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Abstract

High-performance error correction for NAND flash memory is greatly needed

because the raw bit error rate increases as the semiconductor geometry shrinks for

high density. Soft-decision error correction, such as low-density parity-check (LDPC)

codes, offers high performance but their implementation complexity hinders wide

adoption to consumer products. This dissertation proposes two high-performance

message-passing schedules and a low-complexity decoding algorithm for LDPC codes.

In particular, an efficient decoder architecture for finite geometry (FG) LDPC codes

is proposed, and the energy consumption of soft-decision decoding for NAND flash

memory is analyzed.

The first part of this dissertation is devoted to improving the informed dynamic

scheduling (IDS) algorithms. We analyze the behavior of the residual belief prop-

agation (RBP), which is the fastest IDS algorithm, and develop an improved RBP

(iRBP) by avoiding the concentration of message updates at a particular node. We

also study the syndrome-based mixed scheduling of the iRBP and the node-wise

scheduling (NS). The proposed mixed scheduling outperforms all other scheduling

methods tested in this work.

The next part of this dissertation is to develop a conditional variable node update

scheme for the a posteriori probability (APP) algorithm. The developed algorithm

is robust to decoding failures and can reduce the dynamic power consumption by

lowering switching activities in the LDPC decoder. To implement the developed al-
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gorithm, we propose a memory-efficient pipelined parallel architecture for LDPC

decoding. The architecture employs FG-LDPC codes that not only show fast conver-

gence speed and good error-floor performance but also perform well with iterative

decoding algorithms, which is especially suitable for data storage devices. We also

developed a rate-0.96 (68254, 65536) Euclidean geometry LDPC code and imple-

mented the proposed architecture in 0.13-µm CMOS technology.

This dissertation also covers low-energy error correction of NAND flash mem-

ory through soft-decision decoding. The soft-decision-based error correction algo-

rithms show high performance, but they demand an increased number of flash mem-

ory sensing operations and consume more energy for memory access. We examine

the energy consumption of a NAND flash memory system equipping an LDPC code-

based soft-decision error correction circuit. The sum of energy consumed at NAND

flash memory and the LDPC decoder is minimized. In addition, the chip size and en-

ergy consumption of the decoder were compared with those of two Bose-Chaudhuri-

Hocquenghem (BCH) decoding circuits showing the comparable error performance

and the throughput. We also propose an LDPC decoder-assisted precision selection

method that needs virtually no overhead. This dissertation is intended to develop

high-performance and low-power error correction circuits for NAND flash memory

by studying improved decoding and scheduling algorithms, VLSI architecture, and a

read precision selection method.

Keywords : Dynamic scheduling, low-density parity-check (LDPC) codes, NAND

flash memory, soft-decision error correction, soft-decision sensing operation

Student Number : 2009-30185
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Chapter 1

Introduction

1.1 NAND Flash Memory

NAND flash memory is widely used in many mobile devices, such as cellular phones,

digital cameras, and smart-pads because of high capacity, fast access speed, and low

power consumption. In particular, solid-state drives (SSDs) for notebook computers

become popular as the density of NAND flash memory increases rapidly.

A NAND flash memory device contains thousands of cell blocks that can inde-

pendently be erased. Each cell block consists of rows and columns of cells. The cells

in the same row and those in the same column are controlled by the same word-line

(WL) and the same bit-line (BL), respectively. Each flash memory cell is a floating

gate NMOS transistor in which the gate stores charges to control the threshold voltage

of the transistor. Because of the process variation, program inaccuracy, charge leak-

age, and noise, the threshold voltage of NAND flash memory has a Gaussian-like

distribution, which can cause bit errors when reading the cell. Hence, traditionally,
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NAND flash memory systems equip error correction circuits that employ Hamming,

Bose-Chaudhuri-Hocquenghem (BCH), or Reed-Solomon (RS) codes [1, 2, 3, 4, 5].

Conventional NAND flash memory devices adopt either all-BL or even/odd-BL

structure. Figure 1.1(a) shows the all-BL structure in which all the cells in the same

WL can be read or programmed simultaneously, where DSL, SSL, and CSL denote

drain-select, source-select, and common-source lines, respectively. Because the unit

of read and write operations is called a page, the number of BLs in the all-BL struc-

ture equals to the number of bits in a page. Note that the typical page size of the

current generation of NAND flash memory is 64 kbits (8 kbytes) besides the parity

data. The even/odd-BL structure is illustrated in Fig. 1.1(b) in which the cells in even

BLs and those in odd BLs are independently selected, thus the same peripherals can

be shared by two adjacent BLs, and two pages are mapped to an WL. Although the

even/odd-BL structure reduces the overhead of peripheral circuits by sharing data

latches and sense amplifiers (SAs), this one incurs larger cell-to-cell interference

(CCI) when compared to the all-BL structure.

Today’s NAND flash memory adopts the multi-level cell (MLC) technology that

stores more than one bit per memory cell to increase the density. The organization

of a 128-Gbit NAND flash memory device with 2-bit MLC technology is shown in

Table 1.1 [6]. Note that in 2-bit MLC NAND flash memory, two and four pages are

mapped to an WL in the all-BL and the even/odd-BL structures, respectively.

The MLC technology, however, reduces the gap between adjacent threshold volt-

age levels, which significantly increases the bit error rate (BER). Moreover, as the

feature size of NAND flash memory shrinks, the number of electrons in the float-

ing gate of a transistor also decreases, and as a result, the memory is very prone to

charge loss caused by long data retention [7]. The CCI also increasingly deteriorates

2
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Figure 1.1: Two bit-line structures of NAND flash memory

Table 1.1: The features of 34-nm 2-bit MLC NAND flash memory
Capacity 128 Gbits

MLC tech. 2 bits/cell

Device size 8,192 blocks

Block size 256 pages

Page size 8,192 + 448 bytes

the reliability of information stored at the floating gates [8, 9]. It is also well known

that SSD applications usually demand high program-and-erase cycles, which greatly

affects the reliability of NAND flash memory [10].

NAND flash memory devices have a spare region at each page to store parity

bits for error correction. Traditionally, Hamming and BCH codes have been widely

used for NAND flash memory error correction. However, as the process technology

scales down continuously, more advanced error-correcting codes are needed to keep

NAND flash memory reliable. Soft-decision error-correcting methods can increase
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the error-correcting performance because the reliability of stored information can

also be utilized. In this dissertation, we consider LDPC codes as error correction of

NAND flash memory because of their excellent error-correcting capability and highly

parallelizable decoding scheme.

1.2 LDPC Codes

LDPC codes [11, 12] have received great attention in recent years because of their

capacity-approaching performance and fully parallelizable decoding algorithms. In

particular, LDPC codes have successfully been applied to many communication sys-

tems such as DVB-S2 [13], IEEE 802.3an [14], IEEE 802.11n [15], and IEEE 802.16e

[16].

The performance of LDPC decoding can be improved by employing the serial

message passing schedule [17, 18, 19, 20, 21]. The serial schedule uses the renewed

messages immediately for updating their neighboring nodes and, as a result, shows

better error performance than the conventional flooding-based ones. In addition, the

informed dynamic scheduling (IDS) algorithms not only increase the convergence of

the decoding but also significantly improve the error performance by removing trap-

ping set errors [22, 23] when compared to the static scheduling algorithms such as the

serial and the flooding schedules. Although it takes more operations to decode a code-

word due to the nature of the IDS algorithms, it can be used for future applications

where error performance is critical. Meanwhile, in order to further improve the error

performance, mixed scheduling of IDS algorithms has been intensively studied in the

past few years [23, 24, 25, 26]. In this dissertation, we propose an improved IDS

algorithm to increase the convergence speed. We also propose a mixed IDS strategy

4



that adopts a different approach to improve the error performance of the algorithm

compared to the adaptive mixed scheduling algorithms [23, 24, 25, 26].

With the advances in semiconductor technology, there have been many works

to implement LDPC decoders in VLSI. The early stage of the study featured fully

parallel LDPC decoders with the belief propagation (BP) algorithm [27, 28]. How-

ever, in order to reduce the implementation cost, most high-throughput LDPC de-

coders [29, 30, 31] usually employ partially parallel architectures with the min-sum

(MS) algorithm, an approximate BP algorithm [32, 33]. Moreover, since LDPC codes

were chosen in many communication standards, multi-rate LDPC decoders have been

extensively studied [34, 35, 36]. Nevertheless, only little work has been conducted on

the implementation of LDPC decoders with a large code length [37, 38, 39].

LDPC codes have been considered for error correction of NAND flash mem-

ory [40, 41, 42] because of severe performance degradation of recent NAND flash

memory devices. The threshold voltage signal of high-density NAND flash mem-

ory contains a large amount of noise because of aggressive scaling down of memory

cells, CCI, program-and-erase (PE) cycling, data retention, and MLC technology.

Hard-decision error correction algorithms, such as BCH or RS, are no more suffi-

cient for high-density NAND flash memory. In NAND flash memory, the read and

write operations are performed by the unit of a page that has been recently increased

to 8 kB. In addition, the empirical performance of LDPC codes converges to its ex-

pected behavior as the code length increases [43]. Therefore, LDPC codes with fairly

large code lengths need to be studied for the application to NAND flash memory.

Soft-decision decoding of LDPC codes shows much better error correcting perfor-

mance than hard-decision decoding, however it demands multiple memory sensing

operations. Multiple sensing operations and delivering soft-decision data obviously
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increase the energy consumption of NAND flash memory. In this dissertation, we

implement a high-rate LDPC decoding circuit for NAND flash memory and analyze

the energy consumption of a NAND flash memory system with soft-decision LDPC

decoding.

1.3 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 describes the background of

LDPC codes, decoding algorithms, and message-passing schedules. In Chapter 3, two

improved dynamic scheduling algorithms are proposed. The improved residual BP

(RBP) algorithm that increases the convergence of the conventional RBP algorithm

is proposed in Section 3.2, and mixed scheduling of two IDS algorithms is developed

and presented in Section 3.3. Chapter 4 proposes a pipelined parallel architecture for

decoding of finite geometry (FG) LDPC codes. The conditional variable node update

algorithm that makes the conventional normalized a posteriori probability (APP) al-

gorithm resilient to decoding failure is proposed in Section 4.2. The proposed decoder

architecture and optimization strategies are described in Section 4.3. Section 4.4 pro-

vides the implementation results. Chapter 5 analyzes the energy consumption for

read operation of NAND flash memory with soft-decision error correction. The per-

formance of LDPC decoding for NAND flash memory is presented in Section 5.3.

The energy consumption for NAND flash memory access and that of the LDPC de-

coder implemented in Chapter 4 are examined in Section 5.2 and Section 5.4, respec-

tively. Section 5.5 optimizes the total energy consumption for accessing NAND flash

memory with soft-decision error correction and proposes an LDPC decoder-assisted

precision selection method. Finally, Chapter 6 concludes this dissertation.
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The material in this dissertation was presented in [44, 45, 46, 47, 48].
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Chapter 2

LDPC Decoding and Scheduling
Algorithms

2.1 Introduction

LDPC codes are linear codes with parity-check matrices having few non-zero ele-

ments, which allows low decoding complexity, and show good error performance

when decoded with soft-decision information. A (dv, dc)-regular (N,K) LDPC code

is defined by an M×N parity-check matrix H with the column weight dv and the

row weight dc, where N and K denote the code length and the number of informa-

tion bits, respectively, and M≥N−K. Note that dv and dc are also referred to as the

degree of a variable node and that of a check node, respectively. If H is full rank,

M =N−K. Each column of the parity-check matrix corresponds to a codeword bit,

and each row of the matrix represents a parity-check constraint that defines a code;

i.e., ∑n∈N(m)

⊕
cn = 0 for m-th row, where

⊕
denotes the exclusive OR (XOR) oper-

ation. The number of parity bits, N−K, of an LDPC code corresponds to the rank of

8
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(b) The bipartite graph

Figure 2.1: A (2, 3)-regular (12, 5) RS-LDPC code

the parity-check matrix of the code.

The LDPC code can be represented by a bipartite graph that has N variable nodes

and M check nodes as well as edges. Each variable node corresponds to a codeword

bit, or equivalently a column of the parity-check matrix, and each check node corre-

sponds to a parity-check constraint, or equivalently a row of the matrix. Since there

is an edge between the n-th variable node and the m-the check node if and only if

Hm,n = 1, every variable (check) node is connected to dv check (dc variable) nodes.

Note that for irregular LDPC codes, dv or dc are not constant. Figure 2.1 shows the

parity-check matrix of a (2, 3)-regular (12, 5) RS-LDPC code and the corresponding

bipartite graph. Every variable node has dv (= 2) neighboring check nodes and every

check node are connected to dc (= 3) variable nodes. Since the parity-check matrix
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contains one redundant row, M 6=N−K.

In the bipartite graph, each edge has a variable-to-check (VTC) and a check-

to-variable (CTV) messages that can be represented as either probabilities or log-

likelihood ratios (LLRs). However, in practice, it is more convenient to use LLRs [11,

12]. Each node receives messages from neighboring nodes, updates the outgoing mes-

sages, and propagates the messages back to its neighboring nodes. The message up-

date rules for variable and check nodes are given by decoding algorithms, whereas

the order of message updates is determined by scheduling algorithms. Therefore, de-

coding of LDPC codes can be configured in many ways according to decoding and

scheduling algorithms. In the following section, decoding and scheduling algorithms

are introduced.

2.2 Decoding Algorithms for LDPC Codes

This section contains a brief review of decoding algorithms for LDPC codes. The

belief propagation (BP) algorithm that provides the best error performance is de-

scribed in Section 2.2.1, and simplified BP algorithms that approximate the variable

and check node update operations are explained in Section 2.2.2.

2.2.1 Belief Propagation Algorithm

The probabilistic decoding was devised by Gallager [11, 12] and later generalized

by Tanner [49] and Wiberg [32], whereas the BP algorithm, also known as the sum-

product algorithm [50], was first proposed by Pearl [51]. However, it turned out that

the probabilistic decoding is a special version of the BP algorithm [52, 53, 50].

