) C12(x) and (b) C8(x).

of ∇C8(x) = 0. As shown in Fig. 3.3(b), there exist many minimum points approxi-

mately along the straight line, and the proposed algorithms cannot find the optimum

one.
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Figure 3.4: Learning curves of the proposed parameter estimation algorithms with Ns
of 12 or 16.

In Fig. 3.4, C12(x) and C16(x) are plotted according to the iteration. Regardless of

Ns, the LM based estimation algorithm converges much faster than the GD based one.

However, the computational complexity for each iteration of the LM based method is

a few times larger than that of the GD based one due to the matrix multiplication and

inversion. In this figure, we can also find that the final estimation error value of the 12

voltage-level case is much smaller than that of the 16 voltage-level one. But this does

not imply that the estimation with 12 voltage levels is better than that with 16 levels

because C12(x) and C16(x) are basically different cost functions. For small Ns, the

true and the estimated distributions are compared less strictly, while the comparison

is conducted more strictly when Ns is large. When C12(x) and C16(x) are computed

with the same distributions, the former is usually smaller than the latter.

We apply the proposed parameter estimation algorithms to hypothetical NAND

flash memory whose retention time varies from 1 K to 256 K hours (29.2 years) while

the number of PE cycles is fixed to 5,000 times. The amounts of mean and standard

deviation shifts due to the data retention time are plotted in Fig. 3.5 and 3.6. When
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Figure 3.5: The amount of mean shift for each symbol when increasing the data
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Figure 3.6: The amount of standard deviation change for each symbol when increas-
ing the data retention time.

we observe the mean of the symbol 3 in Fig. 3.5, it is changed about 14 %, from

4.60 V to 3.94 V, by the retention of 256 K hours. The standard deviation of the

symbol 3 shown in Fig. 3.6 grows about 41 %, from 0.128 V to 0.181 V, which can

be considered as 3.0 dB increase in noise power. When the retention time is larger

than 256 K hours, the parameter estimation algorithms fail to converge, thus we did

not draw the figure beyond this point.
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Figure 3.7: Estimation errors for the mean when increasing the data retention time.

In order to evaluate the accuracy of the estimated parameters, the estimation er-

rors for the mean and the standard deviation are defined as follows:

Estimation error for the mean =
1
4

3

∑
j=0

∣∣m j− m̂ j
∣∣ , (3.13)

Estimation error for the standard deviation =
1
4

3

∑
j=0

∣∣σ j− σ̂ j
∣∣ .

In Eq. (3.13), m j and σ j are the actual mean and standard deviation, while m̂ j and

σ̂ j are the estimated ones. For comparison purpose, we also compute the estimation

errors when the means and standard deviations of the initial voltage distribution are

used for m̂ j and σ̂ j, respectively.

Figure 3.7 shows the estimation error (V) for the mean when increasing the data

retention time. When there is no parameter estimation (denoted as ‘Total change’ in

Fig. 3.7), the estimation errors are in the range of 0.2 V to 0.5 V, and they grow almost

linearly with the retention time. When the retention time is smaller than 256 K hours,

the parameter estimation with 12 or 16 voltage levels results in the estimation error
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Figure 3.8: Estimation errors for the standard deviation when increasing the data
retention time.

below 0.01 V, while the error is quite large for the 8 voltage-level case.

The estimation error (V) for the standard deviation is drawn in Fig. 3.8. The

errors for the unestimated distributions are in the range of 0.02 V to 0.05 V and

linearly increase with the retention time. When Ns is 8, the estimation errors for the

proposed algorithms are even larger than those of the initial distribution, which means

that the proposed algorithms converge to the non-optimum points. We find that at

least 12 voltage sensing levels are needed for fairly correct estimation of the standard

deviation.

Figure 3.9 illustrates the required number of iterations until both methods con-

verge. Note that the maximum number of iterations (Max iter in Algorithm 1 and

2) is set to 200. In most cases, the GD based method requires more iterations than

the LM based one, and their difference becomes larger as the data retention time in-

creases. According to Table 3.1, one iteration of the LM based method requires a few

times more arithmetic operations than the GD based one. Thus, in most cases, the

total amount of arithmetic operations for the LM based method is smaller than that
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Figure 3.9: Number of iterations when increasing the data retention time.

of the GD based one.

3.2.4.2 Parameter Estimation with real NAND Flash Memory

We apply the proposed parameter estimation algorithms to the data samples that are

obtained from the actual two-bit MLC NAND flash memory devices with a 20 nm-

class process technology. The numbers of word- and bit-lines are the same as those

of the simulated one; however, this memory employs the even/odd bit-line structure.

In order to obtain the real mean and standard deviation data, the threshold voltages

are measured with the precision of 0.1 V. Note that the memory device used in this

work supports a manufacturer defined function that can alter the sensing reference

voltages. The initial threshold voltage distribution is obtained from the fresh memory

cells. After 1.0 K, 1.5 K, or 3 K times of PE cycling and 10 hours of baking process

at 125 ◦C, the threshold voltage distributions of non-initial states were also obtained.

Table 3.2 shows the estimation errors. During the experiments, the number of

voltage levels is fixed to 12. Note that ‘m’ and ‘σ ’ on the ‘Total change’ columns de-

note the average mean and standard deviation shifts from the initial threshold voltage
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Table 3.2: The estimation errors and the number of iterations (Iter.) of the SDE algo-
rithm when applied to real NAND flash memory

Even page Odd page

Total change GD LM Total change GD LM

1.0K

m 0.1091 0.0095 0.0094 0.1023 0.0180 0.0193

σ 0.0125 0.0103 0.0101 0.0256 0.0160 0.0125

Iter. N/A 67.7 4.02 N/A 51.8 4.51

1.5K

m 0.1095 0.0112 0.0111 0.1013 0.0175 0.0186

σ 0.0190 0.0102 0.0100 0.0338 0.0121 0.0113

Iter. N/A 80.6 4.02 N/A 65.7 4.47

3.0K

m 0.0889 0.0095 0.0095 0.0878 0.0165 0.0167

σ 0.0327 0.0077 0.0076 0.0553 0.0129 0.0128

Iter. N/A 94.8 4.02 N/A 90.8 4.47

distribution after applying PE cycling and the data retention process. Similar to the

simulated memory case, the proposed parameter estimation algorithms work well.

We can find that the estimation errors for the mean and the standard deviation are

less than 0.02 V in every case.

3.3 Decision Directed Estimation of Threshold Voltage Dis-

tribution

In this section, we propose a decision directed estimation algorithm that does not

require extra memory sensing operations. We explain the basic idea of the proposed

method, and then apply it to two-bit MLC NAND flash memory. We also propose

a combined threshold voltage distribution estimation scheme that employs both the

SDE and the DDE based approaches.
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Figure 3.10: Threshold voltage distribution shift due to data retention in SLC NAND
flash memory

3.3.1 Basic Idea

The decision directed estimation algorithm is inspired by the adaptive decision feed-

back equalizers that are widely used in communication systems [38, 39]. In the de-

cision feedback equalizers, the reference data is provided by decoding the received

data. The proposed DDE algorithm also updates the parameters of the model using

the bit error patterns. Unlike the SDE algorithm that is triggered by unsuccessful er-

ror correction, the proposed method operates at successful page read operations and

allows more frequent parameter updates. Besides the error corrected bit patterns, this

method assumes the threshold voltage distribution as a Gaussian mixture and utilizes

the linear relation between the mean and standard deviation shifts.

Consider a threshold voltage distribution of SLC (single-level cell) NAND flash

memory shown in Fig. 3.10. Assume that the initial threshold voltage distribution is

shifted to the negative direction because of the data retention problem, which causes
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unbalanced bit errors if the quantization boundary remains the same. Let Ne1 be the

number of cells that were initially programmed as the symbol 1 but read as the symbol

0. Ne0 is defined as the number of bit errors converted from 0 to 1. If error correction

is successful, we can obtain Ne1 and Ne0 by comparing the input and the output of the

error correction circuit. As data retention time elapses, Ne1 increases gradually but

Ne0 may decrease and become 0. As a result, Ne1 provides more reliable information

than Ne0. We estimate Ne1 by using the partial CDF (cumulative density function) of

the modeled Gaussian distribution as follows:

Ne1 = Nw1 · {1−Q(z1)} , (3.14)

where

z1 =
q−m1

σ1
. (3.15)

Note that Nw1 is the number of cells that were written as the symbol 1 during the

programming operation. Nw1 can be counted from the error corrected bit pattern. In

Eq. (3.15), m1 and σ1 represent the mean and the standard deviation of the threshold

voltage distribution for the input symbol 1, and they can be represented as

m1 = mi1 +∆m1 (3.16)

and

σ1 = σi1 +∆σ1, (3.17)

where mi1 and σi1 denote the initial mean and standard deviation values, respectively.

Since the inverse Q-function, Q−1(x), is well defined in the region of [0,1], z1 in Eq.
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(3.14) and (3.15) can be obtained as follows:

z1 = Q−1
(

1− Ne1

Nw1

)
=

q− (mi1 +∆m1)

σi1 +∆σ1
. (3.18)

Since there are two unknown variables, it is not possible to uniquely determine

the values of ∆m1 and ∆σ1 by using Eq. (3.18) alone. Recall that the amount of

standard deviation shift due to the data retention process is linearly proportional to

that of the mean shift. By using Eq. (2.5), we have

Q−1
(

1− Ne1

Nw1

)
=

q− (mi1 +∆m1)

σi1 +β1∆m1
. (3.19)

Thus, the mean and standard deviation shifts become

∆m1 =
q−mi1−σi1Q−1

(
1− Ne1

Nw1

)
1+β1Q−1

(
1− Ne1

Nw1

) (3.20)

and

∆σ1 = β1∆m1, (3.21)

respectively. Note that Eq. (3.20) is not singular because both β1 and Q−1 (1−Ne1/Nw1)

in the denominator are negative. The same approach can be applied to obtain ∆m0 and

∆σ0, thus we have

∆m0 =
q−mi0−σi0Q−1

(
Ne0
Nw0

)
1+β0Q−1

(
Ne0
Nw0

) (3.22)

and

∆σ0 = β0∆m0. (3.23)

40



Voltage region 

q1 q2

region 0 region 1 region 2

Memory sensing output 

1 0 1

Ne00Ne11Ne01
Ne1011

01 00 10

1 0 0 1MSB symbol

Figure 3.11: MSB page read operation in two-bit MLC NAND flash memory.

Unlike Eq. (3.20), computing Eq. (3.22) can cause large estimation errors because

the inverse Q-function, Q−1(x), is sensitive to small perturbations of x when x is near

zero. Note that Ne0 is close to zero after the data retention process. Also, more impor-

tantly, Eq. (3.22) can be singular because the β0Q−1 (Ne0/Nw0) term in the denom-

inator is negative. In order to obtain ∆m0 and ∆σ0 with small estimation errors, we

indirectly find them by using ∆m1 and ∆σ1, which will be explained in the following

subsection.

3.3.2 Applying to Two-Bit MLC NAND Flash Memory

The proposed method can be directly extended to two-bit MLC NAND flash memory.

Let us assume that an MSB (most significant bit) page read operation is conducted as

shown in Fig. 3.11. For reading an MSB page, two memory sensing operations are

required, where the sensing with q1 discriminates the symbol 11 and 01, while the

other with q2 is for the symbol 00 and 10.

By comparing the results of memory sensing and ECC decoding, we can count
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the number of bit errors and also identify the type of them. Let us assume that the

MSB of a cell was programmed as the symbol 0 and the cell is sensed at the voltage

region 0, where the memory sensing output bit is the symbol 1. Then, this cell causes

the 01→ 11 type of bit error and increases Ne01 by one. In this manner, we can obtain

Ne01 and Ne00 as follows:

Ne01 : Sensed at region 0 but decoded as 0 by error correction

Ne00 : Sensed at region 2 but decoded as 0 by error correction

We can compute Ne11 and Ne10 by using Ne01 and Ne00. Note that both Ne11 and

Ne10 are in the voltage region 1. Let us denote the number of cells in the voltage

region 0 as Nregion0. Then, the following equation holds:

Nregion0 = Nw11−Ne11 +Ne01. (3.24)

By solving Eq. (3.24), we can obtain Ne11. Similarly, Ne10 also can be computed by

the following equation:

Nregion2 = Nw10−Ne10 +Ne00. (3.25)

Since the symbol 01 and 10 correspond to the symbol 1 in (3.10), the mean and

standard deviation shifts for these symbols can be computed by using Eq. (3.20) and

(3.21). However, finding ∆m00 and ∆σ00 using Eq. (3.22) and (3.23) is subject to large

estimation errors because Ne00 is quite close to zero after the data retention process.