In order to describe the BP decoding algorithm, the following notations are first
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introduced. Let c= {c1,c2, · · · ,cN}, x= {x1,x2, · · · ,xN}, and y= {y1, y2, · · · ,yN} be

an N-bit cordword, the transmitted bipolar sequence, and the corresponding received

word, respectively, where cn ∈ {0,1} and xn ∈ {±1}. Let In be the channel LLR of

the n-th received symbol, and let Zn be the a posteriori LLR of the n-th variable node.

Let Lmn denote a CTV message sent from the check node m to the variable node n.

Similarly, let Znm be a VTC message sent from the variable node n to the check node

m. Define N(m) and M(n) as the set of variable nodes connected to the check node

m and that of check nodes connected to the variable node n, respectively. Then, the

variable and check node update rules are given by

Znm = In + ∑
m′∈M(n)\m

Lm′n (2.1)

and

Lmn = ∏
n′∈N(m)\n

sign(Zn′m)×2tanh−1

(
∏

n′∈N(m)\n
tanh

( |Zn′m|
2

))
, (2.2)

respectively, and the a posteriori LLR is computed by

Zn = In + ∑
m∈M(n)

Lmn. (2.3)

For a binary-input memoryless channel, the channel LLR is given by

In = ln
p(cn = 0|yn)

p(cn = 1|yn)
. (2.4)

If a codeword c is transmitted over an additive white Gaussian noise (AWGN) channel
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with zero mean and variance σ2,

In = ln
p(cn = 0|yn)

p(cn = 1|yn)
=


−2yn/σ2, xn = 2cn−1

2yn/σ2, xn = (−1)cn .

(2.5)

Note that the channel LLR is also called the intrinsic information, whereas the VTC

and CTV messages are also referred to as the extrinsic information. Note also that

the check node update rule of Gallager’s probabilistic decoding is

Lmn = ∏
n′∈N(m)\n

sign(Zn′m)× f

(
∑

n′∈N(m)\n
f (|Zn′m|)

)
, (2.6)

where f (x)= ln(ex +1)/(ex−1).

2.2.2 Simplified Belief Propagation Algorithms

The variable and check node update rules of the BP decoding can be simplified us-

ing the a posteriori probability (APP) [33] and the min-sum (MS) algorithms [32],

respectively. These simplified algorithms show degraded error performance when

compared to the BP decoding but greatly reduce the implementation complexity,

especially for LDPC codes with high node degrees. The Max-Log-MAP algorithm

presented in [54] and the max-product algorithm [55] are equivalent to the MS al-

gorithm, where the performance of the Max-Log-MAP and max-product algorithms

were evaluated using the density evolution [43]. In addition, the reduced-complexity

decoding algorithms based on the forward-backward algorithm [50] that operates in

the LLR domain was proposed [56] and later elaborated [57] in which piecewise

linear approximation of the check node update operation was also proposed.
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Two modified versions of the MS algorithm improve the error performance using

a normalization factor [58] or a single correction term [56, 59]. The MS algorithm

with a normalization factor is called the normalized MS (NMS) algorithm, whereas

that with a single correction term is referred to as the offset MS decoding (OMS) [60].

The modified MS algorithms incur only negligible degradation in error performance

when compared to the BP algorithm. The normalized APP-based algorithm that com-

bines the APP and NMS algorithms was also proposed to improve the error perfor-

mance of the APP algorithm [61]. After that, the MS algorithms has been extensively

studied in the last decade, which includes the λ -min algorithm [62], the MS with

conditional correction [63], the MS with the degree-matched approximation [64], the

adaptive OMS [65], the two-dimensional NMS [66], the transformed MS [67], the

self-corrected MS [68], and the MS with two normalization factors [69].

The asymptotic performance of the modified MS algorithms were analyzed using

DE in [59, 60, 70, 71], and the quantization effects of fixed-point arithmetic in the

algorithms were studied in [63, 70, 72, 73, 74, 75].

In the following, the MS and its modified versions are described.

2.2.2.1 Min-Sum Algorithms

The MS algorithm and its two modified versions, the NMS and OMS algorithms,

approximate the check node update rule of the BP decoding, while preserving the

variable node update rule. In the MS algorithm, the core operation of the check node
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update rule can be approximated as [76]

L(U⊕V ) = log
1+ eL(U)+L(V )

eL(U)+ eL(V )

= sign(L(U))sign(L(V )) ·min(|L(U)|, |L(V )|)+ s(L(U),L(V ))

≈ sign(L(U))sign(L(V )) ·min(|L(U)|, |L(V )|) , (2.7)

where U and V are statistically independent random variables, and the term s(L(U),L(V ))=

log
(
1+ e−|L(U)+L(V )|)− log

(
1+ e−|L(U)−L(V )|) is the correction factor [57]. Then,

Eq. (2.2) can be written as

Lmn = ∏
n′∈N(m)\n

sign(Zn′m) · min
n′∈N(m)\n

|Zn′m| . (2.8)

The correction factor in Eq. (2.7) can be approximated to a fixed number β > 0,

then the check node operation Eq. (2.2) becomes

Lmn = ∏
n′∈N(m)\n

sign(Zn′m) ·max
(

min
n′∈N(m)\n

|Zn′m|−β ,0
)
, (2.9)

which corresponds to the check node update rule of the OMS algorithm. In the NMS

algorithm, a scaling factor β < 1 is introduced to reduce the overestimated CTV

messages in the MS algorithm, that is to say |L(U⊕V )| ≤min(|L(U)|, |L(V )|) [72].

The check node update rule of the NMS algorithm is given by

Lmn = ∏
n′∈N(m)\n

sign(Zn′m) · min
n′∈N(m)\n

|Zn′m| ·α. (2.10)
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2.2.2.2 APP Algorithm

The APP algorithm simplifies the variable node operation by substituting the extrinsic

outgoing messages from a variable node with the a posteriori LLR of the correspond-

ing variable node [33], namely Znm = Zn ∀n,m ∈M(n), while maintaining the same

check node update rule of the BP decoding. The APP algorithm not only reduces the

computational complexity of the variable node operation but also saves the memory

that stores the extrinsic information Znm. However, the correlation among the extrin-

sic outgoing messages significantly degrades the error performance compared to the

BP and MS decoding algorithms [33, 72].

2.3 Message-Passing Schedules for Decoding of LDPC Codes

This section describes the scheduling algorithms that determine the order of message

updates for decoding of LDPC codes. The scheduling algorithms are categorized into

static and dynamic schedules; the former updates messages in a predetermined order,

whereas the latter dynamically updates messages based on a specific metric such as

the reliabilities or residuals of the messages propagated. Depending on the scheduling

algorithm employed, LDPC decoding shows different performance and complexity

characteristics. We start with the static scheduling algorithms that include flooding

and the serial schedule.

2.3.1 Static Schedules

Flooding is the most well-known message-passing schedule that first updates all

check nodes with VTC messages and then updates all variable nodes with intrin-

sic information and the CTV messages in every iteration, which is also known as the
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two-phase message-passing algorithm. The BP decoding with the flooding schedule

is formally described in Algorithm 1.

Algorithm 1 The BP decoding with flooding schedule
1: Initialize k = 0
2: Initialize all Z(−1)

nm = In

3: for m = 1 to M do
4: for every n ∈N(m) do
5:

L(k)
mn = ∏

n′∈N(m)\n
sign

(
Z(k−1)

n′m

)
×2tanh−1

 ∏
n′∈N(m)\n

tanh


∣∣∣Z(k−1)

n′m

∣∣∣
2


6: end for
7: end for
8: for n = 1 to N do
9: for every m ∈M(n) do

10: Z(k)
nm = In +∑m′∈M(n)\m L(k)

m′n

11: Z(k)
n = In +∑m∈M(n) L(k)

mn

12: end for
13: end for
14: Decide a hard-decision vector ŵ = {ŵ1, . . . , ŵN} based on

ŵn =

{
0, if Z(k)

n ≥ 0
1, otherwise

15: if HŵT = 0 or the maximum iteration number is reached then
16: Output the hard-decision ŵ
17: else
18: k = k+1
19: Go to line 3;
20: end if

Another well-known static scheduling algorithm is the serial-C schedule [17] in

which a check node is updated with its neighboring variable nodes first, and then

the newly updated check node messages are immediately used to partially update the
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variable nodes. The layered [18] and turbo decoding [19] algorithms are equivalent

to the serial-C schedule. The serial-V schedule is a dual algorithm to the serial-C

one, hence a variable node is updated first, and then the neighboring check nodes

are updated. The shuffled iterative decoding [20] and the lazy scheduling [21] are

equivalent to the serial-V schedule.

The serial schedule is advantageous in convergence speed and hardware imple-

mentation. Both the serial-C and serial-V schedules converge almost twice faster than

the conventional flooding and save the memory for storing the VTC messages, Znm’s,

because the VTC messages can be recovered from the APP and CTV messages,

namely Znm = Zn−Lmn. The BP decoding with the serial-C and that with the serial-V

schedule are formally described in Algorithm 2 and 3, respectively, where Pm denotes

the check product of the m-th check node and ∆L(k)
mn = L(k)

mn−L(k−1)
mn . Note that the BP

decoding with the serial-V schedule needs additional memory for M check products.

2.3.2 Dynamic Schedules

This subsection introduces the dynamic scheduling algorithms based on residuals,

which is called the informed dynamic scheduling (IDS) strategies. The IDS of the

BP decoding was first proposed under the name of the residual BP (RBP) algorithm

by Elidan et al. [77]. Then, Vila Casado et al. applied the algorithm to decoding

of LDPC codes and also introduced the node-wise scheduling (NS) to relieve the

problem caused by the greediness of the RBP [22, 23]. Since then, variants of IDS

have been investigated [24, 25, 26, 78, 79, 80].

The RBP is an IDS scheme that schedules message updates according to the resid-

ual that is defined as the norm of the difference between the messages before and after

an update [77]. Since all of the messages are represented as one-dimensional vari-
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Algorithm 2 The BP decoding with the serial-C schedule
1: Initialize k = 0
2: Initialize all Zn = In

3: Initialize all L(−1)
mn = 0

4: for m = 1 to M do
5: for every n ∈N(m) do
6: Z(k−1)

nm = Zn−L(k−1)
mn

7: end for
8: for every n ∈N(m) do
9:

L(k)
mn = ∏

n′∈N(m)\n
sign

(
Z(k−1)

n′m

)
×2tanh−1

 ∏
n′∈N(m)\n

tanh


∣∣∣Z(k−1)

n′m

∣∣∣
2


10: end for
11: for every n ∈N(m) do
12: Zn = Z(k−1)

nm +L(k)
mn

13: end for
14: end for
15: Decide a hard-decision vector ŵ = {ŵ1, . . . , ŵN} based on

ŵn =

{
0, if Zn ≥ 0
1, otherwise

16: if HŵT = 0 or the maximum iteration number is reached then
17: Output the hard-decision ŵ
18: else
19: k = k+1
20: Go to line 4;
21: end if

18



Algorithm 3 The BP decoding with the serial-V schedule
1: Initialize k = 0
2: Initialize all Z(−1)

n = In

3: Initialize all Pm = ∏n∈N(m) tanh
(

Z(−1)
n
2

)
4: for n = 1 to N, ∀m ∈M(n) do
5: Z(k−1)

nm = Z(k−1)
n −L(k−1)

mn

6: L(k)
mn = 2tanh−1

(
Pm/ tanh

(
Z(k−1)

nm
2

))
7: Z(k)

n = Z(k−1)
n +∑m∈M(n) ∆L(k)

mn

8: Z(k)
nm = Z(k)

n −L(k)
mn

9: Pm← tanh
(

L(k)
mn
2

)
· tanh

(
Z(k)

nm
2

)
10: end for
11: Decide a hard-decision vector ŵ = {ŵ1, . . . , ŵN} based on

ŵn =

{
0, if Z(k)

n ≥ 0
1, otherwise

12: if HŵT = 0 or the maximum iteration number is reached then
13: Output the hard-decision ŵ
14: else
15: k = k+1
16: Go to line 4;
17: end if
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ables in the LLR-BP decoding of LDPC codes, the residual is the absolute value of

the difference of LLR values [22]. In particular, the RBP decoding presented in [22]

and [23] considers only CTV messages when computing the residuals. Thus, the

residual of the message Lmn propagated from the m-th check node to the n-th variable

node is expressed as

r (Lmn) =
∣∣∣L(k+1)

mn −L(k)
mn

∣∣∣ , (2.11)

where L(k+1)
mn is computed based on the VTC messages, Z(k)

nm ’s. As the BP converges,

all of the residuals become zero. Therefore, giving the priority of update to the mes-

sage that has the largest residual can accelerate the decoding convergence [22]. The

RBP is formally described in Algorithm 4, where the decoder checks the stopping

rule when the number of message updates reaches the number of edges in the bipar-

tite graph of an LDPC code [22, 23].

Algorithm 4 The residual BP
1: Initialize all Znm = In

2: Initialize all Lmn = 0
3: Compute all r (Lmn)
4: Find m,n = arg max

∀m′,1≤m′≤M
n′∈N(m′)

r (Lm′n′)

5: Generate and propagate Lmn

6: Set r (Lmn) = 0
7: for every m′ ∈M(n)\m do
8: Generate and propagate Znm′

9: for every n′ ∈N(m′)\n do
10: Compute r (Lm′n′)
11: end for
12: end for
13: if Stopping rule is not satisfied then
14: Go to line 4;
15: end if
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Algorithm 5 The BP decoding with the node-wise scheduling
1: Initialize all Znm = In

2: Initialize all Lmn = 0
3: Compute all r (Lmn)
4: Find m = arg max

∀m′,1≤m′≤M
n′∈N(m′)

r (Lm′n′)

5: for every n ∈N(m) do
6: Generate and propagate Lmn

7: Set r (Lmn) = 0
8: for every m′ ∈M(n)\m do
9: Generate and propagate Znm′

10: for every n′ ∈N(m′)\n do
11: Compute r (Lm′n′)
12: end for
13: end for
14: end for
15: if Stopping rule is not satisfied then
16: Go to line 4;
17: end if

The RBP shows the fastest convergence speed, thus exhibiting substantially better

performance than the BP decoding with the flooding or serial schedules when the

number of iterations is small. However, the RBP shows worse error performance for

a large number of iterations due to the greediness of the RBP [22, 23]. In order to

alleviate the negative effects caused by the greediness, Vila Casado et al. proposed

the NS algorithm that propagates and generates Lmn′ , ∀n′ ∈ N(m) such that Lmn has

the largest residual r∗ [22, 23]. The NS algorithm is described in Algorithm 5.

The NS not only shows faster convergence speed than the BP with the flooding

and serial schedules but also achieves better performance than the RBP and the BP

decoding with static schedules when the number of iterations is large. This is because

the NS can correct trapping set errors.
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Chapter 3

Improved Dynamic Scheduling
Algorithms for Decoding of LDPC
Codes

3.1 Introduction

Since the length of an LDPC code is finite and the number of decoding iterations is

limited, practical LDPC codes can hardly achieve the asymptotic performance pre-

dicted by density evolution [43]. In order to improve the error performance of LDPC

codes, several researchers have studied message passing schedules rather than de-

coding algorithms themselves [17, 18, 19, 20, 21, 81, 82, 83, 84, 85]. Recently, Vila

Casado et al. have proposed the informed dynamic scheduling (IDS) that determines

the order of message passing based on the differences of messages generated in the

previous and current updates, which is different from the static scheduling schemes,

such as flooding or layered decoding, that update messages in a predetermined order,
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as discussed in Chapter 2 [22, 23].

In particular, in order to improve the error performance of IDS, three mixed

scheduling methods were proposed in [23, 24, 25]. The two-staged IDS algorithm [24]

combines the residual belief propagation (RBP) and the node-wise scheduling (NS),

whereas both the adaptive layered BP (LBP)/NS [23] and the adaptive mixed schedul-

ing [25] are the combination of the LBP and the NS. Note that the LBP is equivalent

to the serial-C schedule.

In this Chapter, we propose an improved RBP (iRBP) that accelerates the con-

vergence speed of the RBP and also study a syndrome-based mixed scheduling of

the iRBP and the NS. While the mixed scheduling strategies proposed in [23, 24, 25]

consist of two stages in which the number of decoding iterations of the first stage

is fixed [23] or adaptively determined [23, 24, 25], the proposed mixed scheduling

performs either the iRBP or the NS according to the syndrome of the check node that

propagates the message.

The rest of this Chapter is organized as follows. Section 3.2 explains the IDS of

the BP algorithm and proposes the iRBP. Section 3.3 presents the syndrome-based

mixed scheduling of the iRBP and the NS. The complexity analysis and the simu-

lation results are provided in Section 3.4, and concluding remarks are given in Sec-

tion 3.5.

3.2 Improved Residual Belief Propagation Algorithm

The RBP decoding can be considered a greedy algorithm because it finds and up-

dates the message that has the largest residual at every message update. In the RBP

decoding, however, different outgoing check-to-variable (CTV) messages from the
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same check node can be selected and updated continuously within several message

updates. For ease of description, we designate the check node that contains the CTV

message with the largest residual as the selected check (SC). The output value of a

check node is mainly determined by the minimum magnitude among the input mes-

sages to the check node as shown in Eq. (2.7). Thus, if two minimum magnitudes

among the input to a check node are close, the outgoing messages from the check

node have similar magnitudes. This can be more clearly explained by the min-sum

approximation of the BP decoding whose check node operation is given by Eq. (2.8).

When the incoming variable-to-check (VTC) messages to the SC satisfy the above

condition, the residuals of outgoing messages from the SC can be similar in magni-

tude, which results in continuous updates of different CTV messages from the same

SC within several message updates. As stated in [22] and [23], the RBP tends to give

a high priority of update to the message propagated to the less reliable variable node.

In particular, for check nodes that had not been updated up to the previous message

update, the RBP always propagates the message to the least reliable variable node.1

Then, due to the continuous update, the variable nodes with relatively higher reliabil-

ity as well as those with lower ones are renewed.

The iRBP is proposed to avoid updating variable nodes with high reliability,

which is implemented by forcing the residuals of the SC to zeros. In other words,

assuming that the CTV message Lmn has the largest residual r (Lmn) = r∗, the pro-

posed iRBP sets the residuals of all CTV messages r (Lmn′) to zeros as shown in

line 19 of Algorithm 6, where n′ ∈N(m), while the RBP sets the residual of the tar-

1For the check nodes that had been updated at least once before the current message update, some
residuals of the outgoing messages from the check node have been set to zeros unless they are updated
by other check nodes. In this case, only the CTV messages having non-zero residuals are the candidates
for the current message update.
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Figure 3.1: Cumulative number of the continuous updates for the rate-1/2 1944-bit
LDPC code

get message r (Lmn) to zero after the propagation of the message Lmn. The proposed

iRBP corresponds to line 18 to 25 of Algorithm 6.

Figure 3.1 illustrates an example of the cumulative number of continuous up-

dates for the rate-1/2 1944-bit LDPC code defined in IEEE 802.11n standard [15].

The x-axis represents the number of message updates between continuous updates

of CTV messages from the same SC, and it is plotted in log scale. The simulation

was carried out for 6,966 message updates, which corresponds to one decoding iter-

ation. For example, the value of 2,452 at the message update 1 for the RBP decoding

represents that 2,452 check nodes are once again chosen as SCs right after their pre-

vious message updates, while the value of 2,771 at x = 2 indicates that 2,771 check

nodes are selected again after one or two message updates, which includes the value

of 2,452 at x = 1. Compared to the RBP decoding, the proposed iRBP shows a very

small number of continuous updates within several message updates, which leads to

the fastest convergence speed among various decoding schedules as demonstrated in

Section 3.4. Note that the extreme case of the continuous update is the NS decoding

that updates all CTV messages from an SC, thus resulting in slow decoding conver-
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gence as already observed in [22] and [23].

3.3 Syndrome-Based Mixed Scheduling of iRBP and NS

When the RBP propagates the message Lmn having r∗ from an unsatisfied check node

m to a correct variable node n with low reliability, the sign of the variable node can

be flipped because the propagated message tries to correct the variable node, which

incurs an additional bit error [22, 23]. To solve this problem, we propose a mixed

scheduling strategy that performs either the iRBP or the NS according to the syn-

drome. The proposed algorithm is different from the two-staged adaptive scheduling

strategies that switch from the first to the second stage after a given number of itera-

tions as introduced in [23, 24, 25]. The syndrome sm of the m-th check node is defined

as the modulo-2 sum of the hard-decision bits of the variable nodes connected to the

m-th check node [86]. A check node is said to be satisfied if the syndrome of the

check node is zero; otherwise, it is unsatisfied. The proposed mixed scheduling does

not require much overhead because it uses the syndromes that are computed for the

stopping rule check in the previous iteration rather than those that are generated in

each message update. Thus, the mixed scheduling only needs an additional N-bit

memory.

The proposed mixed strategy is performed as follows. In the first iteration, the

decoder performs the iRBP to improve the convergence of the decoding. In the sub-

sequent iterations, the decoder performs either the iRBP or the NS according to the

syndrome. If an SC is unsatisfied, the decoder runs the NS to alleviate the negative

effects caused by the greediness of the RBP, thereby improving the error-correcting

performance. However, if an SC is satisfied, the decoder performs the iRBP because
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Algorithm 6 Syndrome-based mixed scheduling
1: Initialize all k = 0
2: Initialize all Znm = In

3: Initialize all Lmn = 0
4: Compute all r (Lmn)
5: Find m,n = arg max

∀m′,1≤m′≤M
n′∈N(m′)

r (Lm′n′)

6: if (k > 0) AND (sm = 1) then
7: for every n ∈N(m) do
8: Generate and propagate Lmn

9: Set r (Lmn) = 0
10: for every m′ ∈M(n)\m do
11: Generate and propagate Znm′

12: for every n′ ∈N(m′)\n do
13: Compute r (Lm′n′)
14: end for
15: end for
16: end for
17: else
18: Generate and propagate Lmn

19: Set r (Lmn′) = 0 ∀n′ ∈N(m)
20: for every m′ ∈M(n)\m do
21: Generate and propagate Znm′

22: for every n′′ ∈N(m′)\n do
23: Compute r (Lm′n′′)
24: end for
25: end for
26: end if
27: if Stopping rule is not satisfied then
28: k++
29: Go to line 4;
30: end if
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the message propagated from a satisfied check node is less likely to generate a bit

error than that from an unsatisfied one. The proposed mixed scheduling is formally

described in Algorithm 6.

3.4 Complexity Analysis and Simulation Results

3.4.1 Complexity Analysis

This subsection analyzes the computational complexity of the proposed iRBP and

syndrome-based mixed schedules as well as the conventional static schedules (the

flooding the LBP) and two IDS strategies (the RBP and the NS). Let E be the number

of edges in the bipartite graph of an LDPC code. Then, the flooding schedule updates

E VTC and E CTV messages in every iteration as described in Section 2.3.1. In the

LBP schedule, an iteration consists of M check node updates, each of which updates

dc CTV and dc VTC messages. Therefore, the LBP schedule also updates dc×M = E

VTC and E CTV messages in every iteration.

In IDS schedules, an iteration is defined as E CTV message updates [22, 23].

Therefore, the stopping rule is checked when the number of CTV message updates

reaches the number of edges in the graph, E. In the RBP decoding, a CTV message

and dv− 1 VTC messages are generated and propagated in each message update,

where (dv− 1)(dc− 1) residuals are also computed. Therefore, the RBP decoding

updates E(dv−1) VTC and E CTV messages and computes E(dv−1)(dc−1) resid-

uals in every iteration.

The NS decoding generates and propagates dc CTV and dc(dv−1) VTC messages

and computes dc(dv−1)(dc−1) residuals in each message update. Thus, an iteration

consists of E/dc = M message updates in the NS decoding. Consequently, the NS

28



decoding updates M ·dc(dv−1) = E(dv−1) VTC and M ·dc = E CTV messages and

computes M ·dc(dv−1)(dc−1) = E(dv−1)(dc−1) residuals, which is the same to

that of the RBP decoding.

In the RBP and NS schedules, the residuals of the propagated CTV messages

from an SC are set to zeros. Hence, both schedules require E set-to-zero operations,

i.e., r(·) = 0 operation. When compared to the RBP decoding, the proposed iRBP

needs dc set-to-zero operations in each message update, thus resulting in E · dc set-

to-zero operations per iteration. Note that the number of message updates and that of

residual computations are the same to those of the RBP decoding.

Because the proposed mixed scheduling is based on the syndrome of an SC, the

number of set-to-zero operations as well as that of the message updates depends on

the ratio of satisfied, or unsatisfied, check nodes. Denoting the ratio of satisfied check

nodes in each iteration as ρl , the mixed scheduling performs ρl iRBP and 1−ρl NS

decoding operations. Hence, the number of residual computations as well as that of

message updates is the same to that of the iRBP or NS decoding, while the number of

set-to-zero operations is computed as (ρl(dc−1)+1)E, which is the sum of ρl ·E ·dc,

for the iRBP, and (1−ρl)E, for the NS. Note that the number of set-to-zero operations

for the mixed scheduling is smaller than or equal to that for the iRBP because ρl ≤ 1.

The complexities of the above schedules are summarized in Table 3.1.

3.4.2 Simulation Results

In this subsection, we present the performance of the proposed iRBP and the syndrome-

based mixed scheduling over the AWGN channel. The floating-point BP algorithm

was employed, and the frame error rate (FER) performance was measured until at
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Table 3.1: Computational complexity of schedules
Schedules VTC updates CTV updates Residual computations r(·) = 0 operations
Flooding E E - -

LBP E E - -

RBP E(dv−1) E E(dv−1)(dc−1) E

NS E(dv−1) E E(dv−1)(dc−1) E

iRBP E(dv−1) E E(dv−1)(dc−1) E ·dc

Mixed E(dv−1) E E(dv−1)(dc−1) (ρl(dc−1)+1)E

least 100 frame errors were observed. The decoder checks the stopping rule when the

number of message updates reaches the number of edges in the bipartite graph of an

LDPC code [22, 23].

Figures 3.2, 3.3, and 3.4 show the FER performance of the rate-1/3 1920-bit [87],

the rate-1/2 1944-bit [15], and the rate-3/4 1944-bit LDPC codes [15], respectively,

with the flooding, the LBP, the RBP, the NS, the two-staged IDS [24], the adaptive

mixed scheduling [25], the proposed iRBP, and the syndrome-based mixed schedule.

The FER performance of the adaptive IDS [26], the quota-based RBP (QRBP) [80],

and the silent-variable-node-free RBP (SVNF-RBP) [80] are also plotted in Fig. 3.3.

The signal to noise ratios (SNRs) were set to Eb/N0 = 1.75 dB for Fig. 3.3 and

Eb/N0 = 3.10 dB for Fig. 3.4. In order to validate the proposed syndrome-based mixed

strategy, we also consider the mixed scheduling of the RBP and the NS as well as that

of the iRBP and the NS in Fig. 3.3 and Fig. 3.4.

The proposed iRBP exhibits the fastest convergence speed among all of the schedul-

ing schemes and converges about two times faster than the RBP decoding. Moreover,

the proposed iRBP performs consistently better than the RBP decoding in terms of

FER. This is because avoiding the continuous update not only improves the conver-

gence speed at the early stage of decoding but also removes trapping sets and thereby
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Figure 3.2: FER performance of the rate-1/3 1920-bit LDPC code

improves the error performance.

Furthermore, the proposed syndrome-based mixed scheduling of the iRBP and

the NS outperforms all other scheduling schemes because the proposed method ex-

ploits not only the iRBP for fast convergence but also the iRBP and the NS for re-

moving trapping sets. The performance gap between the proposed syndrome-based

mixed scheduling and other schedules is more pronounced at high SNR as shown in
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Figure 3.3: FER performance of the rate-1/2 1944-bit LDPC code for a Eb/N0 of 1.75
dB

Fig. 3.2. We note that the proposed syndrome-based mixed scheduling also performs

well when combined with the RBP, especially when compared with the two-staged

IDS studied in [24], which is also a mixed strategy of the RBP and the NS.