Instead, we can compute the mean and standard deviation shifts of threshold voltage

for the symbol 00 by considering that the amount of mean shift is proportional to the
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initial threshold voltage, thus we have

∆m00 =
1
2
(∆m01 +∆m10) (3.26)

and

∆σ00 = β00∆m00. (3.27)

Since the threshold voltage distribution of the erased state (symbol 11) only changes

slightly with the data retention process [23, 24], we assume that ∆m11 and ∆σ11 are

zeroes.

To lower the estimation error for the proposed method, we need to find the ac-

curate value of β , which is the coefficient between the mean and standard deviation

shifts. According to [24], β is a function of the input symbol and the number of PE

cycles. Thus, it is needed to find the value of β while changing the number of PE cy-

cles (e.g. 0, 0.5K, 1.0K, 1.5K, and so on) for each symbol. The values of β according

to the PE cycles can be stored at a look-up table, and linear interpolation determines

the intermediate values of look-up table entries. Figure 3.12 shows an example of

finding β for each symbol. In this work, the least squares method is used for fitting

straight lines to the observed data samples.

The proposed DDE algorithm can also be extended to TLC (triple-level cell)

NAND flash memory. The read operation of NAND flash memory involves address

decoding, cell array accessing, and data output. According to the timing parameters in

[40], the SDE with 12-level voltage sensing requires approximately 300 µs per page

only for the memory sensing operations. In order to apply the SDE algorithm to TLC

NAND flash memory, in which 16 parameters of 8 symbols need to be found, more
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Figure 3.12: ∆m−∆σ plots when the numbers of PE cycles are 3 K and 5 K times.

than 16-level voltage sensing is required. Note that 16-level voltage sensing demands

approximately 325 µs. Moreover, the computational complexity of the SDE algo-

rithm is proportional to the square of the number of parameters. On the other hand,

the DDE algorithm demands no memory sensing overheads because this method only

uses the output of the MSB page read request. Also, the computational complexity of

the DDE algorithm is linearly proportional to the number of parameters. As a result,

using the DDE algorithm becomes more beneficial over the SDE one as the TLC

technology replaces the MLC one.

3.3.3 Combined Threshold Voltage Distribution Estimation

The proposed DDE algorithm needs a condition of successful error correction to

update the model parameters gradually. The DDE algorithm is effective when the pa-

rameter update is conducted frequently. If the data retention time is too long to decode

all the data without errors, we have to employ the SDE algorithm. By combining both
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the SDE and the DDE algorithms, we can reduce the overhead of extra memory sens-

ing operations while maintaining the estimation accuracy. If the amount of threshold

voltage shift is very small, the parameter update needs not to be conducted. If the data

retention induced distortion is a little bit severe but error correction is still successful,

the DDE algorithm is conducted to update the parameters. In order to measure the

amount of threshold voltage shifts, Ned , which is defined as Ne1−Ne0, is used. When

Ned is larger than a threshold value Nα , which means a significant amount of shift,

the DDE algorithm is invoked. The SDE algorithm is conducted when the decoding

failure occurs.

3.3.4 Error Analysis

In this subsection, we assess the estimation accuracy by analyzing the sources of

errors in the DDE algorithm. If the variance of the threshold voltage distribution

is small, which is quite common for the NAND flash memory cells with small PE

cycles, the number of unbalanced bit errors is close to zero as shown in Fig. 3.13,

thus it is quite difficult to find the model parameters by only using the DDE algorithm.

However, in this case, finding the optimal MSRVs is not critical to lower the raw bit

error rate (RBER) because only a small number of unbalanced bit errors is generated

even after the data retention process. Therefore, we confine the error analysis to the

cases when the number of PE cycles is not small so that the RBER is fairly affected

by the estimation accuracy.

3.3.4.1 Modeling Error in the Threshold Voltage Distribution

Even though a Gaussian mixture can model the actual threshold voltage distribution

quite closely [41, 13], the two distributions do not match perfectly especially at the
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cells with small PE cycles.

symbol boundaries. Figure 3.14 shows a threshold voltage distribution of 20 nm-class

NAND flash memory and its Gaussian approximation. We can notice that the two

distributions do not match well at the symbol boundaries, which results in inaccurate

numbers of bit errors Ne. In fact, the Gaussian mixture model in Fig. 3.14 underesti-

mates the number of bit errors for MSB pages, and Ne1 in Eq. (3.20) is smaller than

the true value.

Let us assume that the Gaussian mixture model causes a small error denoted as

∆Ne. If we define me as the estimation error caused by ∆Ne, Eq. (3.20) becomes

∆m+me =
q−mi−σiQ−1

(
1− Ne+∆Ne

Nw

)
1+βQ−1

(
1− Ne+∆Ne

Nw

)
=

q−mi−σiQ−1 (1− γ−∆γ)

1+βQ−1 (1− γ−∆γ)
, (3.28)

where

γ =
Ne

Nw
and ∆γ =

∆Ne

Nw
. (3.29)
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Figure 3.14: Threshold voltage distribution of an actual NAND flash memory device
and its Gaussian approximation.

Recall that the DDE algorithm is conducted only when the decoding process is suc-

ceeded. Thus, ∆Ne is smaller than the error correcting capability. Moreover, Nw is

much larger (around 10 K) than ∆Ne, thus ∆γ is a small value. We can approximate

Q−1(1− γ−∆γ) by employing the first order Taylor expansion as follows:

Q−1(1− γ−∆γ)' Q−1(1− γ)− dQ−1(y)
dy

∣∣∣∣
y=1−γ

·∆γ

= z− ∆γ

dQ(x)
dx

∣∣∣∣
x=z

= z+
√

2πe
z2
2 ·∆γ (3.30)

where

z = Q−1(1− γ). (3.31)

Note that z represents the z-score that expresses the divergence of the observed data

from its mean value. By using the approximation of Q−1(1− γ−∆γ), Eq. (3.28) can
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be simplified as

∆m+me =
q−mi−σiz−

√
2πσie

z2
2 ∆γ

1+β z+
√

2πβe
z2
2 ∆γ

=

(
q−mi−σiz

1+β z

)(
1+β z

1+β z+
√

2πβe
z2
2 ∆γ

)
−

√
2πσie

z2
2 ∆γ

1+β z+
√

2πβe
z2
2 ∆γ

= ∆m ·

(
1−

√
2πβe

z2
2 ∆γ

1+β z+
√

2πβe
z2
2 ∆γ

)
−

√
2πσie

z2
2 ∆γ

1+β z+
√

2πβe
z2
2 ∆γ

= ∆m−
√

2πe
z2
2 ∆γ(β∆m+σi)

1+β z+
√

2πβe
z2
2 ∆γ

. (3.32)

Thus, the estimation error for the mean caused by ∆Ne becomes

me =−

 β∆m+σi

1+β z√
2π

exp
(
−z2

2

)
+β∆γ

∆γ. (3.33)

In Eq. (3.33), the denominator is a function of z. When the magnitude of z is large, the

second term, β∆γ , is dominant because of the exponential function in the denomina-

tor. On the other hand, when the magnitude of z is small, e.g. below 4, the magnitude

of the first term is much larger than the second one because ∆γ is a small value. As

shown in Fig. 3.10, for the symbol 1, the magnitude of z decreases as the amount of

shift increases. Thus, when we apply the combined estimation scheme, in which the

DDE algorithm is conducted when the amount of shift is larger than the pre-defined

threshold, β∆γ term in the denominator of Eq. (3.33) becomes negligible. As a result,

Eq. (3.33) can be further simplified as

me 'C(z)∆γ, (3.34)
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where

C(z) =−
√

2π

(
β∆m+σi

1+β z

)
exp(

z2

2
). (3.35)

According to Eq. (3.34), the estimation error for the mean is linearly proportional

to ∆γ with a slope of C(z). Thus, the estimation errors grows as the magnitude of z

increases. Since the DDE algorithm is conducted only when the magnitude of z is

small, estimation errors are not large.

Figure 3.15 shows the estimation errors for the mean when ∆Ne changes. By

observing the threshold voltage distributions of 20 nm-class NAND flash memory,

we find that the magnitude of ∆Ne is no more than 20 in most cases. Considering

this observation, we change ∆Ne from -40 to 40. Note that the estimation errors are

obtained by computing Eq. (3.33). We consider three cases depending on the amount

of threshold voltage shifts ∆m. In this figure, we can find that the estimation error

decreases as the magnitude of ∆m increases. The estimation errors for ∆m = −0.40

and −0.24 cases are below 0.01 V even when ∆Ne is 40. On the other hand, the

estimation error for ∆m = −0.11 case is over 0.02 V even when ∆Ne is equal to 20.
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Thus, in the combined estimation scheme, Nα needs to be carefully selected so that

the DDE algorithm is invoked when the amount of mean shift is larger than 0.11 V.

3.3.4.2 Sensitivity of the Accuracy on β

In the DDE algorithm, we assume that the standard deviation shift is linearly propor-

tional to the amount of mean shift with the coefficient of β . Since the values of β

vary with the number of PE cycles and the initial threshold voltages, we need to find

β through off-line training. However, the actual value of β in each device may vary,

thus we need to quantify the effects on the estimation accuracy when the value of β

is not known exactly.

Let ∆β be the error in estimating β , then Eq. (3.20) becomes

∆m+me =
q−mi−σiQ−1(1− γ)

1+(β +∆β )Q−1(1− γ)
. (3.36)

Note that me is the estimation error for the mean caused by the ∆β . Equation (3.36)

can be simplified as

∆m+me =

(
q−mi−σiz

1+β z

)
·
(

1+β z
1+β z+∆β z

)
= ∆m ·

(
1− ∆β z

1+β z+∆β z

)
. (3.37)

Thus, we have

me =−
(

∆m
1/z+β +∆β

)
∆β . (3.38)

The error curves for the symbol 01 and 10 are plotted in Fig. 3.16 by computing

Eq. (3.38). Note that ∆β changes from -50 % to 50 % of β . When the error in β is

below 30 % of the true value, it is expected that the estimation errors are smaller than
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Figure 3.16: The estimation errors for the mean me computed while changing ∆β

from -50 % to 50 % of β .

0.03 V. When comparing the estimation errors for both symbols, the symbol 01 shows

smaller errors than the symbol 10. This is because the estimation error is proportional

to the amount of the mean shift ∆m.

3.3.5 Experimental Results

3.3.5.1 Parameter Estimation with Simulated NAND Flash Memory

We apply the DDE algorithm while changing the retention time from 10 to 10 K

hours. Note that the number of PE cycles is fixed to 5,000 times. To evaluate the

accuracy of the DDE algorithm, we measure the magnitudes of the estimation errors

for the means and the standard deviations. Since the threshold voltage distribution

of the symbol 11 changes very slightly after the data retention process, we do not

measure the estimation errors for this symbol.

The estimation errors for the mean are shown in Fig. 3.17. When no threshold

voltage estimation is applied, the mean shift from the initial value is denoted as ‘Total

change’. As the data retention time elapses, the amount of mean shift from the initial
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Figure 3.17: Estimation errors for the mean when PE cycles is 5,000, and the data
retention time increases from 10 to 10K hours.

value also increases. For example, when the data retention time is 100 hours, the

amounts of mean shifts become 0.06 V, 0.14 V, and 0.22 V for the symbol 01, 00,

and 10, respectively. After 10 K hours of the data retention time, the amounts of

shifts increase up to 0.12 V, 0.29 V, and 0.43 V, respectively. By applying the DDE

method, the estimation errors are reduced much and remain below 0.04 V for all the

cases. In Fig. 3.17, it is also shown that the error levels decrease as the data retention

time increases. As analyzed at the previous section, the DDE shows a relatively small

estimation error when the amount of shift is large. For the same reason, the estimation

error for symbol 10 is the smallest.