Figures 3.5, 3.6, and 3.7 show the FER performance of the rate-1/3 1920-bit,

the rate-1/2 1944-bit, and the rate-3/4 1944-bit LDPC codes, respectively, where the

maximum iterations are set to 50 for Fig. 3.5, 10 for Fig. 3.6, and 15 for Fig. 3.7.

The rate-1/2 1944-bit LDPC code was also simulated with the maximum iteration of

50 as shown in Fig. 3.8. From these figures we can find that the proposed syndrome-

based mixed scheduling of the iRBP and the NS shows the best error performance

when compared with the other scheduling schemes. In particular, the proposed mixed

strategy suffers less from the error floor behavior.
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Figure 3.4: FER performance of the rate-3/4 1944-bit LDPC code, where Eb/N0 is
fixed to 3.10 dB

3.5 Concluding Remarks

In this chapter, we propose an improved residual belief propagation (iRBP) and a

syndrome-based mixed scheduling scheme combining the iRBP and the node-wise

scheduling (NS). The proposed iRBP forces the residuals of a selected check (SC) to

zeros, which prevents updating reliable variable nodes and thus improves the conver-

gence speed of the RBP by approximately two times. The proposed mixed schedul-

ing performs either the iRBP or the NS based on the syndrome of the SC. Simulation

results show that the proposed mixed-scheduling yields significant performance im-

provement when compared to all other scheduling schemes.
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Figure 3.6: FER performance of the rate-1/2 1944-bit LDPC code for the maximum
iteration number of 10

34



1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

F
ra

m
e 

E
rr

or
 R

at
e

Eb/N0 [dB]

Flooding

LBP

RBP

NS

Two-staged IDS

Adaptive mixed

Proposed iRBP

Proposed mixed (RBP+NS)

Proposed mixed (iRBP+NS)

100

10-1

10-3

10-4

10-5

10-6

10-2

Figure 3.7: FER performance of the rate-3/4 1944-bit LDPC code over AWGN chan-
nel, where the maximum iteration number is set to 15

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.0 1.2 1.4 1.6 1.8 2.0

F
ra

m
e 

E
rr

or
 R

at
e 

Eb/N0 [dB]

Flooding
LBP
RBP
NS
Two-staged IDS
Adaptive mixed
Adaptive IDS
QRBP
SVNF-RBP
Proposed iRBP
Proposed mixed (iRBP+NS)

100

10-1

10-3

10-4

10-5

10-6

10-2

Figure 3.8: FER performance of the rate-1/2 1944-bit LDPC code for the maximum
iteration number of 50

35



Chapter 4

A Pipelined Parallel Architecture for
Decoding of Finite-Geometry LDPC
Codes

4.1 Introduction

High-throughput LDPC decoders for NAND flash memory controllers need to be im-

plemented in hardware. As hardware implementation of LDPC decoders is directly

affected by decoding and scheduling algorithms as well as hardware architectures,

low-complexity algorithms with fast convergence speed and their hardware imple-

mentation have been extensively studied in the literature [27, 29, 30, 31, 35, 88]. The

early studies for the hardware implementation featured fully parallel LDPC decoders

with the belief propagation (BP) algorithm [27, 28]. However, since fully parallel de-

coders demand very complex interconnection networks, most high-throughput LDPC

decoders usually employ partially parallel architectures with the min-sum (MS) al-
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gorithm or its variants and a serial scheduling algorithm [29, 30, 31, 88] to lower

the interconnection complexity and increase the decoding throughput. Although the

performance of LDPC codes converges to the thresholds predicted by the density

evolution (DE) [43] as the code length increases, only little work has been devoted to

the implementation of LDPC decoders with a large code length [37, 38, 39].

In this chapter, a pipelined parallel architecture with the serial-C schedule is pro-

posed for finite geometry (FG) LDPC codes. The decoding hardware employs the

normalized a posteriori probability (APP) based algorithm that not only shows good

error-correcting performance for FG-LDPC codes but also simplifies both the vari-

able and check node operations. A conditional variable node update scheme is pro-

posed to make the normalized APP-based algorithm resilient to decoding failure as

well as to reduce circuit switching activities in the node processing units. In order to

increase the decoding throughput while minimizing the chip area, the decoder adopts

pipelined parallel architecture and employs three memory size reduction techniques,

which are optimizing the word-length of extrinsic information, compressing the ex-

trinsic information, and approximating the second minimum magnitudes. The imple-

mentation results are given for a (69615, 66897) Euclidean geometry (EG) LDPC

code.

The remainder of this chapter is organized as follows. Section 4.2 introduces the

property of FG-LDPC codes and the proposed serial schedule of normalized APP-

based algorithm with conditional node update. In Section 4.3, the decoder architec-

ture and optimization strategies are presented. The implementation results are pro-

vided in Section 4.4. Section 4.5 concludes this chapter.

37



4.2 Finite-Geometry LDPC Codes and Conditional Vari-

able Node Update Algorithm

4.2.1 Finite-Geometry LDPC codes

FG-LDPC codes are constructed based on Euclidean and projective geometries over

finite fields. FG-LDPC codes have large minimum distances and perform well with

iterative decoding algorithms [86]. They show fast convergence speed [86] and have

no harmful trapping sets with the size smaller than their minimum weights, thus re-

sulting in good error-floor performance [89]. It is reported that (1024, 781) EG-LDPC

code has the error-floor below the bit error rate (BER) of 10−23 [90]. Moreover, the

parity-check matrices of FG-LDPC codes contain redundant rows that give additional

improvement in error performance [86, 72]. FG-LDPC codes have either cyclic or

quasi-cyclic (QC) structure for their parity-check matrices, which allows efficient en-

coder implementation. The encoder can be implemented with linear feedback shift

registers. However, since the row and column weights, dc and dv, respectively, are

quite large when compared to other classes of LDPC codes, it is very challenging to

implement a high-throughput FG-LDPC decoder.

Figure 4.1 shows the parity-check matrices of a rate-0.77 (1057, 813) projec-

tive geometry (PG) LDPC code and a rate-0.96 (69615, 66897) EG-LDPC code.

The (1057, 813) PG-LDPC code has the cyclic parity-check matrix with dv = dc =

33. The parity-check matrix of the (69615, 66897) EG-LDPC code consists of 17

sub-matrices, and each sub-matrix is a cyclically right-shifted 4,095× 4,095 matrix

with the row and column weights of 16. As a result, the parity-check matrix has a

4,095× 69,615 structure with the row weight dc of 272 and the column weight dv of
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(a) A rate-0.77 (1057, 813)
PG-code

(b) A rate-0.96 (69615, 66897) EG-LDPC code

Figure 4.1: Parity-check matrices

16.

A shortened EG-LDPC code is considered for the application to NAND flash

memory as follows. Since the number of information bits contained in the (69615,

66897) EG-LDPC code is different from the page size of NAND flash memory de-

vices, which is typically 8 kbytes, the (68254, 65536) shortened EG-LDPC code is

constructed by removing 1,361 (= 66,897 - 65,536) data bits from the original EG-

LDPC code as shown in Fig. 4.2, where the parameter γ represents the number of

parity bits of the EG-LDPC code. In this work, we assume that a flash memory page

consists of 8 kbytes of user data and 3,450 bits (5 %) of spare data. Among the spare

bits, 2,718 bits are used for error correction and the remaining 732 bits are reserved

for other purposes such as cell-to-cell interference (CCI) cancellation and the opera-

tion of flash translation layer. Implementing this shortening process is straightforward

both for encoding and decoding. At the encoding process, 1,361 zeros are inserted in

the information part of the (69615, 66897) EG-LDPC code. At the decoding process,

this zero-filled bit positions are regarded to have zero received values with a large
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Information

k = 66897

1361 zeros 65536 information bits

Encoding

Codeword 1361 zeros 65536 information bits

γ = 2718

Parity bits

Stored to a 
page

Word Line 
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Data bits: 8KB Spare bits (3450 bits)

1186 bits

n = 69615

Figure 4.2: Codeword structure of the (68254, 65536) shortened EG-LDPC code and
its mapping method

reliability.

4.2.2 Conditional Variable Node Update Algorithm for Fixed-Point Nor-

malized APP-Based Algorithm

Hardware-based implementation of FG-LDPC codes is considered very difficult be-

cause of their large row and column weights that demand a complex interconnection

network. Also, when the code length is very large as shown in Fig. 4.1(b), a large

memory size is required for the implementation. Thus, it is very needed to lower the

implementation complexity of the codes, especially for high-throughput decoding

with parallel architecture. For a reduced complexity implementation, the normalized

APP-based algorithm [61], which performs well with FG-LDPC codes [72], is em-

ployed. This algorithm simplifies the variable node operations by substituting the

extrinsic messages from a variable node with the a posteriori log-likelihood ratio

(LLR) of the corresponding variable node [61].

The normalized APP-based algorithm, however, causes a large number of bit er-

rors for undecodable blocks. Figure 4.3 shows the number of bit errors of the (1057,
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Figure 4.3: Number of bit errors of the two LDPC codes with the normalized APP-
based algorithm for 20 undecodable blocks
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813) PG-LDPC code and the (68254, 65536) EG-LDPC code for 20 undecodable

blocks, where Eb/N0 is set to 3.5 dB and 5.5 dB, respectively. As shown in Fig. 4.3,

the APP-based decoding reduces the number of bit errors at the early stage but, rather,

increases it as the iteration proceeds. This is caused by the correlation among propa-

gated messages, which continues to increase the reliabilities (magnitudes) of uncor-

rected variable nodes and saturates some of them. The unstopped reliability increase

of the uncorrected variable nodes also affects the correct ones and eventually leads

to a large number of bit errors after several iterations. In order to solve this problem,

we develop a conditional variable node update algorithm for the fixed-point normal-

ized APP-based decoding. The proposed conditional node update algorithm finishes

updating a variable node as soon as the reliability of the corresponding a posteriori

LLR reaches the maximum fixed-point value. As a result, the proposed algorithm can

prevent the reliability decrease of correct variable nodes that is caused by unstopped

reliability increase of uncorrected variable nodes. Figure 4.3 shows the number of bit

errors as the iteration proceeds for several decoding failed blocks, and it illustrates

the effect of the conditional update.

Along with the reduced complexity decoding algorithm, the serial-C schedule

that can halve the number of decoding iterations when compared to the conventional

flooding schedule is applied to achieve a high throughput [17]. As discussed in Sec-

tion 2.3, the serial schedule converges almost twice faster than the conventional flood-

ing schedule.

The algorithm operates as follows. Consider a regular (N,K) LDPC code defined

by an M×N parity-check matrix H with the row weight dc and the column weight

dv. Let α be a normalization factor. Then, the serial schedule of the normalized APP-

based algorithm with conditional node update is described in Algorithm 7.
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Algorithm 7 Serial schedule of normalized APP-based algorithm with conditional
node update

1: Initialize k = 0
2: Initialize all L(−1)

mn = 0
3: Initialize all Zn = In

4: for m = 1 to M do
5: for every n ∈N(m) do
6:

L(k)
mn = ∏

n′∈N(m)\n
sign(Zn′) · min

n′∈N(m)\n
|Zn′ | ·α (4.1)

7: end for
8: for every n ∈N(m) do
9:

Zn =

{
Zn, if |Zn|= 2q−1−1

Zn +L(k)
mn−L(k−1)

mn , otherwise
(4.2)

10: end for
11: end for
12: Decide a hard-decision vector ŵ = {ŵ1, . . . , ŵN} based on

ŵn =

{
0, if Z(k)

n ≥ 0
1, otherwise

13: if HŵT = 0 or the maximum iteration number is reached then
14: Output the hard-decision ŵ
15: else
16: k = k+1
17: Go to line 4;
18: end if
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Figure 4.4: (Dashed line) Frame- and (solid line) bit-error performance of the (68254,
65536) shortened EG-LDPC code with the serial-C schedule

Figure 4.4 shows the error performance of the (68254, 65536) shortened EG-

LDPC code with various decoding algorithms over the additive white Gaussian noise

(AWGN) channel, which include floating-point BP, floating-point normalized MS

(NMS), fixed-point NMS, and fixed-point normalized APP-based algorithm with

and without conditional node update. The serial-C schedule is employed, and the

maximum iteration number is set to eight. The normalization factors of the floating-

point NMS, fixed-point NMS, and fixed-point APP-based algorithms are set to 0.375,

0.5625, and 0.34375, respectively, which yield the best error performance. The per-

formances of the fixed-point normalized APP-based algorithms with the normaliza-

tion factor of 0.25, which leads to simple hardware, are also shown. All of the fixed-

point simulations employ the word-length, q, of seven, which includes one bit for
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the sign, four bits for the integer, and two bits for the fractional part [91]. The BP

algorithm shows the best error-correcting performance, and the gap between the BP

and the floating-point NMS algorithms is about 0.033 dB at the BER of 10−7. How-

ever, because of the quantization noise, the fixed-point NMS decoding shows slight

performance degradation of 0.052 dB compared to the BP algorithm. The fixed-point

normalized APP-based algorithms with and without conditional node update show

good error performance that is close to the NMS decoding, when the normalization

factors of 0.34375 or 0.25 are used. Note that the error performance degradation due

to the conditional node update in the normalized APP algorithm is less than 0.01 dB

at the frame error rate (FER) of 10−4. This is because the variable node cannot be cor-

rected under the conditional node update scheme when an incorrect variable node is

saturated to the maximum fixed-point value, ±2q−1−1. However, in high signal-to-

noise ratio (SNR) region, only a small number of variable nodes remain unchanged

and the FER increase is very minor. When the SNR is 5.7 dB, 92 % of erroneous

frames contain only one uncorrected bit error in each frame. Thus, if needed, we

can remove these remaining bit errors by applying the LDPC decoding without the

conditional node update again on the decoded data output (consult the “+” marked

curves in Fig. 4.4, where one decoding iteration without the conditional node update

is applied after finishing seven decoding iterations with the conditional update).