The estimation errors for the standard deviations are plotted in Fig. 3.18. The

DDE algorithm can find the standard deviation values quite accurately with the es-

timation errors below 0.03 V. When the data retention time is around 10 hours, the

estimation errors are larger than ‘Total change’, which means that the estimation pro-

cess is not helpful to reduce the RBER. However, the estimation error decreases as
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Figure 3.18: Estimation errors for the standard deviation when PE cycles is 5,000,
and the data retention time increases from 10 to 10 K hours.

the data retention time elapses, and the DDE algorithm can find accurate standard de-

viation values after 100 hours of the retention time. Thus, in the combined estimation

method, Nα needs to be properly selected so that the DDE algorithm is conducted

after at least 100 hours of data retention time. Recall that the DDE algorithm is in-

voked only when Ne1−Ne0 is larger than Nα in the combined estimation scheme. In

order to select the proper value of Nα , an off-line training is needed. For the given

data retention time, e.g. 100 hours in this example, we count Ne1 and Ne0 and set Nα

as Ne1−Ne0.

Figure 3.19 shows the RBER of simulated NAND flash memory with the PE cy-

cles of 5 K times. The horizontal dashed and solid lines indicate the RBERs of 0.005

and 0.0062, respectively. If we employ a (72306, 65536, 400) BCH code, whose

frame error rate (FER) is 0.015 and 1.0 at the RBERs of 0.005 and 0.0062, respec-

tively, the DDE algorithm can be used until 2,000 hours of the retention time. When

the data retention time is around 1,800 hours, the probability that the DDE algorithm
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Figure 3.20: Estimation errors for the mean while changing ∆Ne from -40 to 40.

updates the model parameters is about 98.5 %. However, when the data retention time

is over 4,000 hours, error correction always fails, thus the SDE needs to be conducted.

To evaluate the additional estimation errors caused by imprecise modeling of the

threshold voltage distribution, we apply the DDE algorithm while changing ∆Ne from

-40 to 40. In the experiments, the number of PE cycles is fixed to 5,000 times, while

the data retention time changes from 50 to 5 K hours. Figure 3.15 shows the estima-

tion errors for the mean of the symbol 10. The experimental results are quite similar

to Fig. 3.15. When the data retention time is larger than 50 hours, the estimation er-
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% of β .

rors are quite small (below 0.02 V), which demonstrates that the DDE algorithm is

robust in these cases.

The estimation errors caused by inaccurate β are also evaluated while changing

∆β from -50 % to 50 % of β . In here, the number of PE cycles and the data reten-

tion time are set to 5,000 times and 5,000 hours, respectively. Figure 3.21 shows the

estimation error curves for the mean. As expected in Fig. 3.16, the estimation errors

are almost linearly proportional to |∆β/β |. Even when β is 50 % overestimated, the

DDE algorithm can find the mean values with only 0.04 V of the estimation error.

3.3.5.2 Parameter Estimation with Real NAND Flash Memory

We apply the proposed parameter estimation algorithms to the data samples that are

obtained from two-bit MLC NAND flash memory devices fabricated with a 20 nm-

class process technology. The initial threshold voltage distribution is obtained from

the fresh memory cells. The threshold voltage distributions of non-initial states were

obtained after 1.0 K, 1.5 K, or 3 K times of PE cycling and 10 hours of baking

process at 125 ◦C, which is equivalent to one year data retention. The RBER of the
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Table 3.3: The estimation errors of the DDE algorithm when applied to real NAND
flash memory

Total change DDE

01 00 10 01 00 10

m

1.0 K 0.0397 0.0987 0.1787 0.0286 0.0143 0.0121

1.5 K 0.0390 0.0984 0.1841 0.0238 0.0120 0.0122

3.0 K 0.0253 0.0836 0.1842 0.0152 0.0164 0.0146

σ

1.0 K 0.0195 0.0203 0.0174 0.0122 0.0043 0.0062

1.5 K 0.0289 0.0281 0.0235 0.0153 0.0050 0.0064

3.0 K 0.0572 0.0476 0.0400 0.0286 0.0080 0.0077

1.0 K, 1.5 K, and 3 K baked cells are 0.0022, 0.0031, and 0.0053, respectively. If we

employ the (72306, 65536, 400) BCH code, the DDE algorithm can be applied with

the probability of about 90 % when reading 3 K baked cells. The need of conducting

SDE algorithm that demands extra memory sensing is quite small, about 10 %, even

for the memory with 3 K PE cycles.

Table 3.3 shows the estimation errors for each symbol. In Table 3.3, ‘m’ and

‘σ ’ on the ‘Total change’ columns denote the mean and standard deviation shifts

from the initial threshold voltage distribution after applying PE cycling and the data

retention process. The DDE algorithm results in relatively large estimation errors

for the symbol 01 especially when the number of PE cycles is 1.0 K. In this case,

the variance of the threshold voltage distribution is small, and the amount of shift

is below 0.04 V. Thus, only a small number of unbalanced bit errors occurs, which

degrades the estimation accuracy of the DDE algorithm much. However, the RBER

for the 1.0 K baked memory cells is only 0.0022. If we employ the (72306, 65536,

400) BCH code, the corrected BER is much lower than 10−15, which is considered

as ‘error-free’ in NAND flash memory. Thus, for the fresh or 1.0 K baked cells, the
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effect of inaccurate parameter estimation is not critical. Overall, the proposed DDE

algorithm works well on real NAND flash memory, and the estimation errors for the

mean and the standard deviation are less than 0.03 V.

3.4 Concluding Remarks

We have developed parameter estimation algorithms for modeling the threshold volt-

age distribution of MLC NAND flash memory. The SDE algorithm that employs the

gradient descent or Levenberg-Marquardt based optimization requires about 11 mem-

ory sensing operations to estimate all the mean and variance values of four symbols

in two-bit MLC NAND flash memory. The DDE algorithm utilizes error corrected

bit patterns and requires no additional memory sensing operations. We also have de-

veloped a combined estimation scheme that employs both the DDE and the SDE

algorithms depending on the amount of threshold voltage shift. The effectiveness of

the proposed algorithms is evaluated by using both simulated and real NAND flash

memory. The SDE algorithm shows small estimation errors even when the threshold

voltage distribution varies significantly, but demands several memory sensing over-

heads. On the other hand, the DDE algorithm requires no additional memory sensing

operations and can be conducted only when the amount of shift is small so that error

corrected bit patterns are available.
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Chapter 4

Cell-to-Cell Interference Cancellation

4.1 Introduction

The capacitance coupling effect or cell-to-cell interference (CCI) becomes the dom-

inant source of bit errors for sub-20 nm NAND flash memory. According to [3], the

amount of CCI exceeds 50 % of the total noise when the feature size of the semicon-

ductor process is 20 nm. Although some cell structures have been devised to reduce

the CCI, removing the CCI is still very critical for sub-20 nm NAND flash memory

devices.

There have been several works to develop signal processing solutions for CCI

cancellation [36, 42, 43]. In [36], data post-compensation and pre-distortion tech-

niques were proposed. Also, in [42], an adaptive LMS (least mean square) filter based

coupling canceller was studied. Even though these techniques offer promising solu-

tions for CCI cancellation, they require high resolution input data [36, 42], which

leads to longer latency and more energy for data acquisition and transfer. More im-
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portantly, detailed characterization of capacitance coupling, which is necessary for

designing effective CCI cancellation algorithms, has not been provided in those pre-

vious works.

In this chapter, we present the experimental characterization of the cell-to-cell in-

terference in NAND flash memory. To this end, we measure the coupling coefficients

of an actual NAND flash memory chip with a 26 nm process technology by using

a simple NAND flash memory controller implemented on an FPGA board [44]. We

also develop a CCI cancellation algorithm that consists of the coupling coefficient es-

timation and the CCI removal steps. In the proposed CCI cancellation algorithm, the

coupling coefficients can be found by using either specific programming patterns or

ordinary data. In order to reduce the number of memory sensing operations for CCI

cancellation, we study the optimal quantization schemes. The proposed CCI cancel-

lation algorithm is evaluated by using the data samples obtained from both simulated

and actual NAND flash memory, and the BER (bit error rate) performance is pre-

sented.

This chapter is organized as follows. Section 4.2 addresses the statistical charac-

teristics of the CCI and proposes a direct approach to measure the coupling coeffi-

cients. In Section 4.3, we develop a least squares method based coupling coefficient

estimation algorithm. The optimal multi-level memory sensing schemes for the pro-

posed CCI cancellation algorithm are studied in Section 4.4. The experimental results

are shown in Section 4.5. Finally, concluding remarks are made in Section 4.6.
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4.2 Direct Measurement of Coupling Coefficients

The cell-to-cell interference cancellation algorithm removes the correlation among

the cells by employing signal processing algorithms that are similar to interference

cancellers employed in conventional communication systems. In this dissertation,

we propose a CCI cancellation algorithm that estimates the coupling coefficients by

using either specific programming patterns or ordinary data and removes the CCI

with simple arithmetics. In the proposed CCI cancellation algorithm, the amount of

CCI that the (m,n)-th victim cell receives VCCI[m,n] is modeled as

VCCI[m,n] =Cx · (∆V [m,n−1]+∆V [m,n+1])+Cy ·∆V [m+1,n] (4.1)

+Cxy · (∆V [m+1,n−1]+∆V [m+1,n+1]),

where ∆V [m,n−1], ∆V [m,n+1], ∆V [m+1,n], ∆V [m+1,n−1], and ∆V [m+1,n+1]

are the threshold voltage shifts of the left, right, upper, upper-left, and upper-right

neighbor cells, respectively. If the multi-page programming scheme shown in Fig.

4.1 is employed, ∆V [i, j] is equal to VT H [i, j]−VL[i, j], where VL[i, j] and VT H [i, j] are

the threshold voltages of the (i, j)-th cell after the LSB and the MSB programming,

respectively. Note that Eq. (4.1) is for the even victim cells.

In Eq. (4.1), Cx, Cy, and Cxy are the coupling coefficients for the x, y, and xy

directions, respectively, which need to be found during the coefficient estimation step

of the proposed CCI cancellation algorithm. Once the amount of CCI is estimated by

using Eq. (4.1), it needs to be subtracted from the memory sensing output signal VQ

during the CCI removal step. As a result, the output of the proposed CCI canceller
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Figure 4.1: Multi-page programming scheme.

becomes

VO[m,n] =VQ[m,n]−VCCI[m,n]. (4.2)

In order to achieve a satisfactory BER performance, the CCI cancellation algo-

rithm needs to estimate the coupling coefficients precisely. In this section, we propose

a direct method that measures the coupling coefficients of actual NAND flash mem-

ory devices.

4.2.1 Measurement Procedure

In the direct approach, the coupling coefficient of each direction is measured by using

one of the programming patterns shown in Fig. 4.2. In these programming patterns,

only one of the interfering cells is programmed, and the threshold voltage shift of

the victim cell is measured to obtain the coupling coefficient. Note that the other

neighboring cells are in the erased state. In Fig. 4.2, the left, middle, and right pro-

gramming patterns are designed to measure the coupling coefficients of the y, x, and

xy directions or Cy, Cx, and Cxy, respectively. When using the programming patterns

of Fig. 4.2-(a), only the upper neighboring cell of a victim cell is programmed. Thus,
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Figure 4.2: Programming patterns to measure the coupling coefficients.

∆V [m+1,n] has a non-zero value in Eq. (4.1), from which we can directly compute

Cy. Similarly, the programming patterns shown in Fig. 4.2-(b) and 4.2-(c) can be used

to measure Cx, and Cxy, respectively. Note that we do not plot the right and right-upper

interfering cells in Fig. 4.2 for simplicity. In these programming patterns, the victim

cells are located sparsely so that they do not interfere with each other. Actually, the

(n, i) and the (n,k)-th victim cells in Fig. 4.2 are 8 cell-distance away from each other.

The other cells besides victim and interfering ones are not programmed, thus they do

not affect the threshold voltages of the victim and the interfering cells.