The proposed conditional variable node update algorithm can be compared with

the reduced computational complexity algorithms proposed in [92] and [93]. Both

papers have proposed similar algorithms that stop updating reliable variable nodes

using a pre-defined [92] or a dynamic thresholds [93]. Although their complexity re-

duction was reported to be up to 60 % and 35 % in [92] and [93], respectively, some

error performance degradation was observed due to erroneously identified variable
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nodes. Furthermore, these algorithms require extensive simulations to determine the

optimum threshold, and their error performance and computational complexity re-

duction are very sensitive to the threshold. In contrast to those methods, the proposed

conditional node update does not require a precise threshold, and the error perfor-

mance degradation is almost negligible.

4.3 Decoder Architecture

In this section, we discuss the architecture optimization of the decoder for efficient

VLSI implementation. As the serial schedule increases the path delay when compared

to the conventional flooding schedule, it is essential to employ the pipelining tech-

nique. In addition, since the application demands a very high throughput, it is also

needed to adopt the parallel architecture. We first present the baseline architecture

that sequentially executes the developed algorithm, and then propose a pipelined-

parallel architecture for increasing the throughput. The memory requirement is also

greatly reduced by optimizing the word-length and minimizing the number of inter-

nal variables. Although the architecture is given for the (69615, 66897) EG-LDPC

code, it is applicable to FG-LDPC codes.

4.3.1 Baseline Sequential Architecture

Figure 4.5(a) shows the overall baseline architecture that contains 17 tiles, a global

minimum detector, and control logic. Each tile, shown in Fig. 4.5(c), conducts the

operations assigned to each sub-matrix of the parity-check matrix. The exclusive OR

(XOR) gate tree that computes the overall sign is omitted for clarity. Each tile con-

tains 16 node processing units (NPUs), an APP memory block, a check-to-variable
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(CTV) memory block, an output buffer, and a local minimum detector. The APP

memory consists of 4,095× q-bit shift registers for storing a posteriori LLRs. The

CTV memory, which consists of a 4 k× 16× q-bit dual-port SRAM block, keeps

4,095× 16 CTV messages. We use 7 bits for the word-length, q, as explained in

Section 4.2.2. The capacity of the CTV memory is 7.44 Mbits, which results from

4 k checks× 272 CTVs/check× 7 bits/CTV.

The overall dataflow of the decoder is shown in Fig. 4.5(b). At the initializa-

tion phase, the channel LLRs obtained by reading the flash memory with multiple

sensing reference voltage are transferred to the APP memory, while the CTV mem-

ory is initialized to zero. The initialization phase takes 4,095 clock cycles, which is

determined by the number of rows in the parity-check matrix, M. Because we con-

sider the (68254, 65536) shortened EG-LDPC code and seven bits for the channel

LLR, the channel LLR of the shortened bit position is initialized to 63 according to

Eq. (2.5), where xn = 2cn−1 is used, which corresponds to a zero received value with

a large reliability as described in Section 4.2.1. After the initialization, the local mini-

mum detectors find the two smallest magnitudes among 16 a posteriori LLRs in each

tile, whereas the global minimum detector selects the two smallest values among

the output of the local detectors and provides the result to all the tiles. Then, each

NPU updates the a posteriori LLR. Finally, the newly updated a posteriori LLRs and

CTV messages are written back to the APP and CTV memories, respectively. Since

a check node and its neighboring variable nodes are updated at each clock cycle and

M is 4,095, it takes 4,095 clock cycles to complete one iteration. At the end of each

iteration, the sign bits of the current a posteriori LLRs are stored in the output buffer.

Because the parity-check matrix has the QC property and the row weight of each

sub-matrix is quite large, the APP memory is implemented using shift registers in-
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Figure 4.5: Baseline architecture of the proposed LDPC decoder
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stead of SRAM blocks. As a result, the interconnection lines between the shift reg-

isters and NPUs are fixed, thus the decoder does not need a permutation network. In

other words, the interconnection in the i-th tile is determined by the first row of the

i-th sub-matrix. As SRAM-based storage demands smaller chip area than that with

shift registers, many partially parallel LDPC decoders for QC-LDPC codes whose

sub-matrix is a permuted identity matrix or a zero matrix employ SRAM-based archi-

tecture for the APP memory [34, 35], where only one message is read from a memory

block at each cycle. However, the developed (69615, 66897) EG-LDPC code has the

sub-matrix row weight of 16, which requires a large number of small SRAM blocks

to increase the memory bandwidth and renders placement and routing for VLSI de-

sign very difficult. Furthermore, even if we implement the APP memory with dc

SRAM segments such as in [29], complex switching networks are required to resolve

memory access conflicts.

The structure of an NPU is shown in Fig. 4.6. The min selector chooses the mag-

nitude of a CTV message between the minimum and the second minimum magni-

tudes, and the result is right-shifted by two bits for normalization with α (= 0.25).

The subtractor and the following adder compute the a posteriori LLR, and the quan-

tizer saturates the output to prevent overflows. Finally, the conditional updater selects

the a posteriori LLR according to Eq. (4.2), and then the newly updated a posteriori

LLR is formatted to the 7-bit sign-magnitude representation to be stored to the APP

memory.

The data in the APP memory employs the sign-magnitude format to save the

power consumption. As the APP memory consists of shift registers, there are many

switching activities when the input signal varies much. Because EG-LDPC codes

converge fast, most a posteriori LLRs are quickly saturated within a few iterations,
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which increases the probability that the input to a shift register has the saturated value.

In addition, once the a posteriori LLR is saturated to either 2q−1− 1 or −2q−1 + 1

(+63 and−63, respectively, for q= 7), the proposed conditional node update scheme

keeps its magnitude unchanged. Figure 4.7 shows the modified node processing unit

that employs the conditional node update. Five multiplexors are added to force all the

input to have zero values when the corresponding a posteriori LLR is saturated. If

the LLRs for all the nodes are saturated, the magnitude of them is always 2q−1− 1

and only the sign bit changes with the sign-magnitude format when the input for

successive nodes are applied to the APP memory. For example, when the current

and the next input values are +63 and −63, respectively, the number of bit transi-

tions for the two’s complement format is six, while only the sign bit changes for the
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Figure 4.8: Saturation rate of a posteriori LLRs and bit transition probabilities at the
SNR of 5.5 dB

sign-magnitude format. Figure 4.8 shows the saturation rate of the a posteriori LLRs

(dotted line) as well as the transition probabilities for the two’s complement and sign-

magnitude formats. The lines with markers represent the transition probabilities of bit
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positions, whereas the solid lines show the overall transition probability at the shift

registers. Test vector 1 in the Table 4.1 was used for this simulation. The transition

probabilities of bits with the two’s complement format remain approximately 50 %,

while those with the sign-magnitude format decrease as the decoding proceeds and

are inversely proportional to the saturation rate except the sign bit. As the LLR sat-

urates, the circuit operation with the sign-magnitude format mostly changes only the

sign and consumes much less dynamic power.

We compare the power consumption of the proposed decoder with that of our

prior work [45] in Table 4.1. In our earlier report, the two’s complement format was

used for storing the a posteriori LLRs, and the conditional node updater and the mul-

tiplexors were not employed in the node processor. For this comparison, we also im-

plemented the decoder of our earlier work [45] and estimated the power consumption

from the post-layout simulation result. To improve the accuracy of power estimation,

randomly generated information bits were encoded and Gaussian noise was added

for preparing the test vectors. From Table 4.1, it is clear that the sign-magnitude for-

mat reduces the internal and switching power of the APP memory by up to 57 and

50 %, respectively. The power consumed at the combinational logic is also reduced

by up to 54 % due to the modified node processor. Finally, although the clock net-

work consumes the largest portion (around 50 %) of the total power consumption in

the chip, the combination of the sign-magnitude format and the conditional node up-

date scheme efficiently reduces the total power consumption by more than 1 W or

24 % for all cases.

In the conventional decoders employing the serial schedule, such as [45], [31],

and [88], CTV messages are updated using variable-to-check (VTC) messages. Hence,
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the front-end of the NPUs needs to contain a circuit that recovers VTC messages from

the a posteriori LLRs and CTV messages as well as a logic that converts the data for-

mat of VTC messages from the two’s complement to the sign-magnitude format. On

the other hand, the proposed APP-based algorithm does not need these circuits at the

front-end of the NPU because the a posteriori LLRs are used to compute CTV mes-

sages and the sign-magnitude data format is employed. This simplification reduces

the critical path delay. When compared to our earlier work in [45], the critical path

delay is reduced from 22.7 to 16.3 ns, and hence the number of pipeline stages can

be reduced from six to five.

4.3.2 Pipelined-Parallel Architecture

In the serial schedule, a check node is updated first, and then the variable nodes

connected to the renewed check node are changed using the newly modified CTV

messages, which results in a long critical path. As the critical path delay of the

baseline architecture is 16.3 ns, the maximum clock frequency is limited to around

59 MHz unless pipelining technique is employed. In this case, the minimum decoding

throughput is 106 Mb/s. In order to reduce the critical path delay, four pipeline regis-

ters are inserted in the node processing unit and the minimum detectors as shown in

Fig. 4.9. Figure 4.10 compares the cell area, the critical path delay, and the minimum

throughput of the four decoders: 1) the baseline, 2) the pipelined, 3) the pipelined-

parallel, and 4) the proposed decoders (i.e., the pipelined-parallel architecture with

the three memory reduction techniques), where Lp and Np stand for the level of par-

allelism and the number of pipeline stages, respectively. The pipelined architecture

reduces the critical path delay from 16.3 to 4.4 ns with only 0.8 % area overhead.

The pipelining incurs hazards when two 1’s appear contiguously in the parity-
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check matrix. Due to the pipelining delay in the update of variable nodes, we can

only read old variable node values (a posteriori LLRs) in this situation. However, in

the proposed five-stage pipelined eight-way parallel decoder, only 1.5 % of variable

nodes are affected by the delayed update. We observe no error performance degrada-

tion due to this pipelining hazards.

The pipelined architecture is then parallelized to increase the decoding through-

put. An Lp-parallel decoder processes Lp check nodes in parallel. Hence, there are

Lp global minimum detectors, and every tile has Lp times more NPUs and local min-
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imum detectors when compared to the pipelined architecture, which increases the

corresponding cell areas by Lp times as shown in Fig. 4.10. In order to deliver Lp

times more a posteriori LLRs to NPUs, the shift registers in the APP memory are

grouped into Lp segments, each of which has dM/Lpe× q bit registers [94]. Note

that the parallel architecture does not demand more capacity for the CTV memory

but needs increased bandwidth when compared to the baseline architecture. For this

purpose, the CTV memory is also divided into Lp blocks, and the size of each block

is reduced from 4 k (=M) to dM/Lpe. In this work, the level of parallelism is set to

eight, thus each tile contains eight 512× 112-bit dual-port SRAM blocks. Although

the capacity of the CTV memory remains unchanged, dividing the memory increases

the corresponding cell area by 25 % compared to the pipelined decoder as shown

in Fig. 4.10. Note also that the critical path delay was increased from 4.4 to 6.1 ns

because the parallelization increases the capacitance of the decoding circuit.

In the parallel decoder architecture, the same a posteriori LLR can be used to up-

date different check nodes simultaneously. In this case, the a posteriori LLR should

be partially updated using all the participating check nodes. Thus, Eq. (4.2) is modi-

fied as follows:

Zn =


Zn, if |Zn|= 2q−1−1

Zn +∑m′∈Mc(n) ∆L(k)
m′n, otherwise,

(4.3)

where ∆L(k)
m′n = L(k)

m′n− L(k−1)
m′n and Mc(n) is defined as the set of check nodes that

participate in the n-th a posteriori LLR in the current sub-iteration. Note that Zn is

quantized after the summation is conducted. Therefore, the word-length for the inter-
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mediate value of Zn should be increased appropriately in order to prevent overflows.

As it takes M clock cycles for the baseline architecture to conduct one iteration for

a code block, the throughput, T , of the pipelined LDPC decoder can be represented

as

T =
N · fclk

dM/Lpe · (It +2)
, (4.4)

where N, M, fclk, Lp, and It are the code length, the number of rows in the parity-

check matrix, the clock frequency, the level of parallelism, and the maximum iteration

number, respectively. For the baseline architecture, the level of parallelism Lp is set

to one. Note that It + 2 is used instead of It due to the initialization and the parity-

check phases. With the five-stage pipelined eight-way parallel architecture and the

maximum iteration limit of 8, we can achieve the minimum throughput of 1.6 Gb/s

(200 MB/s) which corresponds to the speed of the ONFI (Open NAND Flash Inter-

face) 2.1 [95]. Here, we use the clock frequency of 125 MHz considering the post-

layout delay.

4.3.3 Memory Capacity Reduction

In order to reduce the capacity of the CTV memory, three memory reduction tech-

niques are applied: word-length optimization of CTV messages, compression of CTV

messages, and approximation of the second minimum magnitudes.

The word-length of CTV messages is reduced by changing the order of compu-

tation. In the proposed algorithm, the magnitude computation of a CTV is to find the

two minimum magnitudes among dc a posteriori LLRs, and then to multiply the nor-

malization factor α to the minimum values. However, this process is identical to the

57



operation that first multiplies the normalization factor to dc a posteriori LLRs, and

then finds the two minimum values:

L(k)
mn = ∏

n′∈N(m)\n
sign(Zn′) · min

n′∈N(m)\n
|Zn′ ·α| . (4.5)

With α = 0.25, the number of bits required for CTV messages can be reduced by

two bits (from 7 to 5 bits). This efficiently reduces the capacity of the CTV memory

as well as the interconnection complexity. In particular, the proposed word-length

optimization reduces the critical path delay from 6.1 to 4.2 ns as shown in Fig. 4.10,

which further increases the decoding throughput by 39 %. Note that the optimal nor-

malization factor α for MS decoding is usually around 0.75. However, unlike con-

ventional LDPC codes, FG-LDPC codes such as EG-LDPC codes need smaller nor-

malization factors to achieve the best error-correcting performance as stated in [61].