In the proposed direct approach, it is important for obtaining the coupling coeffi-

cients to measure the threshold voltages in high precision. In this research, we use a

simple NAND flash memory controller implemented on a Vertex 6 FPGA board [44]

to measure the coupling coefficients from actual NAND flash memory chips. This

NAND flash memory controller offers basic functionalities, such as erase, program,

and read operations. To measure the threshold voltage in high precision, we added

a manufacturer defined function that can alter the memory sensing reference voltage

(MSRV). The NAND flash memory controller can measure the threshold voltages

within the range of 0.1 V to 4.4 V with the precision of 0.04 V.

Figure 4.3 shows the procedure to measure the coupling coefficients from raw
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NAND flash memory chips. The NAND flash memory chip used in the experiments

can sense the threshold voltage only in the range of 0.1 V to 4.4 V, in which the

erased cells are not included. Thus, we first program the LSB (least significant bit)

of the victim and the interfering cells to the symbol 0 so that their threshold voltages

are in the measurable range. Let us denote the initial threshold voltages of the victim

and the interfering cells as Vci and Vni, respectively. After measuring Vci and Vni, we

program only the MSBs (most significant bits) of the interfering cells and read the

threshold voltages once again. Let us define Vc f and Vn f as the threshold voltages of

the victim and the interfering cells after the MSB programming. Then, the threshold

voltage shifts of the victim and the interfering cells become

∆Vc =Vc f −Vci (4.3)

and

∆Vn =Vn f −Vni, (4.4)
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respectively. Note that ∆Vc and ∆Vn correspond to VCCI and ∆V [i, j] in Eq. (4.1).

During the MSB programming, each interfering cell can be programmed to either the

symbol 00 or 10 because the LSB is already programmed to the symbol 0. When the

interfering cell is programmed to the symbol 10, its threshold voltage shift is larger

than the other case. By using ∆Vc and ∆Vn, the coupling coefficient can be computed

as follows:

C =
∆Vc

∆Vn
. (4.5)

4.2.2 Experimental Results

We conducted experiments to measure the values of coupling coefficients by using

the proposed direct measurement procedure and a NAND flash memory chip with

a 26 nm process technology. Figure 4.4 shows the threshold voltage shifts of the

victim and the interfering cells when the programming patterns shown in Fig. 4.2-

(a) are used. Note that these patterns are designed to measure Cy. The X and Y axes

represent ∆Vn and ∆Vc, respectively. Thus, the coupling coefficient can be determined

by applying the tangent function to the angle of the data points. The triangles and the

circles in Fig. 4.4 represent the cases that the interfering cells are programmed to the

symbol 00 and 10, respectively. In this figure, it is demonstrated that the threshold

voltage shift of the victim cell is almost linearly proportional to that of the interfering

cell, which is in accordance with the experimental results of previous studies [2, 36,

45].

By using Eq. (4.5) and the data samples shown in Fig. 4.4, we can compute Cy

and plot its probability density function (PDF) as depicted in Fig. 4.5. Similar to the

results in [36, 45], Cy varies depending on the physical locations of the victim cells
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Figure 4.4: Threshold voltage shifts of the victim (y-axis) and the interfering (x-axis)
cells when using the programming patterns that are designed to measure Cy.
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Figure 4.5: Measured probability density function of Cy.

and has the PDF that is similar to the Gaussian function. It is well known that the

random line edge roughness effect caused by lithography and etching is the main

reason of the variation for coupling coefficients [45]. For the NAND flash memory

chip that we use, the mean and the standard deviation values of Cy are 0.1239 and

0.0201, respectively.
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Figure 4.6: Threshold voltage shifts of the victim (y-axis) and the interfering (x-axis)
cells when using the programming patterns that are designed to measure Cx.
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Figure 4.7: Measured probability density function of Cx.

Figure 4.6 shows ∆Vn and ∆Vc when applying the programming patterns shown in

Fig. 4.2-(b). Similar to Fig. 4.4, ∆Vc and ∆Vn show a linear relationship, which is also

in accordance with the experimental results of the previous researches [2, 36, 45]. As

shown in Fig. 4.7, the PDF of Cx also can be approximated to the Gaussian function.

The mean and the standard deviation values of Cx are 0.081 and 0.0169, respectively,
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Figure 4.8: Threshold voltage shifts of the victim (y-axis) and the interfering (x-axis)
cells when using the programming patterns that are designed to measure Cxy.
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Figure 4.9: Measured probability density function of Cxy.

and they are smaller than those of Cy. Note that the similar results were reported in

[3, 45].

Figures 4.8 and 4.9 show threshold voltage shifts and the measured PDF of Cxy

when using the programming patterns shown in Fig. 4.2-(c). The experimental results

show that Cxy is much smaller than Cy or Cx. Note that the mean and the standard

67



Number of PE cycles 

0K 1K 2K 3K 4K 5K

M
e
a
n

 o
f 

c
o

u
p

li
n

g
 c

o
e
ff

ic
ie

n
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4.10: Mean values of Cy when increasing the number of PE cycles from 0 K
to 5 K.
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Figure 4.11: Standard deviation values of Cy when increasing the number of PE cycles
from 0 K to 5 K.

deviation values of Cxy are 0.0273 and 0.0102, respectively. The standard deviation

of Cxy is relatively large and is almost 40 % of the mean value. This is because the

amount of CCI induced by the interfering cells in the xy direction is too small, and as

a result, the quantization effect causes relatively large errors when measuring ∆Vc.

In order to characterize the effect of program-erase (PE) cycling to coupling co-

efficients, we measure Cy while increasing the number of PE cycles from 0 K to 5 K.
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Figure 4.12: Threshold voltage distributions when only the LSB of victim cell is
programmed to the symbol 0.

We can observe that the mean of Cy remains almost the same as shown in Fig. 4.10.

This experimental result demonstrates that PE cycling does not alter the coupling

coefficients. Figure 4.11 shows the standard deviation values of Cy when increasing

the number of PE cycles from 0 K to 5 K. Unlike the mean, the standard deviation

increases as the number of PE cycles grows.

To identify the main reason of the variance increase in Cy, we program only the

LSBs of the victim cells to the symbol 0 and measure the threshold voltage distri-

bution. Figure 4.12 shows the threshold voltage distribution of fresh and 5 K times

PE-cycled victim cells. As the number of PE cycles increases, the threshold voltage

distribution becomes wider even without the effect of CCI. This result shows that the

read disturb and the RTN (random telegraph noise) induce variations in the measured

threshold voltages. The mean values of these noises are cancelled out when comput-

ing ∆Vc and ∆Vn. However, the variance of ∆Vc (∆Vn) becomes larger as Vc f (Vn f ) is

subtracted by Vci (Vni).

In summary, the coupling coefficients vary depending on the physical locations

of the memory cells. However, they do not seem to be affected by PE cycling. For
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a NAND flash memory chip with a 26 nm process technology, we obtained 0.1239,

0.0810, and 0.023 as the mean values of coupling coefficients in the y, x, and xy

directions, respectively. Note that two neighboring cells in each of x and xy directions

induce the CCI, while only one cell in the y direction causes the capacitance coupling

effect to the victim cell. We also found that the standard deviation of the coupling

coefficient is approximately 20 % of the mean value in the NAND flash memory chip

that we use.

4.3 Least Squares Method based Coupling Coefficient Esti-

mation

In this section, we develop a least squares (LS) method based coupling coefficient

estimation algorithm. In the direct approach, only one of the coupling coefficients

is measured at a time by sensing the threshold voltages of the victim and the inter-

fering cells multiple times. As a result, this approach requires quite large overheads

for the memory sensing operations. Unlike the direct approach that employs specific

programming patterns, the LS algorithm utilizes ordinary data patterns for fast esti-

mation of the coupling coefficients. In the LS approach, the coupling coefficients of

the x, y, and xy directions can be obtained at once by measuring the threshold voltages

only one time, which reduces the memory sensing overheads.

In order to derive the least squares based approach, let us rewrite the amount of

CCI that the n-th victim cell receives as follows:

VCCI[n] =
M−1

∑
i=0

Ci ·∆V [i], (4.6)
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where the number of interfering cells M is either five or three for the even or odd

page. In Eq. (4.6), ∆V [i] denotes the threshold voltage shift of the i-th neighboring

cell during the MSB programming. Recall that ∆V [i] is equal to VT H [i]−VL[i] as

shown in Fig. 4.1. In the direct approach, we can obtain VL[i], which corresponds

to Vni, by measuring the threshold voltage of the interfering cell after the LSB pro-

gramming. When using the ordinary data patterns, however, we only measure VT H [i],

which is the threshold voltage after the MSB programming. Thus, the LS algorithm

uses E[VL[i]|XL[i]] instead of VL[i]. As a result, Eq. (4.6) becomes

V̂CCI[n] =
M−1

∑
i=0

Ci ·
{

VT H [i]−E
[
VL[i]|XL[i]

]}
, (4.7)

where XL[i] represents the pre-determined LSB symbol of the i-th neighbor cell. De-

pending on XL[i], which is either the symbol 1 or 0, E
[
VL[i]|XL[i]

]
can be either VL1 or

VL0 as shown in Fig. 4.1. We assume that VL1 and VL0 are known in advance. In order

to determine the LSB of the i-th neighbor cell, the observed threshold voltage VT H [i]

can be used.

To find accurate values of Ci, we need to know VCCI[n] precisely. Since VCCI[n]

is the threshold voltage shift of the n-th victim cell, we can estimate it by using the

following equation:

VCCI[n] =VT H [n]−VM[n], (4.8)

where VM[n] is the threshold voltage of the n-th victim cell before affected by the

CCI. If we use the programming patterns shown in Fig. 4.2, we can achieve accurate

values of VCCI[n], which corresponds to ∆Vc, by measuring the threshold voltage of

the victim cell (Vci and Vc f ). On the other hand, it is not straightforward to directly
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measure VCCI[n] in the LS approach. Thus, the LS algorithm uses E[VM|X [n]] instead

of VM[n] as follows:

V̄CCI[n] =VT H [n]−E[VM|X [n]], (4.9)

where X [n] denotes the pre-determined symbol of the n-th victim cell. Computing

E[VM|X [n]] is simple because the incremental step pulse programming (ISPP) scheme

results in a uniform distribution with the width of ∆Vpp. For example, if the input

symbol X [n] is 01, E[VM|X [n] = 01] becomes V01 +
1
2 ∆Vpp.

Since both V̂CCI[n] and V̄CCI[n] are estimators of VCCI[n], their difference can be

used to define a cost function:

J =
Ns−1

∑
n=0

(
V̂CCI[n]−V̄CCI[n]

)2
. (4.10)

The coupling coefficient Ci can be determined by minimizing the cost function. Since

both V̂CCI[n] and V̄CCI[n] are not the exact but estimated ones, a large number of data

is required. By averaging the estimation errors of Ns data samples, we can expect a

more reliable solution in the proposed LS approach. Note that Ns can be quite large

because the coupling coefficients need to be estimated only once in the life time of

the target NAND flash memory chip.

In order to find the solution for Eq. (4.10), let us define a vector as

a[n] =
[
∆V0[n],∆V1[n], · · · ,∆VM−1[n]

]T
, (4.11)

where ∆Vi[n] is the threshold voltage shift of the i-th neighboring cell for the n-th
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victim cell. Then, we can rewrite the right hand side of Eq. (4.7) as

V̂CCI[n] = a[n]T ·x, (4.12)

where

x =
[
C0, C1, · · · , CM−1

]T
. (4.13)

By using the above definition, Eq. (4.10) can be transformed into a matrix-vector

form:

Jm(x) = (A ·x−b)T · (A ·x−b), (4.14)

where

A =



a[0]T

a[1]T

...

a[Ns−1]T


and bm =



V̄CCI[0]

V̄CCI[1]
...

V̄CCI[Ns−1]


. (4.15)

Note that A is an Ns by M matrix and b is an Ns dimensional vector. Equation (4.14)

is known as the least squares problem, and many algorithms have been developed

to find x that minimizes the cost function. Since Eq. (4.14) is a linear system, the

analytic solution can be derived as

x∗ = (AT ·A)−1 ·AT ·b. (4.16)

Once the optimal solution x∗ is computed, the estimation step does not need to

be re-conducted because the coupling coefficients remain almost the same even with

excessive PE cycling. The coupling coefficient estimation step demands NsM2 and
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M3 arithmetic operations for computing AT ·A and the matrix inverse, respectively.