For instance, the normalization factors of 0.5 and 0.25 were used for a (273, 191) and

a (1057, 813) PG-LDPC codes, respectively.

In order to further reduce the capacity of the CTV memory, we compress CTV

messages [30] and approximate the second minimum magnitude [36]. CTV messages

are stored in the compressed form with four components: {signs, index, min, ∆min},

where signs, index, min, and ∆min are the set of signs of dc CTV messages, the index

of the minimum magnitude, the minimum magnitude, and the qd-bit quantized value

of the difference between the two smallest magnitudes. As dc = 272, the word-lengths

of signs, index, and min1 are 272, dlog2(272)e = 9, and four bits, respectively. For

this decoder, qd is set to two bits, which incurs negligible performance loss.

Due to the memory reduction techniques, the capacity of the CTV memory is
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reduced from 7.44 to 1.12 Mbits, which results from 4 k checks× (272 bits/signs +9

bits/index + 4 bits/min + 2 bits/∆min). When compared to the pipelined-parallel archi-

tecture, these techniques decrease the cell area of the CTV memory by 84 %, and

thereby reducing the total cell area by 55 % as shown in Fig. 4.10.

Figure 4.11 illustrates the organization of CTV memory and its connection to

relevant NPUs, where sm.l denotes the sign bit of a CTV message that is used for

l-th NPU when processing the check node m. Each of the first to 16th tiles con-

tains a 512× 128-bit dual-port SRAM for storing the sign bits, while the 17th tile

has eight 512× 31-bit dual-port SRAM blocks for keeping the sign bits as well as

the index, min, and ∆min. Note that the number of SRAM blocks in the 17th tile is

proportional to the parallel factor. Because eight check nodes {Ci+ j·512 : 0 ≤ j ≤ 7}

are processed simultaneously at the i-th clock cycle in the proposed 8-way parallel

architecture, a set of signs {s(i+ j·512).l} is fetched from the CTV memory in each tile,

while {indexi+ j·512}, {mini+ j·512}, and {∆mini+ j·512} are read from the CTV memory

in the 17th tile to recover CTV messages, where 0≤ j ≤ 7, and 0≤ l ≤ 15. The first

and second minimum magnitudes (min1 and min2, respectively) are recovered in the

17th tile before transmitting to tiles. In order to lower the interconnection complexity,

the flags that are needed to select the magnitude of CTV between min1 and min2 are

generated from the IDX-FLAG module in each tile, rather than in the 17th tile.

4.4 Implementation Results

The proposed pipelined-parallel LDPC decoder was synthesized, placed, and routed

in a 0.13-µm CMOS technology using Synopsys tools. Table 4.2 shows the
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implementation results of the baseline and the pipelined-parallel decoders along with

three recently published VLSI circuits for LDPC decoding. When comparing the

baseline and proposed decoders, we can find that the area of the CTV memory is

reduced by 80 % and the throughput is increased by approximately 17 times.

Figure 4.12 shows the layout of the pipelined-parallel decoder that occupies the

core area of 63.08 mm2 with 70 % logic utilization. Shift registers for storing a pos-

teriori LLRs are spread across the floorplan. Sixteen 64-kbit dual-port synchronous

SRAMs keeping the signs of CTV messages are placed in the upper and lower sides

of the chip because each SRAM block is accessed locally by a specific tile. On the

other hand, eight 16-kbit dual-port synchronous SRAMs for storing the two mini-

mums, indices, and signs are located at the center of the chip to allow convenient

access from all of the tiles.

Under the worst case condition, the critical path delay from the synthesis result

was estimated to be 4.2 ns. However, the post-layout delay was increased to 7.62 ns

due to the wire delay, hence the maximum operating clock frequency after the lay-

out became 131 MHz. As the iteration limit is set to eight, the minimum decoding

throughput is 1.63 Gb/s at the maximum clock frequency of 131 MHz.

The maximum and minimum power consumption were estimated to be 3.81 W

and 2.09 W at the minimum and maximum throughput, respectively. When the chan-

nel SNR varies from 5.2 to 8.0 dB, the average power consumption and the through-

put of the decoder operating at 131 MHz with 1.2 V supply are shown in Fig. 4.13. In

the region below 5.3 dB, where most of the received frames cannot be decoded, the

decoder consumes over 3.68 W and shows the lowest throughput. However, as the

channel SNR grows, the decoding throughput quickly increases because of the fast

convergence characteristics of EG-LDPC codes and the serial scheduling scheme.
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Figure 4.12: Layout of the proposed LDPC decoder
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Figure 4.13: Average power consumption and throughput of the decoder

When compared with other implementations in [37, 38, 39], whose code length

is comparable to the developed decoder, the proposed one seems to consume a larger

chip area because of the higher node degree and shift register-based APP memory.

However, this decoder achieves fairly high decoding throughput considering the de-

gree of parallelism mainly thanks to the serial schedule and fast convergence property
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of EG-LDPC codes.

For fair comparison, the energy efficiency as well as the throughput-to-area ratio

(TAR) [96] are computed for all decoders as follows:

Energy efficiency (in pJ/bit) =
Power consumption (in mW)

Throughput (in Gb/s)
, (4.6)

TAR (in Mbs−1mm−2) =
Throughput (in Mb/s)

Area (in mm2)
. (4.7)

Note that when computing the energy efficiency and TAR, the power consumptions

and chip areas are scaled down to 65-nm technology with the operating voltage of

1.0 V according to [97]. As can be observed from Table 4.2, the proposed decoder

achieves the highest energy efficiency as well as the area efficiency (TAR). The en-

ergy efficiency is a few times better and the area efficiency is at least 4.5 times higher

than those of others.

4.5 Concluding Remarks

In this chapter, a decoder architecture for FG-LDPC codes is proposed. The archi-

tecture employs the normalized a posteriori probability (APP) based algorithm and

the serial schedule to reduce the complexity of the node processors and the num-

ber of decoding iterations, respectively. A conditional variable node update method

is also employed for the normalized APP-based algorithm to reduce the number of

bit errors in undecodable blocks and lower the number of switching activities in the

decoder. To increase the decoding throughput and minimize the memory require-

ments, the decoder adopts five-stage pipelined eight-way parallel architecture and a
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few chip area reduction techniques including word-length optimization, compression

of check-to-variable messages, and approximation of the second minimum. The de-

veloped LDPC decoder achieves the maximum throughput of 8.13 Gb/s with the chip

area of 63.08 mm2 in 0.13-µm CMOS process technology.
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Chapter 5

Low-Energy Error Correction of
NAND Flash Memory through
Soft-Decision Decoding

5.1 Introduction

In this chapter, we analyze the energy consumption of a NAND flash memory error

correction system that adopts soft-decision LDPC decoding. The energy consumed in

NAND flash memory as well as that in the LDPC decoder is all considered. A VLSI

circuit-based decoder implementing a rate-0.96 (68254, 65536) LDPC code is used

for error performance and energy estimation. Especially, the effect of energy con-

sumption when increasing the output precision of NAND flash memory is analyzed.

The LDPC decoder tends to consume more energy when the precision of NAND flash

memory output is very low. However, increasing the precision also demands more en-

ergy in NAND flash memory for memory sensing and data transfer. As a result, the
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optimum precision is closely related to the signal quality of NAND flash memory.

We analyze this relation quantitatively, and also propose a method that can find the

optimum precision using the iteration count of an LDPC decoder.

The rest of this chapter is organized as follows. Section 5.2 explains the read

operation of NAND flash memory and its energy consumption. In Section 5.3, the

error performance of LDPC decoding with soft-decision flash memory output is pre-

sented. Section 5.4 describes the energy consumption of a rate-0.96 (68254, 65536)

LDPC decoder implemented with a 65-nm technology and compares the hardware

performance of the LDPC decoder with that of two Bose-Chaudhuri-Hocquenghem

(BCH) decoding circuits. In Section 5.5, we analyze the total energy consumption

of a NAND flash memory system employing LDPC code-based soft-decision decod-

ing and also propose an LDPC decoder-assisted precision selection method. Finally,

Section 5.6 concludes this chapter.

5.2 Energy Consumption of Read Operations in NAND Flash

Memory

5.2.1 Voltage Sensing Scheme for Soft-Decision Data Output

In 2-bit multi-level cell (MLC) NAND flash memory, each memory cell has one of

four different threshold voltages that have Gaussian-like distributions as illustrated

in Fig. 5.1, where the left-most peak corresponds to the erased state (symbol 11),

and the remaining ones are three different programmed states (symbol 01, 00, and

10, respectively). The read operation of NAND flash memory can be considered a

quantization process. In conventional flash memory with hard-decision data output,
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Figure 5.1: Threshold voltage distributions and voltage sensing schemes of 2-bit
MLC NAND flash memory

three sensing reference voltages (SRVs), namely, Vr.1, Vr.2, and Vr.3, are needed to

fully resolve the four threshold voltage distributions, which corresponds to 4-level

signal quantization in Fig. 5.1, where the dashed line at each overlapping region Ri

represents an SRV. Note that Vr.1 resolves the boundary between the symbols 11 and

01, while Vr.2 is for the boundary of the symbols 01 and 00, and Vr.3 is for the symbols

00 and 10. Since a pair of LSB and MSB pages is mapped into a word-line and the

bits are gray coded, Vr.1 and Vr.3 are required to read MSB pages, while only Vr.2

is needed for LSB pages as illustrated in Fig. 5.2. The LSB sensing operation (SO)

with Vr.2 is referred to SOL (Vr.2), and the MSB sensing operation with Vr.1 and Vr.3 is

represented by SOM (Vr.1,Vr.3).

For soft-decision error correction, each memory cell should be sensed with an

increased number of SRVs. Especially, it is needed to increase the resolution in the

overlapping regions, where most of bit errors are occurred, as shown in Fig. 5.1. The
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r.1 r.3r.2

L r.2

(a) For LSB pages

M r.1 r.3

(b) For MSB pages

Figure 5.2: Voltage sensing scheme of 4-level signal quantization

simplest form of soft-decision memory sensing is to provide an erasure region at

each symbol boundary. In this case, we need six SRVs and can obtain seven different

quantized values. The lowest voltage region can be considered a strong 11 symbol,

and the next lowest region is a value between 11 and 01. Figure 5.1 shows four

different sensing schemes, including the conventional sensing for hard-decision data

output. Increasing the number of sensing operations at each symbol boundary can

provide more accurate reliability information, which, however, increases the latency

and energy consumption in NAND flash memory.

Since conventional NAND flash memory devices do not naturally provide soft-

decision memory sensing, obtaining the soft-decision data from conventional mem-

ory requires multiple hard-decision sensing and data output operations. Note that con-
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Table 5.1: The number of sensing and data output (DO) operations for hard- and
soft-decision sensing with conventional NAND flash memory

Precision
LSB pages MSB pages
SOL SOM DO SOL SOM DO

4-level 1 0 1 0 1 1

7-level 0 1 1 1 2 3

10-level 1 1 2 1 3 4

16-level 1 2 3 1 5 6

ventional NAND flash memory devices provide command sequences that can change

the SRVs. Figure 5.3 illustrates the voltage sensing scheme for 10-level soft-decision

data output with conventional hard-decision memory sensing operations, where Vr.i’s

are SRVs for 1 ≤ i ≤ 9. With a hard-decision LSB sensing operation SOL (Vr.5) and

an MSB sensing operation SOM (Vr.4,Vr.6) around the overlapping region R2, an LSB

bit is read with four levels as shown in Fig. 5.3(a). In this case, two data output

operations are performed. Meanwhile, because an MSB bit has two overlapping re-

gions, R1 and R3, three MSB sensing operations, SOM (Vr.1,Vr.7), SOM (Vr.2,Vr.8), and

SOM (Vr.3,Vr.9) are needed. In addition, one LSB sensing operation SOL (Vr.5) is also

performed to distinguish the region below Vr.1 and that above Vr.9 as illustrated in

Fig. 5.3(b). As a result, in order to read an MSB bit with eight levels, one SOL and

three SOM are demanded, which results in four times many data output operations

when compared to the conventional hard-decision mode. Table 5.1 summarizes the

number of sensing operations for the 4-level hard-decision and the 7-, 10-, and 16-

level soft-decision memory sensing. Note that the sensing results are mapped to log-

likelihood ratio (LLR) values by using a look-up table in the flash memory controller.
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SOL(Vr.5)
SOM(Vr.4,Vr.6)

r.1 r.3r.2

r.4 r.6r.5

r.7 r.9r.8

(a) For LSB pages

SOM(Vr.1,Vr.7)
SOM(Vr.2,Vr.8)
SOM(Vr.3,Vr.9)

SOL(Vr.5)

(b) For MSB pages

Figure 5.3: Voltage sensing scheme of 10-level signal quantization
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5.2.2 LSB and MSB Concurrent Access Scheme for Low-Energy Soft-

Decision Data Output

As explained in the previous subsection, the soft-decision scheme with conventional

memory demands multiple hard-decision sensing and data transfer operations to in-

crease the resolution in the overlapping region. Moreover, an additional LSB sensing

operation is needed to access an MSB page as shown in Fig. 5.3(b). This scheme

incurs a large amount of data output operations when high precision data are needed.

In order to reduce the energy consumption of soft-decision data output, we consider

a method that senses the LSB and MSB bits simultaneously with multiple SRVs.

In this scheme, an (Ns + 1)-level read operation is performed with Ns SRVs for

a row of transistors, i.e., a word-line, in the NAND flash array, and all the sensing

results are stored at the data register in Nb bits, where Nb = dlog2(Ns+1)e. Assuming

that up to 16-level quantization is used, Nb = 4 bits are needed to represent all kinds

of soft-decision sensing results. Of course, this scheme needs increased hardware

of 4×Npagebits data registers to store the soft-decision sensing results as shown in

Fig. 5.4, while the conventional NAND flash memory has only Npagebits data registers,

where Npagebits is the number of bits in each page.