Between them, the former term, NsM2, is dominant because Ns is usually much larger

than M, thus the time complexity of the coefficient estimation step can be modeled

as O(NsM2).

4.4 Multi-Level Memory Sensing Schemes for CCI Cancel-

lation

The bit error rate performance of the proposed CCI cancellation algorithm is strongly

affected by the precision of the sensed threshold voltage signals. As the number of

memory sensing operations increases, the quantized threshold voltage VQ is close

to the original threshold voltage, and the quantization noises in the CCI removal

step become smaller. However, increasing precision of the sensed signals requires

additional memory sensing operations. Therefore, it is very needed to find the optimal

quantization schemes for reducing the number of memory sensing operations, while

maintaining the performance of the proposed CCI cancellation algorithm.

The optimal memory sensing schemes for the proposed CCI cancellation algo-

rithm depend on the physical locations of the sensed cells; the victim and the neigh-

boring cells may require different quantization schemes. For the coefficient estima-

tion step, which is conducted only once, we can apply many memory sensing oper-

ations to obtain reliable coupling coefficients. On the other hand, the CCI removal

step is conducted at every page read request, thus it is important to reduce the num-

ber of memory sensing operations. In this research, we consider two memory sensing

schemes for the CCI removal step.

The main purpose of CCI removal is to achieve a satisfactory post-FEC (forward
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Figure 4.13: Channel model for the 7-level memory sensing and the CCI cancellation.

error correction) BER performance. According to [30], the maximizing mutual in-

formation (MMI) quantization scheme that employs unequal quantization steps can

yield near optimal error correcting performance for soft-decision error correction.

Based on this observation, we also assume that the proposed CCI cancellation al-

gorithm can result in the optimal error performance when the mutual information

between the input and the CCI canceller output is maximized.

Figure 4.13 illustrates the quantized channel model that includes the CCI can-

celler and 7-level memory sensing that uses the MSRVs of q1, ... , q6 for the victim

cells. Among the seven voltage levels, (q1,q2], (q3,q4], and (q5,q6] are erasure re-

gions. In this figure, X, Y, and Z denote the input, the memory sensing output, and

the CCI canceller output symbols, respectively. Note that X can be either 0, 1, 2, or 3,

which corresponds to the symbol 11, 01, 00, or 10 in two-bit NAND flash memory.

The input symbol undergoes the memory channel and is mapped to one of the seven

output symbols Y. In Fig. 4.13, the erasures as well as the symbols 0, 1, 2, and 3 can
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be Y. Suppose that each memory sensing output symbol Y is further divided into Nc

distinct symbols. Thus, there are 7NC distinct symbols of Z in this channel model.

Let us denote Pi, j as the probability that the input symbol i is mapped to the

quantization output symbol j. If X is equally likely to be 0, 1, 2, or 3, the mutual

information between X and Y can be computed as follows [30]:

I(X;Y) = H(Y)−H(Y|X) (4.17)

= H(P0, P1, · · · , P6)−
1
4

3

∑
i=0

H(Pi,0, Pi,1, · · · , Pi,6),

where Pj =
1
4 ∑

3
i=0 Pi, j. Note that H(X) represents the entropy of the discrete random

variable X . Let us assume that NC distinct symbols that are originated from the same

Y are equiprobable. Then, the mutual information between X and Z becomes

I(X;Z) = H(Z)−H(Z|X) (4.18)

= H
( P0

NC
, · · · , P0

NC
, · · · , P6

NC
, · · · , P6

NC

)
− 1

4

3

∑
i=0

H
(Pi,0

NC
, · · · , Pi,0

NC
, · · · ,

Pi,6

NC
, · · · ,

Pi,6

NC

)
.

The right hand side of Eq. (4.18) can be further simplified as

−
6

∑
j=0

NC

( Pj

NC
log

Pj

NC

)
+

1
4

3

∑
i=0

6

∑
j=0

NC

(Pi, j

NC
log

Pi, j

NC

)
(4.19)

= I(X;Y).

According to the data processing inequality [46], I(X;Z) is always smaller than or

equal to I(X;Y). Thus, the maximum value of I(X;Z) can be achieved when every

symbol of Z is equally likely. Let us denote the symbol of the i-th neighbor cell as Zi,
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Figure 4.14: 4-, 8-, 12-level equiprobable quantizers for the neighboring cells.

then the joint PMF (probability mass function) of the neighboring symbols becomes

fZ1,··· ,ZM(k1, · · · ,kM) = fZ1(k1) · · · fZM(kM), (4.20)

where fZi(ki) is the PMF of the i-th neighbor and ki is 0, 1, · · · , or Nqn− 1 assum-

ing that an Nqn-level quantization is applied. If each symbol of the neighbor cells is

equally likely, the joint PMF fK1,··· ,KM(k1, · · · ,kM) is also a constant value and Eq.

(4.19) holds.

The optimal memory sensing schemes for the CCI removal step can be found

by maximizing the mutual information between the input and the CCI canceller out-

put. When each symbol of the neighboring cells is equally likely, I(X;Z) is equal

to its maximum value I(X;Y). Thus, the equiprobable quantizers shown in Fig. 4.14

become the optimal memory sensing schemes for the neighboring cells. When the

number of quantization levels is 4 and 8, the equiprobable qauntizers are almost the

same as the uniform ones. In the meanwhile, the optimal quantizer for the victim cells
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Figure 4.15: 7-, 10-, 13-level MMI quantizers for the victim cells.

is the MMI quantizer that maximizes the mutual information between the input X and

the memory sensing output Y as shown in Fig. 4.15.

4.5 Experimental Results

We conducted experiments to evaluate the performance of the proposed CCI cancel-

lation algorithm. We used data samples that were obtained from the simulated NAND

flash memory model described in Chapter 2 and the actual NAND flash memory de-

vices with a 20 nm process technology.

4.5.1 CCI Cancellation with Simulated NAND Flash Memory

We apply the proposed CCI cancellation algorithm to a two-bit MLC NAND flash

memory model described in Chapter 2. We assume that Cx, Cy, and Cxy are the Gaus-

sian random variables whose means are 0.0810s, 0.1231s, and 0.023s, respectively,

where the coupling coefficient factor, s, varies from 0.6 to 1.6. The standard deviation
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values of coupling coefficients are set to 20 % of their means. Note that the mean and

the standard deviation values are obtained from an actual NAND flash memory chip

with a 26 nm process technology as explained in Section 4.2. As the feature size of

NAND flash memory decreases, the coupling coefficient factor, s, increases. When s

is around 1.0, the simulated model is closed to NAND flash memory with a 26 nm

process technology.

For the CCI removal step, we need to apply multi-level memory sensing to mea-

sure the threshold voltages in the victim and the neighboring cells. The required num-

bers of memory sensing operations are


Nqc +3 ·Nqn−4 for the even victim cells,

Nqc +2 ·Nqn−3 for the odd victim cells,
(4.21)

where Nqc and Nqn are the numbers of quantization levels for the victim and the

neighboring cells, respectively. Increasing Nqn demands three times or twice many

memory sensing operations than that of Nqc, thus it is needed to minimize Nqn. For the

CCI removal step, the 7-, 13-, and 19-level MMI quantizers are applied to the victim

cells, while only the 4-level uniform quantization scheme is used for the neighboring

cells. To evaluate the BER performance of NAND flash memory with various feature

sizes, we apply the proposed CCI cancellation algorithm to the simulated memory

model whose coupling coefficient factor, s, varies from 0.6 to 1.6.

Figure 4.16 shows the BER performances for the even and the odd victim cells

when applying the proposed CCI cancellation algorithm. We apply both the direct

(denoted as ‘Direct’ in Fig. 4.16) and least squares method (denoted as ‘LS’ in Fig.

4.16) based approaches to obtain the coupling coefficients. Note that the numbers
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Figure 4.16: BERs of the proposed CCI cancellation algorithm when applied to (a)
even pages and (b) odd pages of the simulated memory model.

inside the parenthesis represent quantization levels for the victim and the neighboring

cells, respectively. For example, ‘(7,4), 15 reads’ represents the case when the 7-level

MMI and the 4-level uniform quantizers are used for the victim and the neighboring
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cells, respectively, which requires 15 memory sensing operations as a total. In Fig.

4.16, we can find that the proposed CCI cancellation algorithm can significantly lower

the BER of even pages especially when s is below 1.4. However, the performance gain

becomes smaller as s increases. In these cases, the threshold voltage distribution of

each input symbol is heavily overlapped because of strong coupling between adjacent

cells. Thus, the number of bit errors is not dramatically reduced by solely applying

the proposed CCI cancellation algorithm. We also compare the BER curves for the

direct and the LS algorithms. Even though the LS algorithm uses ordinary data rather

than well designed programmed patterns shown in Fig. 4.2, the BER performance of

the LS approach is almost comparable to that of the direct one especially for the even

pages.

When comparing the BERs of the even and the odd victim cells, the proposed CCI

cancellation algorithm can correct more bit errors when applied to the even pages.

As a result, the BERs of both pages become comparable. Usually, the even victim

cells receive more severe CCI from its neighbors, thus we can expect an improved

BER performance on the even cells once the CCI is removed. On the other hand,

the odd pages are less severely affected by the CCI, and removing the CCI does not

lead to large improvement on the BER performance. Since the endurance and the

lifetime of NAND flash memory are limited by the worst case BER, which is usually

determined by the even pages, we can achieve enhanced PE cycle endurance and

increased retention time limit by applying the proposed CCI cancellation algorithm.

It is also noteworthy that the ‘(13,4)-level’ one shows a satisfactory error performance

and demands a reasonable number of memory sensing operations among the various

quantization schemes.

In order to assess the accuracy of coupling coefficients estimated by the LS ap-
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Figure 4.17: Mean values of the coupling coefficients that are obtained by employing
the direct (‘Direct’) and the least squares (‘LS’) based approaches.

proach, we compare them with the coupling coefficients that are obtained by employ-

ing the direct measurement as shown in Fig. 4.17. Note that the direct approach can

find the true mean values of coupling coefficients. In this experiment, we change the

coupling coefficient factor s from 0.6 to 1.6. When s is smaller than 1.4, where the

amount of the CCI is not large, the LS algorithm can find the means of coupling coef-

ficients quite accurately, which is the main reason that the BER performances of both

approaches are quite similar. In these cases, the estimation errors for Cx and Cy are

smaller than 10 %. As s increases, however, the LS algorithm under-estimates Cx and

Cy, thus the estimation errors grow. In the LS algorithm, the pre-determined symbols

of the victim and the neighboring cells are used to compute Eq. (4.7) and (4.8). When

the CCI is extremely severe, those pre-determined symbols become erroneous, which

degrades the estimation accuracy much.
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Figure 4.18: BERs of the proposed CCI cancellation when applied to (a) even pages
and (b) odd pages of actual NAND flash memory.

4.5.2 CCI Cancellation with Real NAND Flash Memory

We also apply the proposed CCI cancellation algorithm to the data samples that are

obtained from the actual two-bit MLC NAND flash memory devices with a 20 nm
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process technology. The coupling coefficients are obtained by using the least squares

method based estimation algorithm. We measure the BERs after conducting CCI can-

cellation while changing the number of quantization levels for the CCI removal step.

For the victim cells, 7-, 13-, and 19-level MMI quantizers (denoted as ‘MMI’ in

Fig. 4.18) and 19- and 25-level uniform quantization (denoted as ‘Uniform’ in Fig.

4.18) schemes are employed, while only the 4-level uniform quantizer is used for the

neighboring cells. The BER performance bound for the proposed CCI cancellation

algorithm is achieved when using the ‘(51,51)-level’ uniform quantizer.

Figure 4.18 shows the error performance of the proposed CCI cancellation algo-

rithm. As Nqc increases, the error performances of both the uniform and the MMI

quantizers are improved. However, applying the uniform quantizer for memory sens-

ing generates more errors rather than correct them unless the number of quantization

levels is fairly large. In Fig. 4.18-(a), we can find that more than 25 levels are required

to achieve improved BER performance for the even pages when using the uniform

quantization scheme. On the other hand, the MMI quantizer is suitable for CCI can-

cellation, thus only the 7-level quantization can lead to significant BER reduction.

Considering the error performance and the memory sensing overhead, we can find

that the ‘MMI, (7,4)-level’ and ‘MMI, (13,4)-level’ cases are the optimal memory

sensing schemes.

4.6 Concluding Remarks

We provided the statistical characterization of the cell-to-cell interference based on

the measured data from an actual NAND flash memory chip with a 26 nm process

technology. From the observations, it is demonstrated that the values of coupling co-
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efficients vary depending on the physical locations of the memory cells. Moreover, it

is also shown that programming-erase cycling does not alter the coupling coefficients.

We also developed a CCI cancellation algorithm that estimates the coupling coeffi-

cients by using either specific programming patterns or ordinary data and removes

the CCI with simple arithmetics. To reduce the memory sensing operations that are

needed for the CCI removal step, we studied the optimal multi-level memory sensing

schemes. The developed algorithm is applied to both simulated and real NAND flash

memory devices and results in significant improvement on the BER performance

even with a limited number of memory sensing operations. We also show that the

proposed CCI cancellation algorithm improves the worst case BER and extends the

lifetime of MLC NAND flash memory.
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Chapter 5

Soft-Decision Error Correction in
NAND Flash Memory

5.1 Introduction

Hard-decision error correction employing BCH (Bose-Chaudhuri-Hocquenghem) or

RS (Reed-Solomon) codes has been widely used in NAND flash memory because

these codes can correct a small number of bit errors with low implementation com-

plexity [4, 5, 6, 7, 8]. As the feature size for manufacturing of NAND flash memory

decreases, the error correcting capability needs to be increased and hard-decision

decoding is no more efficient [9, 10, 11].

In this dissertation, we propose soft-information computation schemes in order

to apply soft-decision error correction, which usually shows much improved BER

(bit error rate) performance, to NAND flash memory. According to Chapter 2, the

threshold voltage distribution of NAND flash memory can be modeled as a Gaussian

mixture, thus computing soft-information, such as log likelihood ratio (LLR), is quite
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Figure 5.1: Distribution of the CCI removed signals.

straightforward. However, the probability density function (PDF) of the CCI (cell-to-

cell interference) removed signal is quite different from that of the original threshold

voltage as shown in Fig. 5.1. In this dissertation, we propose two soft-information

computation schemes that combine the CCI cancellation and the soft-decision error

correction. The first approach derives the PDF of the CCI removed signal, which

is shown in Fig. 5.1, and uses them to compute LLRs. The second algorithm jointly

conducts CCI cancellation and soft-input computation. The proposed methods are ap-

plied to simulated NAND flash memory, and the post-FEC (forward error correction)

BER performances are evaluated.

This chapter is organized as follows. Section 5.2 explains an LLR computation

scheme when no CCI cancellation techniques are applied. In Section 5.3, we address

soft-decision error correction that considers CCI cancellation. Finally, concluding

remarks are made in Section 5.4.
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Figure 5.2: Likelihood functions of threshold voltage and quantization boundaries.

5.2 Soft-Decision Error Correction without CCI Cancella-

tion

According to Chapter 2, the threshold voltage distribution can be approximated to a

Gaussian mixture. Assume that multiple decision boundaries are employed for dis-

criminating each symbol as illustrated in Fig 5.2. For a memory cell that is sensed at

the voltage region of (qi−1,qi], the quantized LLRs of the least significant bit (LSB)

and the most significant bit (MSB) are computed as follows:

ΛL(vq) = log

∫ qi
qi−1

fVT H |X(v|11)dv+
∫ qi

qi−1
fVT H |X(v|01)dv∫ qi

qi−1
fVT H |X(v|00)dv+

∫ qi
qi−1

fVT H |X(v|10)dv
(5.1)

and

ΛM(vq) = log

∫ qi
qi−1

fVT H |X(v|11)dv+
∫ qi

qi−1
fVT H |X(v|10)dv∫ qi

qi−1
fVT H |X(v|01)dv+

∫ qi
qi−1

fVT H |X(v|00)dv
. (5.2)

Note that vq is equal to the representative value of the voltage region (qi−1,qi].

In Eq. (5.1) and (5.2), fVT H |X(v|k) is the likelihood function and can be modeled as a

Gaussian distribution as shown in Fig. 5.2. Note that X represents the input symbol

and k corresponds to the symbol 11, 01, 00, or 10. Since the sum of partial CDFs

(cumulative density functions) for fVT H |X(v|11) and fVT H |X(v|01) results in the proba-
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bility of the symbol 1 in LSB, thus it becomes the numerator of Eq. (5.1). Similarly,

the sum of partial CDFs for fVT H |X(v|10) and fVT H |X(v|00) is the probability of the

symbol 0 in LSB, thus it comes at the denominator of Eq. (5.1). The computation of

quantized LLR for MSB can be conducted in the same way.

Accurate assessment of soft-information is important for soft-decision decod-

ing to obtain the best error correcting performance. Since the likelihood function

fVT H |X(x|k) can be obtained by employing the threshold voltage distribution estima-

tion algorithms explained in Chapter 3, the accurate estimation of means and standard

deviations is important to obtain reliable LLR values. In order to know the effects of

accurate SNR (signal-to-noise ratio) information for the corrected BER, we compare

the two approaches. One approach utilizes the estimated means and standard devia-

tions (m∗ and σ∗), while the compared one uses the estimated means and the initial

(non-updated) standard deviations. We can update the means by employing the con-

ventional moving read technique [29]. Note that the ‘non-updated mean’ case is not

considered because it yields a very poor performance resulting from incorrect deci-

sion boundaries.

Figure 5.3 shows the corrected BERs of a (68254, 65536) EG-LDPC code [11]

when applying hard-/soft-decision error correction to simulated NAND flash mem-

ory. In this figure, the ‘4-levels’, ‘7-levels’, ‘13-levels’, and ‘16-levels’ denote the

maximizing mutual information (MMI) quantization schemes that employ only one,

two, four, and five memory sensing operations at each symbol boundary, respectively.

Note that ‘4-levels’ represents the hard-decision error correction. We can find that

increasing the sensing precision improves the error correcting performance. For ex-

ample, the ‘7-level’ case increases the maximum tolerable retention time more than

10 times when compared to the ‘4-level’ case. We can also find that utilizing more
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Figure 5.3: Error performance of the (68254,65536) EG-LDPC code for even MSB
pages of NAND flash memory.
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Figure 5.4: Error performance of the (68254,65536) EG-LDPC code for odd MSB
pages of NAND flash memory.

accurate statistical information can improve the corrected BER significantly. As a

result, we can expect approximately 200 % longer retention time limits by provid-

ing accurate standard deviation values to the soft-decision error correction decoder.
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These results show that not only the mean but also the standard deviation values are

indispensable for soft-decision error correction in NAND flash memory.

Figure 5.4 shows the error performance for odd MSB pages. Similar to Fig. 5.3,

we can improve the BER performance significantly by providing accurate standard

deviation values to the error correction decoder, which results in almost 10 times

longer retention time limits.

5.3 Soft-Decision Error Correction with CCI Cancellation

The distribution of the CCI removed signal is quite different from the original one as

depicted in Fig. 5.1, thus computing LLR is not straightforward in this case. In this

section, we develop two soft-information computation schemes that consider CCI

cancellation. In the first approach, we directly use the likelihood function of the CCI

removed signal to compute the LLR values. On the other hand, the second approach

utilizes the likelihood functions of the original signals that are conditioned on the

symbols of the neighboring cells.

5.3.1 Soft-Information Computation using PDF of CCI Removed Signal

A straightforward approach to compute the LLRs is to derive the mathematical for-

mulation for the distribution of the CCI removed signals. According to Chapter 4, the

CCI removed signal can be represented as follows:

VO =VQ−VCCI (5.3)

=VQ−
M−1

∑
i=0

Ci ·∆V [i].
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Figure 5.5: Multi-page programming scheme.

In Eq. (5.3), VQ represents the quantized threshold voltage of the victim cell that is

obtained by applying multi-level memory sensing. ∆V [i] is the threshold voltage shift

of the i-th neighboring cell, and Ci is the estimated coupling coefficient. Note that M

represents the number of interfering cells and is either 5 (for the even victim cells) or

3 (for the odd victim cells) [2].

Let us denote the likelihood function of VCCI as fVCCI |X(v|k). Since ∆V [i] is i.i.d

(independent and identically distributed), we can derive the PDF of VCCI by using that

of ∆V [i]. If we apply the multi-page programming scheme shown in Fig. 5.5, ∆V [i] is

equal to VT H [i]−VL[i]. Thus, the PDFs of ∆V [i] can be approximated to a Gaussian

mixture as follows:

f∆V (v) = ∑
k

Pk ·N(mk−mkL ,σ
2
k +σ

2
kL
), (5.4)

where kL and Pk denote the LSB symbol and the probability of the input symbol k,

respectively. Note that N(m,σ2) represents a Gaussian distribution whose mean and

variance are m and σ2, respectively. By using Eq. (5.3), the mean and the variance of

VCCI can be computed as follows:

E[VCCI] = mVCCI =
M−1

∑
i=0

Ci ·E
[
∆V [i]

]
(5.5)
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and

Var[VCCI] = σ
2
VCCI

=
M−1

∑
i=0

C2
i ·Var

[
∆V [i]

]
. (5.6)

Since VCCI is independent from the input symbol of the victim cell X , fVCCI |X(v|k) is

equal to N(mVCCI ,σ
2
VCCI

). Figure 5.6 shows the CDFs of VCCI and its Gaussian approx-

imation, where we can find that they are quite similar.

Next, let us derive the likelihood function of VQ. Recall that VQ is the output

of memory sensing applied to the victim cell. Let us assume that an Nq-level MMI

quantizer is used for memory sensing. Then, the likelihood function of VQ becomes

fVQ|X(v|k) =
Nq−1

∑
j=0

Pk, j ·δ (v− r j), (5.7)

where r j denotes the representative value of the voltage region (q j−1,q j]. Note that
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Pk, j is the probability that the input symbol k falls into the voltage region j and δ (x)

is the delta function.

If VCCI and VQ are independent each other, the likelihood function of VO becomes

the convolution of fVQ|X(v|k) and fVCCI |X(−v|k). In reality, however, VCCI and VQ are

not independent. If a cell whose input symbol is 01 has a threshold voltage at the

region 3, it is highly likely that the cell has received quite large CCI. On the other

hand, if one cell has an input symbol 00 and is observed at the voltage region 3, the

amount of CCI is probably small.

In order to compensate the correlation between VCCI and VQ, we modify the like-

lihood function of VQ as follows:

fVQ|X(v|k) =
Nq−1

∑
j=0

Pk, j ·δ (v− rk, j), (5.8)

where

rk, j =


Gk(q j−1,q j) if (q j−1,q j] is an erasure region,

r j otherwise.
(5.9)

In Eq. (5.9), Gk(q j−1,q j) represents the center of mass or the centroid of the region
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(q j−1,q j] and can be computed as

Gk(q j−1,q j) =

∫ q j
q j−1

v fVT H |X(v|k)dv∫ q j
q j−1

fVT H |X(v|k)dv
. (5.10)

In Eq. (5.8), the representative value of the erasure region is divided into two distinct

ones depending on the input symbol. For example, r3 (dotted arrow in Fig. 5.8) is

divided into r01,3 and r00,3 (solid arrows in Fig. 5.8). By subtracting VCCI from r01,3

(r00,3) rather than r3, we can compensate the effect of large (small) CCI on the cells

that have input symbols of 01 (00) and are observed at the voltage region 3.

By using fVQ|X(v|k), fVCCI |X(v|k), and Eq. (5.3), we can obtain the likelihood func-

tion of VO as follows:

fVO|X(v|k) = fVQ|X(v|k)
⊗

fVCCI |X(−v|k). (5.11)

Note that
⊗

denotes the convolution operation. Figure 5.8 shows the threshold volt-

age distribution after the convolution.