When compared to the soft-decision sensing using conventional NAND flash

memory described in the previous subsection, this concurrent access scheme greatly

reduces the number of data transfer operations, only Nb bits for both LSB and MSB

data, because the data are composed within a memory device. Thus, this method

reduces not only the data output latency but also the energy consumption for off-

chip data transfer. Therefore, we only consider the LSB and MSB concurrent access

scheme in this dissertation.
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5.2.3 Energy Consumption of Read Operations in NAND Flash Mem-

ory

The read operation of NAND flash memory involves address decoding, NAND flash

array access, and data output. Conventional NAND flash memory supports various

types of read operations such as read page and read page cache. The read page

mode accesses only one page, whereas the read page cache mode reads the next

sequential pages in a block consecutively, while concurrently outputting data from the
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data register to increase the throughput. The timing diagram of the read page mode is

illustrated in Fig. 5.5, where tclk, tR, and trc denote the clock period, NAND flash array

access time for each voltage sensing operation, and read cycle time, respectively. The

array access time, tR, includes the threshold voltage sensing operation time as well as

the data transfer time from the NAND flash array to either the data or cache register.

In this section, we analyze the energy consumption of reading 2-bit MLC NAND

flash memory. We estimate the energy consumption consulting the electrical specifi-

cations listed in the data book from Micron technology [6]. The energy consumption

of reading NAND flash memory is modeled as the sum of the energy for array access

(Eac) and that for data output (Edo), where

Eac =VccIcctRNs, (5.1)

Edo =VccqIiotdo. (5.2)

Note that we only concern the active energy and ignore the idle energy. Vcc and Vccq

are the core and the I/O supply voltages, while Icc and Iio represent the core and the

I/O supply currents, respectively. Finally, the data output time is represented by tdo,

which is determined by the number of bytes to output and the period of data output

clock, as a result tdo = trc×Nb×Npagebits/8.

Since the read operation is performed simultaneously for both LSB and MSB

data, the energy consumption of LSB and MSB pages is considered as follows. Let

Er.LSB and Er.MSB be the read energy for an LSB page and an MSB page, respectively.

In 2-bit MLC, reading an MSB page uses two times many SRVs than that of an LSB

page access, hence the energy consumption of the array access operations for an LSB
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Table 5.2: The voltage, current, and timing parameters of 2-bit MLC NAND flash
memory

Asynchronous Synchronous Unit
tclk 20, 25, 30, 35, 50, 100 10, 12, 15, 20, 30, 50 ns

Vcc 3.3 3.3 V

Vccq 1.8, 3.3 1.8, 3.3 V

Icc 25 25 mA

Iio 8 20 mA

tad 150–450 168–288 ns

tR 12.5 12.5 µs/sensing

trc tclk 0.5× tclk ns

page and an MSB page can be modeled as Eac/3 and Eac×2/3, respectively. Because

two pages of data are delivered simultaneously in the LSB and MSB concurrent ac-

cess scheme, the data output energy of each page is modeled as Edo/2. Therefore, the

energy consumption of each page can be represented as follows:

Er.LSB =
1
3

Eac +
1
2

Edo, (5.3)

Er.MSB =
2
3

Eac +
1
2

Edo. (5.4)

Table 5.2 shows the voltage, current, and timing parameters noted in the 34-nm

2-bit MLC NAND flash data book from Micron technology [6]. Table 5.3 shows the

estimated energy consumption and the latency of read operation for different memory

signal quantization cases. Since the data output operation takes a long time due to the

limited number of I/O ports, the operating condition that needs the smallest trc in

the synchronous mode shows the minimum energy consumption. In this simulation,

NAND flash memory that operates at 100 MHz and Vccq of 1.8 V in the synchronous

mode consumes the minimum read energy. Since the energy consumption of the read

page mode is almost similar to that of the read page cache mode, we only consider
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Table 5.3: The energy consumption of a read operation for LSB and MSB pages
Eac (nJ/byte) Edo (nJ/byte) Er (nJ/byte)

LSB pages

4-level 0.12 0.18 0.30

7-level 0.24 0.27 0.51

10-level 0.36 0.36 0.72

16-level 0.60 0.36 0.96

MSB pages

4-level 0.24 0.18 0.42

7-level 0.48 0.27 0.72

10-level 0.72 0.36 1.08

16-level 1.19 0.36 1.55

the read page mode of the above operating condition (tclk = 10 ns, Vccq = 1.8 V, and

synchronous mode).

As summarized in Table 5.3, the 7-, 10-, 16-level signal quantization of an LSB

page consume 1.7, 2.4, and 3.2 times more energy, respectively, when compared to

the 4-level quantization that yields hard-decision data output. MSB pages consume

approximately 1.5 times more energy than LSB pages.

5.3 The Performance of Soft-Decision Error Correction over

a NAND Flash Memory Channel

This section estimates the error performance of an LDPC code using a 2-bit MLC

NAND flash memory simulation model that includes random telegraph noise, in-

cremental step pulse programming, cell-to-cell interference (CCI), and non-uniform

quantization [8, 8, 98, 99, 100, 101] as illustrated in Fig. 5.6. In order to support

soft-decision LDPC decoding, we evaluate the effects of memory signal quantization

using the LLR computation method proposed in [44], where the four threshold volt-
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age distributions are assumed as Gaussian distributions and the partial cumulative

distribution functions of the Gaussian distributions are used to compute quantized

LLRs. Thus, the LLR computation method only requires the means and the variances

of the distributions obtained by channel estimation [42]. Note that the LLR compu-

tation can be implemented using a look-up table.

For the error correction in NAND flash memory, we employ a rate-0.96 (68254,

65536) shortened Euclidean geometry (EG) LDPC code that can accommodate one

page of the 128-Gbit 2-bit MLC NAND flash memory as described in Section 4.2.1.

Note that finite geometry (FG) LDPC codes are good candidates for error correction

of NAND flash memory because FG-LDPC codes have the characteristics of low

error-floor performance, fast convergence speed, good error-correcting performance,

and cyclic or quasi-cyclic (QC) properties.

We assume that the erased state (symbol 11) has a Gaussian distribution whose

mean and standard deviation are 1.0 V and 0.32 V, respectively, and the target pro-

gramming voltages for the symbol 01, 00, and 10 are 2.6 V, 3.2 V, and 3.8 V, respec-

tively. In order to generate the NAND flash memory channel with different bit error

rates (BERs), we change the cell-to-cell coupling coefficient factor (CCF) [40, 44].

The CCF primarily affects the variances of the threshold voltage distributions. Hence,

increasing the CCF results in high raw BER (RBER) because of the increased vari-
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ance. The probability ratios that determine quantization boundaries [40] are set to

three and eight for the 7-level and the other levels, respectively.

The error performances of a rate-0.96 (68254, 65536) EG-LDPC code and two

BCH codes over the NAND flash memory channel are plotted in Fig. 5.7 for LSB and

MSB pages, where the serial-C schedule and the fixed-point normalized APP-based

algorithm with conditional variable node update are used for low-complexity LDPC

decoding. The word-length and the maximum iteration number is set to seven bits and

eight, respectively, as described in Section 4.2.2. The error performance of the decod-

ing with unquantized channel output is also shown for comparison. The x-axis rep-

resents RBER, and the numbers in parentheses are the corresponding signal-to-noise

ratio (SNR) values, which are computed assuming a 4-pulse amplitude modulation

channel with additive white Gaussian noise (AWGN).

As shown in Fig. 5.7, increasing the precision, i.e., the number of quantization

levels, improves the error-correcting performance, and the unquantized channel out-

put yields the best result. However, the improvement is not much noticeable when

the precision is larger than 16-level. In order to compare the soft-decision LDPC de-

coding with hard-decision decoding, we employed BCH codes. The (68256, 65536,

160) BCH code, which has the same code rate of 0.96, shows a much worse per-

formance than the soft-decision LDPC decoding for LSB and MSB pages. To have

the comparable performance to the LDPC decoding with 16-level quantization, the

error-correcting capability t of the BCH code needs to be almost doubled, t = 320 for

LSB pages and t = 300 for MSB pages. This translates that the code rate of the BCH

codes needs to be lowered to 0.92, which demands twice the amount of parity data.

The comparison of soft-decision LDPC and hard-decision BCH codes clearly shows

the advantage of the soft-decision decoding.
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Figure 5.7: Error-performance of the (68254, 65536) EG-LDPC code over the NAND
flash memory channel
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Table 5.4: The operating regions according to memory signal quantization
RBER (×10−3) Memory signal quantization

LSB pages MSB pages needed for 10−7BER
Region I ∼ 1.95 ∼ 1.79 4-, 7- 10-, and 16-level

Region II 1.95–3.15 1.79–2.90 7- 10-, and 16-level

Region III 3.15–3.50 2.90–3.15 10- and 16-level

Region IV 3.50–3.62 3.15–3.33 16-level

Region V 3.62+ 3.33+ –

In Fig. 5.7(a), we can find that even 4-level hard-decision decoding works when

the RBER is lower than 1.95× 10−3. However, when the RBER is between 1.95×

10−3 and 3.15× 10−3, the 4-level hard-decision decoding does not work and only

soft-decision decoding can remove most of the errors. When the RBER is greater

than 3.62×10−3, even 16-level soft-decision decoding cannot correct the data prop-

erly. From this observation, we can divide the RBER values into five regions as shown

in Table 5.4. Although a NAND flash memory system requires error-free decoding

with BER less than 10−15, here we set the target BER to 10−7 because the simulation

of the LDPC decoding takes much time to observe the minimum requirement. Note

again that EG-LDPC codes show very low error-floor performance and have fast con-

vergence speed. Table 5.4 summarizes the results for LSB and MSB pages. Here, we

can find that the 7-level quantization enhances the error-correcting performance very

much when compared to 4-level hard-decision decoding. However, further increasing

the precision brings diminishing returns. As a result, the region II is quite wider than

region III or IV.
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5.4 Hardware Performance of the (68254, 65536) LDPC De-

coder

5.4.1 Energy Consumption of the LDPC Decoder

In Chapter 4, we have implemented the (68254, 65536) EG-LDPC decoder employ-

ing the normalized APP-based algorithm, the serial-C schedule, and the conditional

variable node update technique. This subsection assesses the energy consumption

of the LDPC decoder for read operation of NAND flash memory and compares the

developed decoder with two BCH decoding circuits showing the comparable per-

formance in terms of the parity ratio, chip area, decoding throughput, and energy

consumption.

The LDPC decoder was synthesized, placed, and routed in 0.13-µm CMOS tech-

nology using Synopsys tools, then parasitic resistances and capacitances were ex-

tracted to estimate the energy consumption accurately. Randomly generated informa-

tion bits were encoded and Gaussian noise was added to make test vectors. Then,

the power consumption, iteration count, and decoding latency were estimated by

using Synopsys PrimeTime. From the simulation results, we obtained the average

energy consumption as a first-order function of the iteration count. Finally, the en-

ergy consumption of the LDPC decoder was computed using the average iteration

counts found by simulations for each precision and RBER. In order to consider the

implementation with a recent process technology, the decoding energy of the LDPC

decoder is scaled down to a 65-nm technology. The core supply voltages of 130 nm

and 65 nm nodes are 1.2 V and 1.0 V, respectively. In addition, the maximum clock

frequencies are assumed to be the same, 131 MHz, for both processes. Considering
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Figure 5.8: The energy consumption of the (68254, 65536) LDPC decoder (65-nm
VLSI) over NAND flash memory channel

the process technologies and the supply voltages, the energy consumption is scaled

down by a factor of 2.88 (=
[
(65/130nm)× (1.0/1.2V)2

]−1) for the 65-nm technol-

ogy node according to [97].

The energy consumption of the (68254, 65536) LDPC VLSI with the 65-nm tech-

nology for hard- and soft-decision memory sensing is shown in Fig. 5.8, where the
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clock frequency and the maximum iteration limit were set to 131 MHz and eight, re-

spectively. Since the implemented LDPC decoder shows very fast convergence speed,

the decoding energy consumption decreases rapidly at low RBER (high SNR). For

the low RBER region below 10−3, decoding with all of the precision considered

demands mostly one decoding iterations, thus resulting in the minimum energy con-

sumption of 0.7 nJ/byte. For the region exceeding the RBER of 10−3, decoding with

soft-decision data consumes less energy than that with the 4-level hard-decision data

because of the decreased number of iterations. In addition, in the region below the

RBER of 3× 10−3, all soft-decision decoding shows similar energy consumption.

At the high RBER region where only 16-level soft-decision decoding is allowed

to use, i.e., region IV, we can find that the average energy consumption of the LDPC

decoder is 1.6 to 8.4 times higher than that of the read operation in MLC NAND

flash memory. However, in the low RBER (high SNR) region in which all kinds of

precision can be used, i.e., region I, the LDPC decoder consumes only 0.5 to 2.3 times

of the energy needed for the read operation in MLC NAND flash memory. Therefore,

we can consider that the total energy consumption is significantly affected by the

LPDC decoder in the high RBER region but is more influenced by the read operation

of NAND flash memory in the low RBER region.

5.4.2 Performance Comparison of the LDPC Decoder and Two BCH

Decoders

We also compare the performance of the developed LDPC decoder with that of BCH

code-based hard-decision decoding. The (70959, 65536, 320) and the (70619, 65536,

300) BCH codes show comparable error performance to the developed (68254, 65536)

EG-LDPC code with 16-level quantization for LSB and MSB pages, respectively.
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Table 5.5: The parallel factors of the two BCH decoders
Parallel factors

Time-multiplexing
factorEncoder Syndrome

generator
Chien
seach

(70959, 65536, 320) BCH decoder 16 10 16 1

(70619, 65536, 300) BCH decoder 16 9 16 1

These BCH decoders were implemented using the same 0.13-µm CMOS technol-

ogy. The BCH decoders employ the architecture proposed in [2], where the BCH

encoder-assisted syndrome generator, simplified inversion-less Berlekamp-Massey

algorithm (SiBMA), and resource sharing technique between the syndrome genera-

tor and the Chien search module are proposed. To achieve almost the same minimum

decoding throughput of 1.63 Gb/s, the parallel factors for the encoder, the syndrome

generator, and the Chien search module were chosen as shown in Table 5.5. The

time-multiplexing factor of the SiBMA module was set to one to support the needed

decoding throughput.