We can compute soft-information for LSB and MSB pages by using the likeli-
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hood functions of the CCI removed signal as follows:

ΛL(v) =


ΛMAX if v < r2−mVCCI ,

ln
fVO|X (v|01)
fVO|X (v|00) if r2−mVCCI ≤ v < r4−mVCCI ,

−ΛMAX if r4−mVCCI ≤ v,

(5.12)

and

ΛM(v) =



ΛMAX if v < r0−mVCCI ,

ln
fVO|X (v|11)
fVO|X (v|01) if r0−mVCCI ≤ v < r2−mVCCI ,

−ΛMAX if r2−mVCCI ≤ v < r4−mVCCI ,

ln
fVO|X (v|10)
fVO|X (v|00) if r4−mVCCI ≤ v < r6−mVCCI ,

ΛMAX if r6−mVCCI ≤ v,

(5.13)

where ΛMAX is a large positive constant. In order to reduce the computational over-

heads and offer more reliable soft-information, the LLR is set to ΛMAX or −ΛMAX

when the decoding output is quite obvious. Equations (5.12) and (5.13) are for the

case when 7-level voltage sensing is applied to the victim cells, and these equations

can be modified quite easily when more voltage sensing operations are applied. How-

ever, applying the proposed method with 4-level memory sensing is not possible be-

cause no erasure regions exist in this case.
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5.3.2 Joint CCI Cancellation and Soft-Information Computation

In this section, we also propose a joint CCI cancellation and soft-information compu-

tation (JCS) scheme that utilizes the memory sensing output of not only the victim but

also the neighboring cells to find more precise threshold voltage distributions. Unlike

the previous approach that separately conducts CCI cancellation and soft-decision

error correction, the JCS algorithm combines them into one. In the JCS scheme,

the likelihood function of VT H for the given sensing output of the neighboring cells,

fVT H |X,Z1,··· ,ZM(v|k0,k1, · · · ,kM), is used when computing the LLR. Note that X and

Zi represent the symbols of the victim and the i-th neighboring cells, respectively,

and ki, which is the symbol 11, 01, 00, or 10, can be found by making hard-decision

on the sensed threshold voltage. For an even victim cell, there are 1,024 (=45) com-

binations of k1,k2, · · · ,kM, while the number of combinations is reduced to 64 (= 43)

for an odd victim cell. Similar to Eq. (5.1) and (5.2), the LLRs for the LSB and the

MSB pages can be computed as follows:

ΛL(vq) = log

∫ qi−1
qi

f (v|11,k1, · · · ,kM)+
∫ qi−1

qi
f (v|01,k1, · · · ,kM)∫ qi−1

qi
f (v|00,k1, · · · ,kM)+

∫ qi−1
qi

f (v|10,k1, · · · ,kM)
(5.14)

and

ΛL(vq) = log

∫ qi−1
qi

f (v|11,k1, · · · ,kM)+
∫ qi−1

qi
f (v|10,k1, · · · ,kM)∫ qi−1

qi
f (v|01,k1, · · · ,kM)+

∫ qi−1
qi

f (v|00,k1, · · · ,kM)
. (5.15)

Note that fVT H |X,Z1,··· ,ZM(v|k0,k1, · · · ,kM) is denoted as f (v|k0,k1,k2, · · · ,kM) for sim-

plicity in Eq. (5.14) and (5.15). When comparing Eq. (5.1) and (5.14), the latter uti-

lizes more specified signal distributions, which reflect the observations on the neigh-

boring cells, to compute the LLR.
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Figure 5.9: Examples of threshold voltage distributions depending on neighboring
cells.

In Fig. 5.9, examples of fVT H |X(v|k) and f (v|k0,k1,k2, · · · ,kM) are plotted. Note

that Fig. 5.9-(b) is the case when the amount of CCI is much larger than that of Fig.

5.9-(c). By considering the memory sensing output of the neighboring cells, we can

estimate more precise likelihood functions of VT H .

Let us derive the mathematical formulation for f (v|k0,k1,k2, · · · ,kM). Since the

likelihood function of VT H can be modeled as a Gaussian distribution, we need to find

the conditional means and variances of VT H . According to Eq. (2.7) in Chapter 2, VT H

is the sum of VM, VR, and VCCI , which are the output of the MSB programming, the

CCI, and the data retention noise, respectively. Thus, the conditional expectation of

VT H becomes

E[VT H |X = k0,Z1 = k1, · · · ,ZM = kM]

= E[VM|X = k0,Z1 = k1, · · · ,ZM = kM]+E[VR|X = k0,Z1 = k1, · · · ,ZM = kM]

+E[VCCI|X = k0,Z1 = k1, · · · ,ZM = kM]. (5.16)
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In Eq. (5.16), the amount of CCI, VCCI , is uncorrelated with the input symbol of the

victim cell X. Also, VM and VR are independent with the neighboring symbols Zi. The

data retention induced noise can be expressed via power law functions of the number

of charges inside the floating gate [47, 23, 24], thus VR is correlated with X . As a

result, Eq. (5.16) can be simplified as follows:

E[VT H |X = k0,Z1 = k1, · · · ,ZM = kM] (5.17)

= E[VM|X = k0]+E[VR|X = k0]+E[VCCI|Z1 = k1, · · · ,ZM = kM].

According to the threshold voltage signal model in Chapter 2, the expectation of VM

is equal to

E[VM|X = k0] =Vk0 +
1
2

∆Vpp, (5.18)

for k0 = 11, 01, 00, and 10.

The conditional expectation of VCCI can be obtained by using Eq. (5.5). Thus, we

have

E[VCCI|Z1 = k1, · · · ,ZM = kM] =
M

∑
i=1

Ci−1 ·E
[
∆V [i]|Zi = ki

]
. (5.19)

In Eq. (5.19), we utilize the fact that the threshold voltage shift of the i-th cell is

independent from those of the other neighboring cells.

Let us denote the sum of VM and VCCI as VI . Note that VI represents the initial

threshold voltage. In order to find E[VR|X = k0], we use the relationship between VT H

and VI , VR =VT H −VI . Then, E[VR|X = k0] becomes

E[VR|X = k0] = E[VT H |X = k0]−E[VI|X = k0]. (5.20)
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Note that E[VT H |X = k0] can be obtained by applying the threshold voltage distri-

bution estimation algorithms and E[VI|X = k0] is known in advance. By using Eq.

(5.18), (5.19), and (5.20), the conditional expectation of VT H can be computed as

follows:

E[VT H |X = k0,Z1 = k1, · · · ,ZM = kM] (5.21)

=Vk0 +
1
2

∆Vpp +
M

∑
i=1

Ci−1 ·E[∆V [i]|Zi = ki]+E[VT H |X = k0]−E[VI|X = k0].

Let us find the conditional variance of VT H . Similar to Eq. (5.17), the conditional

variance can be decomposed into three terms as follws:

Var[VT H |X = k0,Z1 = k1, · · · ,ZM = kM] (5.22)

=Var[VM|X = k0]+Var[VR|X = k0]+Var[VCCI|Z1 = k1, · · · ,ZM = kM].

The likelihood function of VM is a uniform distribution with the width of ∆Vpp, thus,

its variance becomes

Var[VM|X = k0] =
∆V 2

pp

12
. (5.23)

Since ∆V [i] is i.i.d, the conditional variance of VCCI can be found by using Eq. (5.6)

as follows:

Var[VCCI|Z1 = k1, · · · ,ZM = kM] =
M

∑
i=1

C2
i−1 ·Var

[
∆V [i]|Zi = ki

]
. (5.24)

The conditional variance of the data retention noise also can be found by using
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the statistical information of VI . Thus, the conditional variance of VR becomes

Var[VR|X = k0] = E[V 2
R |X = k0]−E[VR|X = k0]

2 (5.25)

= E[V 2
T H |X = k0]−2E[VT HVI|X = k0]+E[V 2

I |X = k0]−E[VR|X = k0]
2

=Var[VT H |X = k0]−Var[VI|X = k0]+E[VT H |X = k0]
2−E[VI|X = k0]

2

−2E[VT HVI|X = k0]−E[VR|X = k0]
2.

In Eq. (5.25), the likelihood functions of VT H and VI are known, thus E[V 2
T H |X = k0]

and E[V 2
I |X = k0] can be obtained simply. Also, E[VR|X = k0]

2 can be computed by

using Eq. (5.20). The remained correlation term can be simplified as follows:

E[VT HVI|X = k0]

=
∫

∞

−∞

E[VT HVI|X = k0,VI = v] fVI |X(v|k0)dv

=
∫

∞

−∞

(
E[V 2

I |X = k0,VI = v]+E[VIVR|X = k0,VI = v]
)

fVI |X(v|k0)dv

=
∫

∞

−∞

(
v2 + vE[VR|X = k0,VI = v]

)
fVI |X(v|k0)dv. (5.26)

In order to further simplify (5.26), we replace E[VR|X = k0,VI = v] with E[VR|X =

k0]. Recall that VI(= VM +VCCI) is a function of X, thus E[VR|X = k0,VI = v] and

E[VR|X = k0] have similar values. By applying this approximation, we have

E[VT HVI|X = k0] =
∫

∞

−∞

(
v2 + vE[VR|X = k0]

)
fVI |X(v|k0)dv

= E[V 2
I |X = k0]+E[VR|X = k0] ·E[VI|X = k0]. (5.27)
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Figure 5.10: Cumulative density functions of fVT H |Z1,··· ,ZM(v|k1, · · · ,kM) and its Gaus-
sian approximation.

Thus, the conditional variance of VR becomes

Var[VR|X = k0] = E[V 2
T H |X = k0]−E[V 2

I |X = k0] (5.28)

−2E[VR|X = k0] ·E[VI|X = k0]−E[VR|X = k0]
2.

The conditional PDF of VT H can be modeled as a Gaussian function, and the mean

and the variance can be computed from Eq. (5.17) and (5.22). Figure 5.10 shows the

conditional CDFs of VT H and its Gaussian approximation, where we can find that

they are quite similar.

5.3.3 Experimental Results

We conducted experiments to evaluate the post-FEC BER performance of the pro-

posed soft-information computation algorithms. During the experiments, the data

samples obtained from the simulated two-bit MLC NAND flash memory model de-
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scribed in Chapter 2 were used while changing the retention time. The (68254, 65536)

EG-LDPC code with the min-sum decoding algorithm was applied for error correc-

tion. The 4-, 7-, and 10-level MMI quantizers are employed for the victim cells, while

the 4-level uniform quantizer is used for the surrounding cells. Note that the 4-, 7-,

and 10-level MMI quantizers demand 3, 6, and 9 memory sensing operations, respec-

tively. To remove the CCI for the even (odd) victim cells, the five (three) neighboring

cells need to be read additionally, which demands 9 (6) memory sensing operations.

For the comparison purpose, the error performances of hard- and soft-decision de-

coding without applying CCI cancellation are also presented, which are denoted as

‘LDPC’ in Fig. 5.11 and 5.12.

Figure 5.11 shows the error performance of the even MSB pages. Since the BER

performance of LSB pages is quite similar to that of MSB pages except that all the

curves are shifted to the right (longer retention time), we do not present it here. From

Fig. 5.11, we can find that the BER performance is substantially improved by using

the proposed soft-information computation schemes, especially for the JCS one. Even

for the ‘JCS, 7-level’ case, which demands 15 memory sensing operations, its toler-

able retention time is more than five times longer than that of the ‘LDPC, 16-level’

case that requires the same number of voltage sensing operations. It is also notewor-

thy that the ‘JCS, 4-level’ case shows improved BER performance when compared to

the ‘LDPC, 4-level’ case. For the sequential read requests, in which memory sensing

overheads for the neighboring cells can be hidden, the soft-decision error correction

with the ‘JCS, 4-level’ quantization scheme can replace hard-decision error correc-

tion. When comparing the JCS scheme and the approach that separately conducts CCI

cancellation and soft-decision error correction, which is denoted as ‘CCIC, LDPC’ in

Fig. 5.11 and 5.12, the JCR algorithm shows much improved BER performance. This

103



Retention time (hours)

103 104 105 106 107

B
it

 e
rr

o
r 

ra
te

 

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Uncoded

LDPC, 4-level, 3 sensing

LDPC, 7-level, 6 sensing

LDPC, 16-level, 15 sensing

CCIC, LDPC, 7-level, 15 sensing

CCIC, LDPC, 10-level, 18 sensing

JCS, LDPC, 4-level, 12 sensing 

JCS, LDPC, 7-level, 15 sensing 

JCS, LDPC, 10-level, 18 sensing

Figure 5.11: Error performance of a (68254,65536) EG-LDPC code for the even MSB
pages.

means that the soft-information computed by the JCS scheme is more accurate than

that of the counterpart. As the precision of memory sensing output increases, both

approaches can yield reliable LLR values, thus the performance gap between the two

approaches decreases.

Figure 5.12 shows the error performance for the odd MSB pages. We can find

that removing the CCI does not improve the corrected BER performance when the

precision of the sensed signal is too low. Actually, hard-decision error correction with

the JCS scheme even degrades the BER performance when compared to the ‘LDPC,

4-level case’. The odd pages are less severely affected by the CCI than the even ones,

thus removing the CCI does not improve the signal quality much, especially when the

quantization noises are large. As the precision of memory sensing output increases,

however, we can obtain improved BER performances by considering the CCI when
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Figure 5.12: Error performance of a (68254,65536) EG-LDPC code for the odd MSB
pages.

computing LLRs. For example, the ‘CCIC, LDPC, 10-level’ case can yield almost

300 % longer lifetime when compared to the ‘LDPC, 16-level’ case. Note that both

cases require the same number of memory sensing operations. The odd pages show

much longer lifetime than the even pages, thus improving the BER performance of

even pages is more important to increase the overall retention time limit of NAND

flash memory.

5.4 Concluding Remarks

We have developed two soft-information computation schemes to combine CCI can-

cellation and soft-decision error correction in MLC NAND flash memory. The first

approach derives the PDF of the CCI removed signal and uses it to compute LLRs.

The second one jointly conducts CCI cancellation and soft-input computation. The
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developed algorithms are evaluated by using a simulated NAND flash memory model.

In the experiments, we can obtain significant improvement on the worst case (even

pages) BER performances even when only a limited number of memory sensing op-

erations is used.
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Chapter 6

Conclusion

In this dissertation, signal processing algorithms are proposed to improve the sig-

nal quality of sub-20 nm MLC (multi-level cell) NAND flash memory. First, we have

developed threshold voltage distribution estimation algorithms to offer reliable statis-

tical information, which are the means and the standard deviations, to signal process-

ing and/or error correcting units. The sensing directed estimation (SDE) algorithm

shows small estimation errors even when the threshold voltage distribution is shifted

significantly, but demands memory sensing overheads. On the other hand, the de-

cision directed estimation (DDE) algorithm requires no additional memory sensing

operations, but can be conducted only when error corrected bit patterns are available.

The combined approach that employs both the DDE and the SDE algorithms can

minimize memory sensing overheads while maintaining the estimation accuracy.

We also provide detailed characterization of the cell-to-cell interference (CCI).

Our experimental results reveal that the coupling coefficients vary depending on the

physical locations of the victim cells but not on the number of program-erase (PE)
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cycles. We also have developed a CCI cancellation algorithm that is similar to the

interference cancellers employed in conventional communications systems. The pro-

posed algorithm can remove the deterministic part of the CCI, thus the error correct-

ing unit can focus on the random errors. The experimental results showed that the

proposed CCI canceller significantly lowers the bit error rate (BER).

Finally, this dissertation presents soft-information computation schemes that com-

bine the proposed signal processing algorithms and soft-decision error correction,

which usually shows much improved error performance than the conventional hard-

decision one. The proposed joint CCI cancellation and soft-information computation

(JCS) scheme can improve the corrected BER significantly with only a small number

of memory sensing operations.

Advanced process technology is no more sufficient for increasing the density of

NAND flash memory because scaling also lowers the quality of threshold voltage

signal. This study allows to design more reliable high-density NAND flash memory

systems by means of signal processing and advanced error correction techniques.
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국문초록

낸드플래시메모리는빠른읽기/쓰기동작과낮은소비전력,충격에강한특성

등의 장점으로 인하여 휴대 전화, USB 메모리, 디지털 카메라 등의 다양한 전

자장치에서광범위하게사용되고있다.낸드플래시메모리의대용량화는한

셀에 여러 비트를 저장하는 멀티 레벨 셀(multi-level cell) 방식과 공정 기술의

미세화를 통하여 꾸준하게 이루어져왔다. 그러나 메모리의 집적도가 높아질

수록, 셀의 문턱 전압(threshold voltage) 신호는 각종 잡음 및 인접 셀의 간섭

(cell-to-cell interference)에 취약해지고 발생되는 비트 에러의 수도 증가한다.

현재까지는 낸드 플래시 메모리의 신뢰도를 향상시키기 위하여 BCH (Bose-

Chaudhuri-Hocquenghem)부호또는 RS (Reed-Solomon)부호기반의경판정에

러정정(hard-decision error correction)이널리이용되고있다.그러나 20 nm이하

공정의 낸드 플래시 메모리에서는 경판정 에러 정정만으로는 감당할 수 없는

정도로비트에러의수가급격하게증가한다.본논문에서는 20 nm이하공정을

사용하는 고밀도 낸드 플래시 메모리의 신뢰도 향상을 위한 신호처리 알고리

즘과연판정에러정정(soft-decision error correction)방법을제안한다.

본논문의첫번째부분에서는문턱전압분포추정알고리즘을제안한다.

낸드플래시메모리에서는시간이지남에따라플로팅게이트(floating gate)에

저장된전하가누설되는현상이발생하는데,이는비트에러의주요한원인이

된다. 본 논문에서 제안된 문턱 전압 추정 방식은 크게 둘로 구분된다. 먼저,

SDE (sensing directed estimation) 방식은 메모리를 비교적 높은 정밀도로 읽고

이과정에서측정된데이터를이용하여문턱전압분포를추정하는방식이다.
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이에반하여, DDE (decision directed estimation)방식에서는에러정정에성공한

비트 패턴을 이용하여 추가의 메모리 센싱 없이 전압 분포를 추정한다. 본 논

문에서는실제및가상의낸드플래시메모리에서얻은셀데이터를이용하여

제안된알고리즘이문턱전압분포를매우정확하게추정할수있음을보였다.

본 논문의 두 번째 부분에서는 셀 간 간섭 제거 알고리즘을 제안한다. 본

연구에서는 먼저 실제 낸드 플래시 메모리 칩에서 측정된 셀 간 간섭 계수의

통계적인특성을제시하고,이를바탕으로기존의통신시스템에서널리사용

되는 간섭 제거기와 유사한 형태의 셀 간 간섭 제거 알고리즘을 제안하였다.

제안된 알고리즘에서는 셀 간 간섭 계수를 신호처리 방법을 이용하여 추정하

고, 비교적 간단한 연산을 통하여 셀 간 간섭을 제거한다. 이에 더하여, 본 논

문에서는셀간간섭제거에최적화된양자화방법에대한연구도추가적으로

수행하였다.

마지막으로본논문에서는연판정에러정정을낸드플래시메모리에적용

하기위한신호처리알고리즘에대한연구를수행하였다.연판정에러정정을

위해서는복호화기의입력으로신뢰도정보가요구된다.본연구에서는셀간

간섭을 고려한 신뢰도 정보의 계산 방식을 제안하였다. 첫 번째 방법은 셀 간

간섭제거알고리즘과연판정에러정정을개별적으로수행하는것으로,셀간

간섭이제거된신호의확률분포를추정하여신뢰도정보를계산한다.두번째

방식에서는주변셀의정보가고려된전압분포의수식을유도하고,이를이용

하여셀간간섭제거와연판정에러정정을동시에수행한다.본연구를통해

제안된문턱전압분포추정,셀간간섭제거,연판정에러정정방법을통하여

낸드플래시메모리의신뢰도를비약적으로향상시킬수있다.

주요어 :낸드플래시메모리,메모리신호처리,문턱전압분포추정,셀간간섭

제거,연판정오류정정

학번 : 2009-20856

118


	1 Introduction
	2 NAND Flash Memory Basics
	2.1 Basics of NAND Flash Memory
	2.1.1 NAND Flash Memory Structure
	2.1.2 Multi-Page Programming
	2.1.3 Cell-to-Cell Interference
	2.1.4 Data Retention

	2.2 Threshold Voltage Distribution of NAND Flash Memory and Signal Modeling
	2.2.1 Threshold Voltage Distribution and Gaussian Approximation
	2.2.2 Modeling of Threshold Voltage Signal


	3 Threshold Voltage Distribution Estimation
	3.1 Introduction
	3.2 Sensing Directed Estimation of Threshold Voltage Distribution
	3.2.1 Cost Function
	3.2.2 Gradient Descent Method based Parameter Search
	3.2.3 Levenberg-Marquardt Method based Parameter Search
	3.2.4 Experimental Results

	3.3 Decision Directed Estimation of Threshold Voltage Distribution
	3.3.1 Basic Idea
	3.3.2 Applying to Two-Bit MLC NAND Flash Memory
	3.3.3 Combined Threshold Voltage Distribution Estimation
	3.3.4 Error Analysis
	3.3.5 Experimental Results

	3.4 Concluding Remarks

	4 Cell-to-Cell Interference Cancellation
	4.1 Introduction
	4.2 Direct Measurement of Coupling Coefficients
	4.2.1 Measurement Procedure
	4.2.2 Experimental Results

	4.3 Least Squares Method based Coupling Coefficient Estimation
	4.4 Multi-Level Memory Sensing Schemes for CCI Cancellation
	4.5 Experimental Results
	4.5.1 CCI Cancellation with Simulated NAND Flash Memory
	4.5.2 CCI Cancellation with Real NAND Flash Memory

	4.6 Concluding Remarks

	5 Soft-Decision Error Correction in NAND Flash Memory
	5.1 Introduction
	5.2 Soft-Decision Error Correction without CCI Cancellation
	5.3 Soft-Decision Error Correction with CCI Cancellation
	5.3.1 Soft-Information Computation using PDF of CCI Removed Signal
	5.3.2 Joint CCI Cancellation and Soft-Information Computation
	5.3.3 Experimental Results

	5.4 Concluding Remarks

	6 Conclusion


<startpage>2
1 Introduction 14
2 NAND Flash Memory Basics 19
 2.1 Basics of NAND Flash Memory 19
  2.1.1 NAND Flash Memory Structure 19
  2.1.2 Multi-Page Programming 20
  2.1.3 Cell-to-Cell Interference 22
  2.1.4 Data Retention 23
 2.2 Threshold Voltage Distribution of NAND Flash Memory and Signal Modeling 25
  2.2.1 Threshold Voltage Distribution and Gaussian Approximation 25
  2.2.2 Modeling of Threshold Voltage Signal 27
3 Threshold Voltage Distribution Estimation 31
 3.1 Introduction 31
 3.2 Sensing Directed Estimation of Threshold Voltage Distribution 33
  3.2.1 Cost Function 34
  3.2.2 Gradient Descent Method based Parameter Search 36
  3.2.3 Levenberg-Marquardt Method based Parameter Search 38
  3.2.4 Experimental Results 41
 3.3 Decision Directed Estimation of Threshold Voltage Distribution 50
  3.3.1 Basic Idea 51
  3.3.2 Applying to Two-Bit MLC NAND Flash Memory 54
  3.3.3 Combined Threshold Voltage Distribution Estimation 57
  3.3.4 Error Analysis 58
  3.3.5 Experimental Results 64
 3.4 Concluding Remarks 70
4 Cell-to-Cell Interference Cancellation 71
 4.1 Introduction 71
 4.2 Direct Measurement of Coupling Coefficients 73
  4.2.1 Measurement Procedure 74
  4.2.2 Experimental Results 77
 4.3 Least Squares Method based Coupling Coefficient Estimation 83
 4.4 Multi-Level Memory Sensing Schemes for CCI Cancellation 87
 4.5 Experimental Results 91
  4.5.1 CCI Cancellation with Simulated NAND Flash Memory 91
  4.5.2 CCI Cancellation with Real NAND Flash Memory 96
 4.6 Concluding Remarks 97
5 Soft-Decision Error Correction in NAND Flash Memory 99
 5.1 Introduction 99
 5.2 Soft-Decision Error Correction without CCI Cancellation 101
 5.3 Soft-Decision Error Correction with CCI Cancellation 104
  5.3.1 Soft-Information Computation using PDF of CCI Removed Signal 104
  5.3.2 Joint CCI Cancellation and Soft-Information Computation 110
  5.3.3 Experimental Results 115
 5.4 Concluding Remarks 118
6 Conclusion 120
</body>