The developed (70959, 65536, 320) and (70619, 65536, 300) BCH decoders oc-

cupy the core areas of 32.74 mm2 and 29.47 mm2 with 70 % logic utilization and

consume 1.10 W and 1.07 W at the minimum decoding throughput, respectively. The

energy efficiency and throughput-to-area ratio (TAR) of both decoders are computed

as shown in Fig. 5.9 and Fig. 5.10 for LSB and MSB pages, respectively. Assuming

that the target BER of a NAND flash memory system is 10−7, both the soft-decision

LDPC decoder with 16-level quantization and the hard-decision BCH decoder work

up to the RBER of 3.6× 10−3 and 3.3× 10−3 for LSB and MSB pages, respectively,

as shown in Fig. 5.7. In other words, the right side of the vertical dotted line in Fig. 5.9

and Fig. 5.10 is the region in which the decoder corrects the data properly at the target

BER of 10−7.
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Figure 5.9: Energy efficiency and TAR of the (68245, 65536) LDPC and (70959,
65536, 320) BCH decoders for LSB pages

From Fig. 5.9 and Fig. 5.10 we can find that the LDPC decoder outperforms the

BCH decoders for a broad range of the RBER because of the advantage of early ter-

mination, while the BCH decoders yield better results only when the RBER is near

the undecodable region. Most of all, the soft-decision LDPC decoding demands only

about a half of the parity ratio when compared to the hard-decision BCH decoding.
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Figure 5.10: Energy efficiency and TAR of the (68245, 65536) LDPC and (70619,
65536, 300) BCH decoders for MSB pages
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5.5 Low-Energy Error Correction Scheme for NAND Flash

Memory

5.5.1 Optimum Precision for Low-Energy Decoding

The total energy consumption of NAND flash memory access can be obtained by

adding the energy consumption for memory access and that for error correction. We

observe that high precision increases the energy for memory access, while it can

reduce the LDPC decoding energy.

Figure 5.11 shows the total energy consumption of NAND flash memory with

the LDPC decoder for LSB and MSB pages, where NAND flash memory operates at

100 MHz and Vccq of 1.8 V in the synchronous data output mode. The vertical dotted

lines divide the operating regions according to Table 5.4.

In the region I, where all hard- and soft-decision decoding operate, the decoding

with the 4-level quantization shows the smallest energy consumption when the RBER

is very low, while the 7-level soft-decision decoding consumes less energy than the

hard-decision decoding as RBER increases. In the region II, the decoding with the

7-level read operation results in the lowest energy consumption, while in the region

III, the 10-level quantization leads to the lowest consumption. Finally, in the region

IV, there is no other choice except the 16-level soft-decision decoding.

In summary, for each operating region, decoding with the lowest precision al-

lowed consumes the least energy among possible decoding schemes, especially for

decoding MSB pages. Although the 16-level soft-decision decoding shows the best

error-correcting performance over all RBER regions, it consumes up to two times

more energy than the 4-level hard-decision decoding at the low RBER (high SNR)
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Figure 5.11: The total energy consumption

region because of the additional memory sensing operations. Therefore, depending

on the channel condition, an appropriate precision should be chosen to minimize the

total energy consumption.

We also studied the trend of total energy consumption when considering both

program-and-erase (PE) cycling and data retention. The NAND flash memory chan-

nel estimation proposed in [42] was used to decide the SRVs and the lowest precision
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Figure 5.12: The total energy consumption for MSB pages with the number of PE
cycles and retention time

was chosen among the possible decoding schemes. Figure 5.12 shows the total en-

ergy consumption for MSB pages. The number of PE cycles and retention time vary

from 1 to 5 k times and from 1 to 9 k hours, respectively. The coupling coefficients

of the x and x− y directions are set to 0.1034 and 0.006721, respectively, in order to

consider 20-nm flash memory technology [9, 102]. We can find that the total energy

consumption is very strongly affected by the PE cycling. When the number of PE cy-

cles is less than or equal to 1K, the total energy consumption shows the least amount,

which is around 1 nJ/byte regardless of the retention time. However, the total energy

consumption also increases with the retention time when the number of PE cycles is

larger than 1 k.
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5.5.2 Iteration Count-Based Precision Selection

The presented experimental results show that optimum precision selection is very im-

portant for low-energy soft-decision decoding of NAND flash memory. One straight-

forward idea is to conduct failure-based precision selection. In this method, the pre-

cision is increased when the decoding is failed. For example, the decoding begins

with 4-level quantization, and if it fails, the decoding is retried with an increased

precision. Although this method is very simple and there is no need of storing the

precision information, this can consume a large amount of energy when the decod-

ing fails because LDPC decoders iterate many cycles. Of course, the failure-based

scheme also incurs additional time-delay for retrying the decoding with an increased

precision.

Another approach is to estimate the signal quality of NAND flash memory peri-

odically with channel estimation algorithms [42]. By sensing the signal with multiple

threshold voltages, we can estimate the mean and the variance of each symbol. This

method, however, demands extra time and energy for signal quality estimation. Con-

sidering that the signal quality deteriorates when the number of PE cycles and the

retention time increase, the overhead of periodic estimation can be quite high, espe-

cially for a large capacity solid-state drives (SSDs).

We propose a precision selection method that utilizes the iteration count of the

LDPC decoder. In this explanation, we use the precision of 4-, 7-, and 16-level be-

cause the optimum operating range of the 10-level read is quite narrow as shown in

Fig. 5.13(b). When the RBER is very low, such as less than 1.0× 10−3, the average

iteration count is around one even with the 4-level quantization. Thus, employing

the 4-level read is the best for low energy decoding in this region. However, as the
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RBER grows and when it is approximately between 1.0×10−3 and 1.79×10−3, the

decoding with the 4-level quantization demands an increased number of iterations.

Thus, we need to increase the precision to 7-level for lowering the energy when the

iteration count with the 4-level read is repeatedly two or greater. Of course, the oppo-

site path is also needed. If the iteration count is repeatedly only one with the 7-level

quantization, then it is needed to lower the precision into 4-level. A similar scenario

happens when the RBER is close to 3.0× 10−3. At this region, the decoding with

7-level demands the iteration count of three or more. This means that it is the time to

increase the precision to 16-level. Of course, when the iteration count with 16-level

quantization is repeatedly equal to or less than two, we need to decrease the precision

to 7-level. Since the precision is adjusted before the decoding failure, we can avoid

the energy loss and delay. Finally, The channel estimation is performed only when

the iteration count of the decoding with 16-level quantization is repeatedly four or

greater.

5.6 Concluding Remarks

We studied the optimum memory signal quantization of NAND flash memory for

low-energy soft-decision error correction. The energy consumed at NAND flash mem-

ory as well as the LDPC decoder is considered. This study shows that the optimum

precision of flash memory data for soft-decision LDPC decoding depends on the sig-

nal quality, which implies that knowing the signal-to-noise ratio (SNR) of NAND

flash memory is quite important for low-energy error correction. When the SNR is

relatively high, the conventional 4-level (hard-decision) decoding for 2-bit multi-level

cell (MLC) leads to the lowest energy consumption because of minimum sensing and
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Figure 5.13: Average number of decoding iterations of the (68254, 65536) LDPC
decoder

output energy consumed at NAND flash memory. However, as the SNR decreases,

the optimum precision for low energy needs to be increased. We find that the preci-

sion of 7-level for signal quantization, which represents providing an erasure region

at each signal boundary, leads to minimum energy decoding at a broad range of sig-

nal quality. We also propose an adaptive, feedback-based, precision selection scheme
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that needs virtually no overhead.
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Chapter 6

Conclusion

In this dissertation, we have studied low-energy and high-performance error correc-

tion for NAND flash memory systems. For this purpose, a low-density parity-check

(LDPC) code-based decoding algorithm, scheduling methods, and low-power hard-

ware architecture is investigated.

Chapter 3 of this dissertation is devoted to the study of informed dynamic schedul-

ing algorithms. Since message updates are concentrated on a specific check node in

the residual belief propagation (RBP), we propose an improved RBP (iRBP) algo-

rithm that avoids such concentration and increases the convergence speed. We have

also developed a syndrome-based mixed scheduling that dynamically conduct either

the iRBP or the node-wise scheduling and obtained the result that outperforms all

other schedules tested in this work.

In Chapter 4, we have proposed a conditional variable node update scheme for

the normalized a posteriori probability (APP)-based algorithm to develop hardware

efficient and low-power LDPC decoding systems. Simulation results show that the
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proposed algorithm is robust to decoding failure and reduces switching activities of

the decoding circuits. In addition, we have proposed a decoder hardware architecture

for FG-LDPC codes that perform well with the normalized APP-based decoding. The

architecture employs the normalized APP-based decoding, the serial scheduling al-

gorithm, and the proposed conditional variable node update technique, which lead

to simple functional units, halved decoding iterations, and low-power consumption,

respectively. The decoder also adopts five-stage pipelined eight-way parallel archi-

tecture for high throughput and a few memory-reduction techniques. The developed

decoder can achieve the minimum and maximum decoding throughput of 1.6 and

8.1 Gb/s, respectively, with the chip area of 63.08mm2 in 0.13-µm CMOS process

technology.

In Chapter 5 of the dissertation, we have studied the low-energy error correc-

tion of NAND flash memory through soft-decision error correction. The error per-

formance of an LDPC code improves as the precision of data fed to the decoder

increases, which demands an increased number of memory sensing operations in

NAND flash memory. Although high precision data lowers the energy consumption

in the LDPC decoder, multiple memory sensing operations obviously increase the

energy consumption of NAND flash memory. We have analyzed the total energy

consumption of the read operation for a NAND flash memory system equipping an

LDPC decoder and proposed an LDPC decoder-assisted precision selection method

that minimizes the total energy consumption.

The research works in this dissertation can contribute to the design of high-

performance NAND flash memory systems that support strong error correction, high

bandwidth, and low-power energy consumption.
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국문초록

반도체 공정의 미세화에 따라 비트 에러율이 증가하는 낸드 플래시 메모

리에서고성능에러정정방법은필수적이다. Low-density parity-check (LDPC)

부호와같은연판정에러정정부호는뛰어난에러정정성능을보이지만,높은

구현 복잡도로 인해 플래시 메모리 시스템에 적용되기 힘든 단점이 있다. 본

논문에서는 LDPC부호의효율적인복호를위해고성능메시지전파스케줄링

방법과저복잡도복호알고리즘을제안한다.특히 finite geometry (FG) LDPC부

호에 대한 효율적인 디코더 아키텍쳐를 제안하며, 구현된 디코더를 이용하여

낸드플래시메모리에대해연판정복호시의에너지소모량에대해연구한다.

본논문의첫번째부분에서는동적스케줄링 (informed dynamic scheduling,

IDS)알고리즘의성능향상방법에대해연구한다.이를위해우선기존의가장

빠른 수렴 속도를 보이는 IDS 알고리즘인 레지듀얼 신뢰 전파 (residual belief

propagation, RBP)알고리즘의동작특성을분석하고,이를바탕으로특정노드

에메시지갱신이집중되는것을방지하여 RBP알고리즘의수렴속도를증가시

킨 improved RBP (iRBP)알고리즘을제안한다.또한 iRBP의뛰어난수렴속도와

기존의 NS알고리즘의우수한에러정정능력을모두갖춘신드롬기반의혼합

스케줄링 (mixed scheduling) 방법을 제안한다. 끝으로 다양한 부호율의 LDPC

부호에대한모의실험을통해제안된신드롬기반의혼합스케줄링방법이본

논문에서시험된다른모든스케줄링알고리즘의성능을능가함을확인하였다.

논문의두번째부분에서는복호실패시많은비트에러를발생시키는 a pos-

teriori probability (APP) 알고리즘의 개선 방안에 방안을 제안한다. 또한 빠른
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수렴속도와우수한에러마루 (error-floor)성능으로데이터저장장치에적합한

FG-LDPC 부호에 대해 제안된 알고리즘이 적용된 하드웨어 아키텍처를 제안

하였다.제안된아키텍처는높은노드가중치를가지는 FG-LDPC부호에적합

하도록쉬프트레지스터 (shift registers)와 SRAM기반의혼합구조를채용하며,

높은처리량을얻기위해파이프라인된병렬아키텍처를사용한다.또한메모

리 사용량을 줄이기 위해 세 가지의 메모리 용량 감소 기법을 적용하며, 전력

소비를줄이기위해두가지의저전력기법을제안한다.본제안된아키텍처는

부호율 0.96의 (68254, 65536) Euclidean geometry LDPC 부호에 대해 0.13-µm

CMOS공정에서구현하였다.

마지막으로본논문에서는연판정복호가적용된낸드플래시메모리시스

템의 에너지 소모를 낮추는 방법에 대해 제안한다. 연판정 기반의 에러 정정

알고리즘은 높은 성능을 보이지만, 이는 플래시 메모리의 센싱 수와 에너지

소모를증가시키는단점이있다.본연구에서는앞서구현된 LDPC디코더가

채용된낸드플래시메모리시스템의에너지소모를분석하고, LDPC디코더와

BCH디코더간의칩사이즈와에너지소모량을비교하였다.이와더불어본논

문에서는 LDPC디코더를이용한센싱정밀도결정방법을제안한다.본연구를

통해 제안된 복호 및 스케줄링 알고리즘, VLSI 아키텍쳐, 그리고 읽기 정밀도

결정방법을통해낸드플래시메모리시스템의에러정정성능을극대화하고

에너지소모를최소화할수있다.

주요어 : 낸드 플래시 메모리, 동적 스케줄링, LDPC 부호, 연판정 센싱 방법,

연판정오류정정

학번 : 2009-30185
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